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Introduction

Welcome to our book on structural equation modeling!

[THIS BOOK IS A WORK IN PROGRESS. FEEL FREE TO PERUSE WHAT-
EVER CONTENT YOU FIND HERE, BUT THE FINAL VERSION WILL
NOT BE READY UNTIL SOMETIME IN 2023.]

If you want, you can also download this book as a PDF or EPUB file. Be aware
that the print versions are missing some of the richer formatting of the online
version.

Some history

In 2016, Jonathan and Sean embarked upon a bold experiment, asking the ques-
tion, “Is is possible to teach structural equation modeling (SEM) to undergrad-
uates with little statistical background?” To make things even more exciting,
we attempted to do so in a special topics course lasting only one month during
our May Term at Westminster College (Salt Lake City, UT).

In such an endeavor, we had to temper our expectations, of course. The goal
was not to produce competent practitioners who would subsequently go on to
do serious research using SEM techniques. We were quite happy that, at the
end of May, we had undergraduates who were able to put together a simple final
project that required them to find some data, posit a model, fit the model in
R, interpret the output, and check a few model fit statistics. Some exposure to
the topic and some appreciation of its power were satisfying enough. In fact,
we think we got a little more out of it than that: we are reasonably confident
that most of our students had developed—at that point right after taking the
course—the ability to read a research article with an SEM model and have at
least some idea what the article was talking about. We called it a win!

We repeated the experiment with some modifications to our materials and ped-
agogy in 2018. By that point, it was clear that finding textbooks and articles
to assign to students was challenging. There are some great books out there,
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but they are mostly aimed at graduate students. Even the ones labeled “intro-
ductory” were often far from that for the typical undergraduate with limited
statistical training.

We decided that we could write our own textbook that would fill this hole in
the literature. The book that follows is the fruit of our efforts.

Sean was granted sabbatical in Spring 2020 and proposed to use that time to
start writing the book in preparation for running the May Term course again
in May, 2020. And, well, we all know how that went…

Once the pandemic subsided enough for us to offer the course in person again,
we attempted it again in May, 2022. [TO BE CONTINUED]

Our philosophy

As we mentioned before, our motivation for writing the book was driven by
the difficulty we had finding readings for the students. Perhaps that begs the
question, should one even try teaching a topic as “difficult” or “advanced” as
structural equation modeling to the audience we had? To be sure, the tradi-
tional approaches already on the market seem to assume a lot more background
than we had at our disposal. And the books that claim to assume less back-
ground…well, sometimes they require more than they let on.1

The prerequisite for our class at Westminster College is an intro stats class
that covers pretty standard material for such a course: hypothesis testing and
confidence intervals for one and two proportions, one and two means (and paired
means), ANOVA, chi-squared, and simple linear regression. In some technical
sense, very little of that material is truly required to understand our book.
Having said that, though, some prior exposure to statistical ideas is helpful for
motivating a rationale for building the kinds of models we teach in our course.

We also benefit in that our intro course introduces students to R. For those
lacking R background, the first five chapters here [FIX THIS LINK ONCE
THE DATA 220 BOOK IS ALSO FULLY ONLINE] should suffice as a basic
introduction to R and R Markdown, graphing with ggplot, and some basic
tidyverse stuff about tibbles and data manipulation. We try hard to give lots
of fully worked-out code examples in this book that students should be able to
copy, paste, and modify slightly to meet their own modeling needs. But know
that we make no attempt to be language agnostic here; R is the one and only
tool we use.

To respect our students, we made some very deliberate choices about the way
our book would be structured.

1“Oh, you don’t know anything about matrix algebra or maximum likelihood fitting algo-
rithms? No problem. Go read three or four pages in an appendix and then you’ll be ‘prepared’
to read this book.” �

https://github.com/VectorPosse/Intro_Stats
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• Make the book free and open source.

Students have enough trouble in their lives without being subjected to the ex-
tortionate practices of most textbook publishers. Not only is this book freely
available online, it’s also published under a permissive open source license (the
MIT license) that allows folks to “use, copy, modify, merge, publish, distribute,
sublicense, and/or sell” their own versions of the book as desired. Furthermore,
any derivative of the book must also abide by the same open standards. So our
book is both libre and gratis (or, in more common parlance, “free as in speech”
and “free as in beer”).

• Start from scratch.

Explain everything from the beginning in terms that are as simple as possible.
Some of the first few chapters may look like review for students. Even if it is, of
course, that review gives students confidence to tackle upcoming new material.
But you might be surprised at some of the novel ways we explain seemingly
familiar concepts. All the exposition has an eye toward direct application in
later chapters, so what might seem a little idiosyncratic at first is motivated by
a desire to smooth the pathways into later concepts.

• Incorporate active learning into everything.

The chapters are structured to work as templates for classroom experiences.
They intersperse conceptual explanation with activities designed to reinforce
those concepts and lead students to important conclusions. These learning
activities will appear framed in blue boxes [CHANGE THIS IF WE ESTABLISH
A CUSTOM CALLOUT] like this:

Hey, kids! Stop and do this activity here!

• Do the math and do it well.

One common thread we see in a lot of SEM books is a tendency to sweep most
of the math under the rug. The intention comes from a good place; mathemat-
ics can appear intimidating and, therefore, may seem to serve as a deterrent to
learning. To be sure, there are some complex mathematical ideas in SEM that
are inaccessible to our audience. At the same time—and, in fairness, this may be
due to Sean’s bias as a mathematician—we truly believe that the mathematics,
carefully explained and continually reinforced, can illuminate student under-
standing. The more mathy sections may need additional instructor support for
students without a strong math background. But all it takes is some relatively
straightforward algebra to nail down some concepts that most books ignore. A
good example of this is investing time in the rules for manipulating variances

https://opensource.org/licenses/MIT
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and covariances. This allows students to calculate the “model-implied matrix”
that is only cryptically referenced in most textbooks. However, we do skip the
math sometimes. For example, a lot of the math behind model fit indices is left
unexplained. At the very least, we hope to be transparent about our choices to
include or exclude certain mathematical details.

• Use “nice” data.

Finding data is hard, so we rely a lot on data sets that other textbooks and
R package authors make available (with due attribution, of course). To keep
things simple for this course, we work almost exclusively with cross-sectional,
numerical (quantitative) data. [MODIFY THIS IF WE END UP WORKING
WITH BINARY CATEGORICAL EXOGENOUS VARIABLES (CODED 0/1)
AT SOME POINT.]

• Be careful about diagrams.

Learning about complex models induces a sizable cognitive load. Shortcuts
in diagrams tend to confuse students. For example, if error terms are truly
latent variables, they should be drawn as circles and not hidden, even if an
advanced practitioner “knows” they’re there. Variances and covariances among
exogenous variables should always appear as well. We take the time to build
up a consistent pictographic representation of every part of a model. (Each
chapter is introduced with an archetypal diagram that illustrates that chapter’s
content.) Then we stick to that representation throughout the book.

• Be careful about notation.

While it may be the industry standard, LISREL notation is needlessly complex
for undergraduate students. We take a consistent and simple approach to nota-
tion that represents all variables using UPPERCASE names and all parameter
values using lowercase names. Abstract variables tend to be called something
like X when exogenous and Y when endogenous. Real-world variables have
contextually meaningful names. For those interested in reading the research
literature, we have included an appendix describing LISREL notation.

Course structure

We use this book to teach a 2-credit-hour course. (Even though it’s a special
topics course in our May Term, the number of contact hours for students is
equivalent to a semester-long, 2-credit-hour course.)
[ADD INFO HERE AS WE DECIDE HOW MUCH IS REASONABLE TO
COVER. IF WE WANT THE BOOK TO BE USABLE IN A 4-CREDIT-HOUR
COURSE, WHAT ADDITIONAL MATERIAL SHOULD WE CONSIDER IN-
CLUDING?]
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Onward and upward

We hope you enjoy our textbook. Please send us your feedback!

–Jonathan Amburgey (jamburgey@westminstercollege.edu)

–Sean Raleigh (sraleigh@westminstercollege.edu)

mailto:jamburgey@westminstercollege.edu
mailto:sraleigh@westminstercollege.edu


12 CONTENTS



Chapter 1

Variables and measurement

1.1 First section

[SOMEWHERE NEED TO MENTION “CONSTANT” VARIABLES, OR
VARIABLES THAT TAKE ONLY ONE VALUE.]
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Chapter 2

Variance

2.1 A quick refresher on the mean

Most of us were taught how to calculate the mean of a variable way back in
elementary school: add up all the numbers and divide by the size of the group
of numbers. In a statistics context, we often use a “bar” to indicate the mean
of a variable; in other words, if a variable is called 𝑋, the mean is denoted 𝑋.
Remembering that we always use 𝑛 to represent the sample size, the formula is

𝑋 = ∑𝑋
𝑛

(In case you forgot, the Greek letter Sigma Σ stands for “sum” and means “add
up all values of the thing that follows”.)
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Here is a small data set we’ll use throughout this chapter as a simple example
we can work “by hand”:

3, 4, 5, 6, 6, 7, 8, 9

Calculate the mean of this set of eight numbers.

2.2 Calculating variance

Variance is a quantity meant to capture information about how spread out data
is.

Let’s build it up step by step.

The first thing to note about spread is that we don’t care how large or small
the numbers are in any absolute sense. We only care how large or small they
are relative to each other.

Look at the numbers from the earlier exercise:

3, 4, 5, 6, 6, 7, 8, 9

What if we had the following numbers instead?

1003, 1004, 1005, 1006, 1006, 1007, 1008, 1009

Explain why any reasonable measure of “spread” should be the same for both
groups of numbers.

One way to measure how large or small a number is relative to the whole set is
to measure the distance of each number to the mean.

Recall that the mean of the following numbers is 6:

3, 4, 5, 6, 6, 7, 8, 9

Create a new list of eight numbers that measures the distance between each of
the above numbers and the mean. In other words, subtract 6 from each of the
above numbers.

Some of the numbers in your new list should be negative, some should be zero,
and some should be positive. Why does that make sense? In other words, what
does it mean when a number is negative, zero, or positive?

If the original set of numbers is called 𝑋, then what you’ve just calculated is a
new list (𝑋 −𝑋). Let’s start organizing this into a table:

𝑋 (𝑋 −𝑋)
3 -3
4 -2
5 -1
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𝑋 (𝑋 −𝑋)
6 0
6 0
7 1
8 2
9 3

The numbers in the second columns are “deviations” from the mean.

One way you might measure “spread” is to look at the average deviation. After
all, if the deviations represent the distances to the mean, a set with large spread
will have large deviations and a set with small spread will have small deviations.

Go ahead and take the average (mean) of the numbers in the second column
above.

Uh, oh! You should have calculated zero. Explain why you will always get zero,
no matter what set of numbers you start with.

The idea of the “average deviation” seems like it should work, but it clearly
doesn’t. How do we fix the idea?

Hopefully, you identified that having negative deviations was a problem because
they canceled out the positive deviations. But if all the deviations were positive,
that wouldn’t be an issue any more.

There are two ways of making numbers positive:

• Taking absolute values

We could just take the absolute value and make all the values positive. There
are some statistical procures that do just that,1 but we’re going to take a slightly
different approach…

• Squaring

If we square each value, they all become positive.

Taking the absolute value is conceptually easier, but there are some historical
and mathematical reasons why squaring is a little better.2

Square each of the numbers from the second column of the table above. This
will calculate a new list (𝑋 −𝑋)2

1This leads to the “mean absolute deviation” or MAD.
2If you know calculus, you might think why the square function is much better behaved

than the absolute value function.
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Putting the new numbers into our previous table:

𝑋 (𝑋 −𝑋) (𝑋 −𝑋)2

3 -3 9
4 -2 4
5 -1 1
6 0 0
6 0 0
7 1 1
8 2 4
9 3 9

Now take the average (mean) of the numbers in the third column above.

The number you got (should be 3.5) is almost what we call the variance. There’s
only one more annoying wrinkle.

When you took the mean of the last column of numbers, you added them all
up and divided by 8 since there are 8 numbers in the list. But for some fairly
technical mathematical reasons, we actually don’t want to divide by 8. Instead,
we divide by one less than that number; in other words, we divide by 7.3

Re-do the math above, but divide by 7 instead of dividing by 8.

The number you found is the variance, written as 𝑉 𝑎𝑟(𝑋). The full formula is

𝑉 𝑎𝑟(𝑋) = ∑(𝑋 −𝑋)2

𝑛 − 1

As a one-liner, the formula may look a little intimidating, but when you break
it down step by step as we did above, it’s not so bad.

Here is the full calculation in the table:

𝑋 (𝑋 −𝑋) (𝑋 −𝑋)2

3 -3 9
4 -2 4
5 -1 1
6 0 0
6 0 0
7 1 1
8 2 4
9 3 9

3For more information on that, search the internet for “sample variance unbiased”
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𝑋 (𝑋 −𝑋) (𝑋 −𝑋)2

Sum: 28
Variance:

28/7 = 4

In our diagrams, the variance of a variable is indicated by a curved, double-
headed arrow, labeled with the value of the variance, like this:

4

X

Using the tabular approach, calculate the variance of the following set of num-
bers:

4, 3, 7, 2, 9, 4, 6

Consider the following two sets of numbers:

A) 1, 2, 5, 8, 9

B) 1, 4, 5, 6, 9

Without doing any calculations, which of the sets has the larger variance?

Once you’ve decided, then calculate the variance for both sets and check your
answer.
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2.3 Calculating variance in R

Once we’ve done it by hand a few times to make sure we understand how the
formula works, from here on out we can let R do the work for us:

X1 <- c(3, 4, 5, 6, 6, 7, 8, 9)
var(X1)

## [1] 4

X2 <- c(4, 3, 7, 2, 9, 4, 6)
var(X2)

## [1] 6

X3 <- c(1, 2, 5, 8, 9)
var(X3)

## [1] 12.5

X4 <- c(1, 4, 5, 6, 9)
var(X4)

## [1] 8.5

This is also easier for real-world data that is not highly engineered � to produce
whole numbers:

PlantGrowth$weight

## [1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59 5.87
## [16] 3.83 6.03 4.89 4.32 4.69 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

var(PlantGrowth$weight)

## [1] 0.49167
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2.4 Variance rules

In this course, we will need to be able to calculate the variance of various
combinations of variables. For example, if 𝑋1 and 𝑋2 are two variables, we can
create a new variable 𝑋1 + 𝑋2 by adding up the values of the two variables.
What is the variance of 𝑋1 +𝑋2?

But before we answer that, let’s establish the first rule.

• Rule 1

Suppose that 𝐶 is a “constant” variable, meaning that it always has the same
value (rather than being a variable that could contain lots of different numbers).
Then,

𝑉 𝑎𝑟 (𝐶) = 0

Why is Rule 1 true? You can either reason through this conceptually, based
on how you understand what variance is supposed to measure, or you can do a
sample calculation. (Make a table starting with a column that contains many
copies of only a single number and work through the calculation.)

Now, back to the example at the beginning of the section of finding the variance
of 𝑋1 +𝑋2.

• Rule 2

If 𝑋1 and 𝑋2 are independent, then

𝑉 𝑎𝑟 (𝑋1 +𝑋2) = 𝑉 𝑎𝑟 (𝑋1) + 𝑉 𝑎𝑟 (𝑋2)

We’re not going to get into a formal definition of independence here. For now,
it suffices to think of the intuitive definition you may already have in your head
of what it means for two things to be independent. The idea is that, to be
independent, 𝑋1 and 𝑋2 should have nothing to do with each other. Knowing
a value of one variable should not give you any information about values of the
other. In the next chapter, we’ll say more about this rule.

It’s important to note that Rule 2 is an abstract mathematical rule that holds
in theory. When we have actual data, however, we know that statistics won’t
always match their theoretical values. For example, even if a true population
mean is 42, samples drawn from that population will have sample means that
are close to 42, but likely not exactly 42.4

4The exact distribution of sample means around a true population value is something you
probably learned about in an intro stats course. Sample means follow a Student t distribution.
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Let’s test this out. Below, we will define two new variables using random num-
bers.

A quick note about random numbers first: when we ask a computer to give
us random numbers, it’s not going to give us truly random numbers. The
algorithms are designed to give us numbers that have all the correct statistical
properties of random numbers without actually being random. These are called
pseudo-random numbers. We can use this fact to our benefit. The set.seed
command below tells the computer to start generating numbers in a very specific
way. Anyone else using R (the same version of R) who gives their machine
the same “seed” will generate the same list of numbers. This makes our work
“reproducible”: you will be able to reproduce the results here in this book on
your own machine.

The variable X5 below is normally distributed with mean 1 and standard devi-
ation 2. (If you don’t remember standard deviation from intro stats, we talk
about it in the next section.) The next variable X6 is normally distributed with
mean 4 and standard deviation 3. These are independent because the definition
of X5 does not depend on any way on the definition of X6 and vice versa.

The sample sizes (2000) are large enough that we should get pretty close to the
theoretically correct results here.

set.seed(10101)
X5 <- rnorm(2000, mean = 1, sd = 2)
X6 <- rnorm(2000, mean = 4, sd = 3)

head(X5)

## [1] -0.7535339 -0.4927789 3.7518296 1.4751639 1.2172549 3.4054426

head(X6)

## [1] 2.297279 4.856377 6.661822 1.309892 2.270882 3.827944

Use R to calculate the variances of X5 and X6 separately. Then use R to add
the two numbers you just obtained (the sum of the two variances). Finally, use
R to calculate the variance of the sum of the two variables.

Here’s an example to help think about this intuitively.

Suppose someone comes along and offers to give you a random amount of money,
some number between $0 and $100.5 If the variance is a measure of spread, then
it stands to reason that variance reflects something about how uncertain you

5To be more concrete, the values are uniformly distributed, meaning that any number
between 0 and 100 is equally likely.
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are about how much money you will have after this transaction. On average,
you expect about $50, but you know that the actual amount of money you will
receive can vary greatly.

Okay, now a second person comes along and offers you the same deal, a random
dollar gift between $0 and $100.6 At the end of both transactions, how much
money will you have? On average, maybe about $100, but what about your
uncertainty? Because the total amount is the result of two random gifts, you
are even less sure how close to $100 you might be. The range of possible values
is now $0 to $200.7 Your uncertainty is greater overall.

Of course, all this explains is why the variance of the sum of two variables
is larger than the variance of either variable individually. The fact that the
variance of the sum of two independent variables is exactly the sum of the
variances has to be shown mathematically. But hopefully, the intuition is clear.

The next rule is a consequence of the first two rules, so we will not give it a
special number

𝑉 𝑎𝑟 (𝑋 + 𝐶) = 𝑉 𝑎𝑟 (𝑋)

Can you apply Rule 2 followed by Rule 1 to see mathematically why
𝑉 𝑎𝑟 (𝑋 + 𝐶) = 𝑉 𝑎𝑟 (𝑋)?
This assumes that a constant is independent of any other variable? Intuitively
speaking, why is this true?

What is the intuition behind the statement 𝑉 𝑎𝑟 (𝑋 + 𝐶) = 𝑉 𝑎𝑟 (𝑋)? In other
words, can you explain the rule to someone in terms of what it means about
shifting the values of a data set up or down by a constant amount?

Rule 3 is similar to Rule 2, but it’s quite counter-intuitive:

• Rule 3

If 𝑋1 and 𝑋2 are independent, then

𝑉 𝑎𝑟 (𝑋1 −𝑋2) = 𝑉 𝑎𝑟 (𝑋1) + 𝑉 𝑎𝑟 (𝑋2)

It is very common for students to think that a minus sign on the left would
translate into a minus sign on the right.8

6Apparently you live in a town with very generous strangers.
7To be clear, though, the probabilities are no longer uniform between 0 and 200. To get

near 0, you would have to be unlucky twice, and to get near 200 you would have to get lucky
twice. But there are lots of possible outcomes that would result in you having around 100.

8This results from many years of developing a Pavlovian response to anything that looks
like the distributive law from algebra.
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What gives?

Let’s return to our example of strangers giving you money.9 The first person
still offers you a random amount between $0 and $100. But, now, the second
person is a robber, and forces you to give them a random dollar value between
$0 and $100 (of their choosing, of course). How much money do you expect
to have after these two events? On average, $0. (The first person gives you,
on average, $50, and the second person takes away, on average, $50.) But how
certain are you about that amount?

Imagine a world in which the wrong rule prevailed. What if 𝑉 𝑎𝑟 (𝑋1 −𝑋2) were
truly the difference of the two variances. But 𝑉 𝑎𝑟 (𝑋1) and 𝑉 𝑎𝑟 (𝑋2) are the
same in this scenario. (Although one person is giving money and one is taking,
our uncertainty about the dollar amount is the same in both cases.) And this
implies

𝑉 𝑎𝑟 (𝑋1) − 𝑉 𝑎𝑟 (𝑋2) = 0
Can this be true? Zero variance means “no spread” which means exact certainty
of the value. (Remember Rule 1?) Are you 100% confident that you will end
both transactions with exactly $0? No way!

In fact, the amount of money you end up with ranges from -$100 up to $100.
This is a larger range than in either transaction individually. Our uncertainty
has grown because there are two random processes in play, just like in the
scenario with two beneficent strangers. In fact, the width of the range of possi-
bilities is the same in both scenarios: $0 to $200 and -$100 to $100 both span a
range of $200.

The next rule, unfortunately, does not have a great intuitive explanation. It
will make a little more sense in the next chapter, and we’ll revisit it then.

• Rule 4

If 𝑎 is any number,

𝑉 𝑎𝑟 (𝑎𝑋) = 𝑎2𝑉 𝑎𝑟 (𝑋)

If you go back to the table, imagine multiplying every number in the first column
by 𝑎. Every number in the second column will still have a factor of 𝑎. But when
you square those values, every number in the third column will have a factor of
𝑎2. That’s the gist of the rule anyway. But, again, there’s not much intuition
about why that makes sense.

We can, at least, check empirically that the rule works.

We’ll use 𝑋5 as we defined it above, a normally distributed variable with mean
1 and standard deviation 2. The variance of the data is about 4:

9Actually, that sounds a little creepy when put like that.
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var(X5)

## [1] 4.15763

Let’s use 𝑎 = 3.

In R, calculate 𝑉 𝑎𝑟 (3𝑋5). (Don’t forget that in R, you can’t just type 3 X5.
You have to explicitly include the multiplication sign: 3 * X5.)

Now try calculating 3𝑉 𝑎𝑟 (𝑋5). You’ll see that you don’t get the right answer.

But now try 9𝑉 𝑎𝑟 (𝑋5). That should work.

And that’s all the variance rules we’ll need!

2.5 Standard deviation

The variance is nice because it obeys all the above rules. The one big downside
is that it’s not very interpretable.

For example, think of the scenario with people giving/taking money. In that
case, the values were measures in units of dollars.

If 𝑋 is measured in dollars, what are the units of measurement of 𝑋? That
seems sensible, right?

What are the units of (𝑋 −𝑋)? Still sensible, right? (It’s not a problem that
some of these values will be positive and other negative. Negative dollars still
make sense. Just think about your student loans.)

Okay, now here’s where things get weird. What are the units of (𝑋 −𝑋)2?
This no longer makes sense.

Variance is nearly the average of a bunch of squared deviations, so for a variable
measured in dollars, the units of variance would be “squared dollars”, whatever
that is.

Variances are not really interpretable directly. How do we make them more
interpretable? Well, if variance has “squared” units, we can take the square
root to get back to the natural units we started with.

And this is called the standard deviation, 𝑆𝐷(𝑋).

𝑆𝐷(𝑋) = √∑(𝑋 −𝑋)2

𝑛 − 1

Or, said more simply,
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𝑆𝐷(𝑋) = √𝑉 𝑎𝑟(𝑋)
Equivalently,

𝑉 𝑎𝑟(𝑋) = 𝑆𝐷(𝑋)2

Often, if more concise notation is required, we write 𝑠𝑋 for 𝑆𝐷(𝑋).

𝑠𝑋 = √𝑉 𝑎𝑟(𝑋)
𝑉 𝑎𝑟(𝑋) = 𝑠2𝑋

Due to its interpretability, an intro stats class will focus far more on the standard
deviation than on the variance. The downside is that the mathematical rules
aren’t so nice for standard deviations. For example, what is

𝑆𝐷 (𝑋1 +𝑋2) ?

You can work through the definition to see that

𝑆𝐷 (𝑋1 +𝑋2) = √𝑆𝐷(𝑋1)
2 + 𝑆𝐷(𝑋2)

2

But, eww, that’s gross.

The constant multiple rule works out nice, though.

For any number 𝑎, what is 𝑆𝐷(𝑎𝑋)? Finish the following calculation until you
can simplify it and get back something involving just 𝑆𝐷(𝑋):

𝑆𝐷(𝑎𝑋) = √𝑉 𝑎𝑟(𝑎𝑋) (2.1)
= ??? (2.2)

Be careful! What happens if 𝑎 is a negative number? Standard deviations (like
variances) should always be non-negative.

A convenient way to express the fact that the coefficient will always come out
positive is the following:

𝑆𝐷(𝑎𝑋) = |𝑎| 𝑆𝐷(𝑋)

For SEM, we will focus almost exclusively on variance and switch to standard
deviation for only two reasons:

1. We need to communicate something about spread in meaningful units.
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2. We need to standardize variables. (See Section 2.7 below.)

Although the standard deviance is just the square root of the variance, it is
worth knowing the R command to calculate it. It’s just sd. For example:

sd(PlantGrowth$weight)

## [1] 0.7011918

You can see below that sd did the right thing:

sqrt(var(PlantGrowth$weight))

## [1] 0.7011918

2.6 Mean centering data

Many of the statistical techniques taught in an intro stats course focus on learn-
ing about the means of variables. Structural equation modeling is a little dif-
ferent in that it is more focused on the explaining the variability of data—how
changes in one or more variables predict changes in other variables.10

A habit we’ll start forming now is to mean center all our variables. We do this
by subtracting the mean of a variable from all its values.

Let’s use 𝑋6 as we defined it before, a normally distributed variable with mean
4 and standard deviation 3. How do we interpret the values of 𝑋6 −𝑋6? (Re-
member, this is just the second column in our variance tables earlier.)

If we shift all the 𝑋6 values to the left by 𝑋6 units, what is the mean of the
new list of numbers?

Let’s verify this in R. We’ll use the “suffix” mc to indicate a mean-centered
variable.

X6_mc <- X6 - mean(X6)
mean(X6_mc)

## [1] 2.851573e-16
10There are tools in SEM for working with means as well. WILL WE COVER THIS IN A

FUTURE CHAPTER?



28 CHAPTER 2. VARIANCE

Why does this answer not exactly agree with the “theoretical” answer you came
up with in a few lines above? (If you don’t already know, the e-16 in the
expression above is scientific notation and means “times 10−16. That’s a really
small number!)

Take a guess about the variance of X6_mc. Verify your guess in R.

So the good news is that mean centering preserves the variance. While
the mean will be shifted to be 0, the variance does not change, so any statis-
tical model we build that analyzes the variance will not be affecting by mean-
centering.

2.7 Standardizing data

After we’ve mean centered the data, we can go one step further and divide by
the standard deviation. This results in something often called a z-score. The
process of converting variables from their original units to z-scores is called
standardizing the data.

𝑍 = (𝑋 −𝑋)
𝑆𝐷(𝑋)

What happens if you try to standardize a variable that is constant? (Hint: think
about the denominator of the fraction defining the z-score.)

Why is it useful to standardize variables? One reason is that it remove the
units of measurement to facilitate comparisons between variables. Suppose 𝑋
represents height in inches. The numerator (𝑋 − 𝑋) has units of inches. The
standard deviation 𝑆𝐷(𝑋) also has units of inches. So when you divide, the
units go away and the z-score is left without units, sometimes called a “dimen-
sionless quantity”.

Suppose a female in the United States is 6 feet tall (72 inches). Suppose a female
in China is 5’8 tall (68 inches). In absolute terms, the American woman is taller
than the Chinese woman. But what if we’re interested in knowing which woman
is taller relative to their respective population?

The mean height for an American woman is 65” with a standard deviation of
3.5” The mean height for a Chinese woman is 62” with a standard deviation of
2.5”. (These numbers aren’t perfectly correct, but they’re probably close-ish.)

Calculate the z-scores for both these women.

Which woman is taller relative to their population?

Although z-scores don’t technically have units, we can think of them as mea-
suring how many standard deviations a value lies above or below the mean.
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What is the z-score for a value that equals the mean?

What is the meaning of a negative z-score?

The z-score for the American woman was 2. This means that her height mea-
sures two standard deviations above the mean.

For real-world data, we will use technology to do this. Here are some temper-
ature measurements from New York in 1974. (These are daily highs across a
six-month period.)

airquality$Temp

## [1] 67 72 74 62 56 66 65 59 61 69 74 69 66 68 58 64 66 57 68 62 59 73 61 61 57
## [26] 58 57 67 81 79 76 78 74 67 84 85 79 82 87 90 87 93 92 82 80 79 77 72 65 73
## [51] 76 77 76 76 76 75 78 73 80 77 83 84 85 81 84 83 83 88 92 92 89 82 73 81 91
## [76] 80 81 82 84 87 85 74 81 82 86 85 82 86 88 86 83 81 81 81 82 86 85 87 89 90
## [101] 90 92 86 86 82 80 79 77 79 76 78 78 77 72 75 79 81 86 88 97 94 96 94 91 92
## [126] 93 93 87 84 80 78 75 73 81 76 77 71 71 78 67 76 68 82 64 71 81 69 63 70 77
## [151] 75 76 68

We calculate the mean and standard deviation:

mean(airquality$Temp)

## [1] 77.88235

sd(airquality$Temp)

## [1] 9.46527

This is an average high of about 78 degrees Fahrenheit with a standard deviation
of about 9.5 degrees Fahrenheit.

If we just subtract the mean, we get mean-centered data.

airquality$Temp - mean(airquality$Temp)

## [1] -10.8823529 -5.8823529 -3.8823529 -15.8823529 -21.8823529 -11.8823529
## [7] -12.8823529 -18.8823529 -16.8823529 -8.8823529 -3.8823529 -8.8823529
## [13] -11.8823529 -9.8823529 -19.8823529 -13.8823529 -11.8823529 -20.8823529
## [19] -9.8823529 -15.8823529 -18.8823529 -4.8823529 -16.8823529 -16.8823529
## [25] -20.8823529 -19.8823529 -20.8823529 -10.8823529 3.1176471 1.1176471
## [31] -1.8823529 0.1176471 -3.8823529 -10.8823529 6.1176471 7.1176471
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## [37] 1.1176471 4.1176471 9.1176471 12.1176471 9.1176471 15.1176471
## [43] 14.1176471 4.1176471 2.1176471 1.1176471 -0.8823529 -5.8823529
## [49] -12.8823529 -4.8823529 -1.8823529 -0.8823529 -1.8823529 -1.8823529
## [55] -1.8823529 -2.8823529 0.1176471 -4.8823529 2.1176471 -0.8823529
## [61] 5.1176471 6.1176471 7.1176471 3.1176471 6.1176471 5.1176471
## [67] 5.1176471 10.1176471 14.1176471 14.1176471 11.1176471 4.1176471
## [73] -4.8823529 3.1176471 13.1176471 2.1176471 3.1176471 4.1176471
## [79] 6.1176471 9.1176471 7.1176471 -3.8823529 3.1176471 4.1176471
## [85] 8.1176471 7.1176471 4.1176471 8.1176471 10.1176471 8.1176471
## [91] 5.1176471 3.1176471 3.1176471 3.1176471 4.1176471 8.1176471
## [97] 7.1176471 9.1176471 11.1176471 12.1176471 12.1176471 14.1176471
## [103] 8.1176471 8.1176471 4.1176471 2.1176471 1.1176471 -0.8823529
## [109] 1.1176471 -1.8823529 0.1176471 0.1176471 -0.8823529 -5.8823529
## [115] -2.8823529 1.1176471 3.1176471 8.1176471 10.1176471 19.1176471
## [121] 16.1176471 18.1176471 16.1176471 13.1176471 14.1176471 15.1176471
## [127] 15.1176471 9.1176471 6.1176471 2.1176471 0.1176471 -2.8823529
## [133] -4.8823529 3.1176471 -1.8823529 -0.8823529 -6.8823529 -6.8823529
## [139] 0.1176471 -10.8823529 -1.8823529 -9.8823529 4.1176471 -13.8823529
## [145] -6.8823529 3.1176471 -8.8823529 -14.8823529 -7.8823529 -0.8823529
## [151] -2.8823529 -1.8823529 -9.8823529

But if we also divide by the standard deviation, we get a standardized variable
(or a set of z-scores). Note the extra parentheses to make sure we get the
order of operations right. We have to subtract first, but then divide that whole
mean-centered quantity by the standard deviation.

(airquality$Temp - mean(airquality$Temp))/sd(airquality$Temp)

## [1] -1.14971398 -0.62146702 -0.41016823 -1.67796094 -2.31185730 -1.25536337
## [7] -1.36101276 -1.99490912 -1.78361034 -0.93841519 -0.41016823 -0.93841519
## [13] -1.25536337 -1.04406459 -2.10055851 -1.46666216 -1.25536337 -2.20620791
## [19] -1.04406459 -1.67796094 -1.99490912 -0.51581762 -1.78361034 -1.78361034
## [25] -2.20620791 -2.10055851 -2.20620791 -1.14971398 0.32937752 0.11807873
## [31] -0.19886945 0.01242934 -0.41016823 -1.14971398 0.64632570 0.75197509
## [37] 0.11807873 0.43502691 0.96327387 1.28022205 0.96327387 1.59717023
## [43] 1.49152084 0.43502691 0.22372813 0.11807873 -0.09322005 -0.62146702
## [49] -1.36101276 -0.51581762 -0.19886945 -0.09322005 -0.19886945 -0.19886945
## [55] -0.19886945 -0.30451884 0.01242934 -0.51581762 0.22372813 -0.09322005
## [61] 0.54067630 0.64632570 0.75197509 0.32937752 0.64632570 0.54067630
## [67] 0.54067630 1.06892327 1.49152084 1.49152084 1.17457266 0.43502691
## [73] -0.51581762 0.32937752 1.38587145 0.22372813 0.32937752 0.43502691
## [79] 0.64632570 0.96327387 0.75197509 -0.41016823 0.32937752 0.43502691
## [85] 0.85762448 0.75197509 0.43502691 0.85762448 1.06892327 0.85762448
## [91] 0.54067630 0.32937752 0.32937752 0.32937752 0.43502691 0.85762448
## [97] 0.75197509 0.96327387 1.17457266 1.28022205 1.28022205 1.49152084
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## [103] 0.85762448 0.85762448 0.43502691 0.22372813 0.11807873 -0.09322005
## [109] 0.11807873 -0.19886945 0.01242934 0.01242934 -0.09322005 -0.62146702
## [115] -0.30451884 0.11807873 0.32937752 0.85762448 1.06892327 2.01976780
## [121] 1.70281962 1.91411841 1.70281962 1.38587145 1.49152084 1.59717023
## [127] 1.59717023 0.96327387 0.64632570 0.22372813 0.01242934 -0.30451884
## [133] -0.51581762 0.32937752 -0.19886945 -0.09322005 -0.72711641 -0.72711641
## [139] 0.01242934 -1.14971398 -0.19886945 -1.04406459 0.43502691 -1.46666216
## [145] -0.72711641 0.32937752 -0.93841519 -1.57231155 -0.83276580 -0.09322005
## [151] -0.30451884 -0.19886945 -1.04406459

The easier way to do this in R is to use the scale command. (Sorry, the output
is a little long. Keep scrolling below.)

scale(airquality$Temp)

## [,1]
## [1,] -1.14971398
## [2,] -0.62146702
## [3,] -0.41016823
## [4,] -1.67796094
## [5,] -2.31185730
## [6,] -1.25536337
## [7,] -1.36101276
## [8,] -1.99490912
## [9,] -1.78361034
## [10,] -0.93841519
## [11,] -0.41016823
## [12,] -0.93841519
## [13,] -1.25536337
## [14,] -1.04406459
## [15,] -2.10055851
## [16,] -1.46666216
## [17,] -1.25536337
## [18,] -2.20620791
## [19,] -1.04406459
## [20,] -1.67796094
## [21,] -1.99490912
## [22,] -0.51581762
## [23,] -1.78361034
## [24,] -1.78361034
## [25,] -2.20620791
## [26,] -2.10055851
## [27,] -2.20620791
## [28,] -1.14971398
## [29,] 0.32937752
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## [30,] 0.11807873
## [31,] -0.19886945
## [32,] 0.01242934
## [33,] -0.41016823
## [34,] -1.14971398
## [35,] 0.64632570
## [36,] 0.75197509
## [37,] 0.11807873
## [38,] 0.43502691
## [39,] 0.96327387
## [40,] 1.28022205
## [41,] 0.96327387
## [42,] 1.59717023
## [43,] 1.49152084
## [44,] 0.43502691
## [45,] 0.22372813
## [46,] 0.11807873
## [47,] -0.09322005
## [48,] -0.62146702
## [49,] -1.36101276
## [50,] -0.51581762
## [51,] -0.19886945
## [52,] -0.09322005
## [53,] -0.19886945
## [54,] -0.19886945
## [55,] -0.19886945
## [56,] -0.30451884
## [57,] 0.01242934
## [58,] -0.51581762
## [59,] 0.22372813
## [60,] -0.09322005
## [61,] 0.54067630
## [62,] 0.64632570
## [63,] 0.75197509
## [64,] 0.32937752
## [65,] 0.64632570
## [66,] 0.54067630
## [67,] 0.54067630
## [68,] 1.06892327
## [69,] 1.49152084
## [70,] 1.49152084
## [71,] 1.17457266
## [72,] 0.43502691
## [73,] -0.51581762
## [74,] 0.32937752
## [75,] 1.38587145
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## [76,] 0.22372813
## [77,] 0.32937752
## [78,] 0.43502691
## [79,] 0.64632570
## [80,] 0.96327387
## [81,] 0.75197509
## [82,] -0.41016823
## [83,] 0.32937752
## [84,] 0.43502691
## [85,] 0.85762448
## [86,] 0.75197509
## [87,] 0.43502691
## [88,] 0.85762448
## [89,] 1.06892327
## [90,] 0.85762448
## [91,] 0.54067630
## [92,] 0.32937752
## [93,] 0.32937752
## [94,] 0.32937752
## [95,] 0.43502691
## [96,] 0.85762448
## [97,] 0.75197509
## [98,] 0.96327387
## [99,] 1.17457266
## [100,] 1.28022205
## [101,] 1.28022205
## [102,] 1.49152084
## [103,] 0.85762448
## [104,] 0.85762448
## [105,] 0.43502691
## [106,] 0.22372813
## [107,] 0.11807873
## [108,] -0.09322005
## [109,] 0.11807873
## [110,] -0.19886945
## [111,] 0.01242934
## [112,] 0.01242934
## [113,] -0.09322005
## [114,] -0.62146702
## [115,] -0.30451884
## [116,] 0.11807873
## [117,] 0.32937752
## [118,] 0.85762448
## [119,] 1.06892327
## [120,] 2.01976780
## [121,] 1.70281962
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## [122,] 1.91411841
## [123,] 1.70281962
## [124,] 1.38587145
## [125,] 1.49152084
## [126,] 1.59717023
## [127,] 1.59717023
## [128,] 0.96327387
## [129,] 0.64632570
## [130,] 0.22372813
## [131,] 0.01242934
## [132,] -0.30451884
## [133,] -0.51581762
## [134,] 0.32937752
## [135,] -0.19886945
## [136,] -0.09322005
## [137,] -0.72711641
## [138,] -0.72711641
## [139,] 0.01242934
## [140,] -1.14971398
## [141,] -0.19886945
## [142,] -1.04406459
## [143,] 0.43502691
## [144,] -1.46666216
## [145,] -0.72711641
## [146,] 0.32937752
## [147,] -0.93841519
## [148,] -1.57231155
## [149,] -0.83276580
## [150,] -0.09322005
## [151,] -0.30451884
## [152,] -0.19886945
## [153,] -1.04406459
## attr(,"scaled:center")
## [1] 77.88235
## attr(,"scaled:scale")
## [1] 9.46527

Although the outputs are formatted a little differently, you can go back and
check that these sets of numbers match each other.

What is the mean of a standardized variable? How do you know this?

Let’s calculate the variance of a standardized variable. To do so, I’ll note that
the mean 𝑋 is just a number. Also, the standard deviation 𝑆𝐷(𝑋) is just a
number. To make the calculation easier to understand, let’s just substitute
letters that are easier to work with:
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𝑀 = 𝑋
𝑆 = 𝑆𝐷(𝑋)
Remember, 𝑀 and 𝑆 are constants.

Now we need to calculate 𝑉 𝑎𝑟(𝑍). I’ll do the first couple of steps. Then you
take over and, using the variance rules from earlier in the chapter, simplify the
expression until you get to a numerical answer. Be sure to justify each step by
citing the rule you invoked to get there.

𝑉 𝑎𝑟(𝑍) = 𝑉 𝑎𝑟((𝑋 −𝑋)
𝑆𝐷(𝑋) ) (2.3)

= 𝑉 𝑎𝑟((𝑋 −𝑀)
𝑆 ) (2.4)

= 𝑉 𝑎𝑟 ( 1
𝑆 (𝑋 −𝑀)) (2.5)

= ??? (2.6)

You may feel a little uncomfortable applying Rule 3 because you might worry
if 𝑋 and 𝑀 are independent. Since 𝑀 is the mean of 𝑋, it seems like that is
very dependent on 𝑋. This is where some of the intuition about independence
breaks down and we have to rely on mathematical rules that we haven’t really
gotten into. All constants are independent of any other variable.

You should get the answer 1. A standardized variable always has variance 1.
This will be an important fact in future chapters.
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Chapter 3

Covariance

3.1 Calculating covariance

The last chapter was about variance, which measures the spread of a single
variable. Now we extend this idea to pairs of variables.

We say that two variables “co-vary” when the spread of one variable is related
to the spread of another variable. This relationship represents an association
between the two variables.

We’ll call our two variables 𝑋1 and 𝑋2. To keep things simple, let’s assume
that we have already mean centered our variables.

If 𝑋1 and 𝑋2 are already mean centered, then what are 𝑋1 and 𝑋2?

As we did in the last chapter with variance, we’ll build up the calculation of

37
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covariance step-by-step using a table to keep track of intermediate quantities
we need.

Here are two variables (with 𝑛 = 7) that have been mean centered:

𝑋1 𝑋2

-1 -2
-2 2
2 -2

-3 -1
4 2

-1 -2
1 3

Check that the mean of both columns is truly zero.

Something interesting happens when we look at the product 𝑋1𝑋2.

If 𝑋1 and 𝑋2 both lie above their means, they are both positive numbers.
Therefore, their product is positive.

What if both 𝑋1 and 𝑋2 lie below their means? What do we know about their
values individually and what do we know about their product?

Here is the chart again, but with the products listed in a new column:

𝑋1 𝑋2 𝑋1𝑋2

-1 -2 2
-2 2 -4
2 -2 -4

-3 -1 3
4 2 8

-1 -2 2
1 3 3

Now we add up the products across all seven data pairs:

𝑋1 𝑋2 𝑋1𝑋2

-1 -2 2
-2 2 -4
2 -2 -4

-3 -1 3
4 2 8

-1 -2 2
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𝑋1 𝑋2 𝑋1𝑋2

1 3 3
Sum: 10

So when 𝑋1 and 𝑋2 tend to have similar values (both positive or both negative),
their product is usually positive. It’s not true of every pair of values in the table
above; some products are negative. But the majority are positive. Therefore,
the sum of all such products will be positive.

We’re almost there. Just like we wanted the average squared deviation to cal-
culate the variance, here we want the average of the products from the third
column above. And just like in the case of variance, it’s not quite the average
we calculate. Instead of dividing by 𝑛, we divide by 𝑛 − 1 for exactly the same
esoteric reason. In our example, there are 7 data points (in other words, 7 rows
of data), so we divide by 6.

Putting this all together:

𝑋1 𝑋2 𝑋1𝑋2

-1 -2 2
-2 2 -4
2 -2 -4

-3 -1 3
4 2 8

-1 -2 2
1 3 3

Sum: 10
Covariance: 10/6 = 1.67

In our diagrams, the covariance of two variables is indicated by a curved, double-
headed arrow pointing at both boxes and labeled with the value of the covari-
ance, like this:
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X1 X2

6 1.67 5

Note that we still include the variances of each of the individual variables. They
are still important to us. We just have one new type of arrow now.

Verify that the variances in the diagram are correct for our example. You can
do it by hand if you want, but using R is fine too.

Here is the final formula for covariance, written as 𝐶𝑜𝑣 (𝑋1, 𝑋2). This works for
all pairs of variables, even if they aren’t mean centered. The terms (𝑋1 −𝑋1)
and (𝑋2 −𝑋2) do the mean centering:

𝐶𝑜𝑣 (𝑋1, 𝑋2) =
∑(𝑋1 −𝑋1) (𝑋2 −𝑋2)

𝑛 − 1
Suppose 𝑋1 tends to be above its mean when 𝑋2 is below its mean and 𝑋1
tends to be below its mean when 𝑋2 is above its mean. What will the product
(𝑋1 −𝑋1) (𝑋2 −𝑋2) usually be? Therefore, what will the sum of all such
products likely be?

For general variables (not necessarily mean centered), the table will actually
look like this:

𝑋1 𝑋2 (𝑋1 −𝑋1) (𝑋2 −𝑋2) (𝑋1 −𝑋1) (𝑋2 −𝑋2)
17 23 -2 11 -22
25 15 6 3 18
… … … … …

Calculate the covariance by hand by making a table like the one above. (These
variables are not mean centered, so you’ll have to calculate the mean of each
variable in order to fill out the third and fourth columns.)
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𝑋3: 8, 10, 16, 7, 4, 3

𝑋4: 6, 5, 4, 9, 11, 7

Explain intuitively why the covariance is negative for these two variables.

When calculating variance, the order of the data points does not matter. Why?

When calculating covariance, the order of the data points does matter. Why?

What if you keep pairs together, but rearrange the rows of the table. How does
that affect the covariance?

3.2 Calculating covariance in R

Once we’ve done it by hand a few times to make sure we understand how the
formula works, from here on out we can let R do the work for us:

X1 <- c(-1,-2, 2, -3, 4, -1, 1)
X2 <- c(-2, 2, -2, -1, 2, -2, 3)
cov(X1, X2)

## [1] 1.666667

X3 <- c(8, 10, 16, 7, 4, 3)
X4 <- c(6, 5, 4, 9, 11, 7)
cov(X3, X4)

## [1] -9.2

And here’s some real world data. In addition to temperature (which we’ve
already seen), we can use wind speed and see if there is an association between
them:

cov(airquality$Temp, airquality$Wind)

## [1] -15.27214

3.3 Covariance rules

We’ll think of the variance and covariance rules as one big list. We left off on
Rule 4, so now we’ll introduce Rule 5.

./variance.html#Rule4
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• Rule 5

𝐶𝑜𝑣(𝑋,𝑋) = 𝑉 𝑎𝑟(𝑋)

In words, Rule 5 states that the covariance of a variable with itself is just the
same thing as the variance of that variable. This is quite remarkable! It means
that variance is really just a special case of covariance.
Explain why Rule 5 is true. (Hint: think about how you would calculate
𝐶𝑜𝑣(𝑋,𝑋) using either the formula or the table—or both!)

• Rule 6

𝐶𝑜𝑣 (𝑋1, 𝑋2) = 𝐶𝑜𝑣 (𝑋2, 𝑋1)

In words, we would say that covariance is symmetric.
Explain why Rule 6 is true. (Again, think about the formula or the table—or
both!)
The next four rules are analogous to similar rules for variance (Rule 1, Rule
2, Rule 3, and Rule 4).

• Rule 7

Suppose that 𝐶 is a “constant” variable, meaning that it always has the same
value (rather than being a variable that could contain lots of different numbers).
Then,

𝐶𝑜𝑣 (𝑋,𝐶) = 0

As always, try to explain this rule. Give an intuitive explanation of why this
rule “should” be true. Then think about it computationally, thinking of either
the formula or the table—or both!

• Rule 8

𝐶𝑜𝑣 (𝑋1 +𝑋2, 𝑋3) = 𝐶𝑜𝑣 (𝑋1, 𝑋3) + 𝐶𝑜𝑣 (𝑋2, 𝑋3)

What you should appreciate here is that there is no longer any restriction on
the relationships among the variables involved. Rule 2 only worked when the
two variables were independent. On the other hand, Rule 8 works for any
combination of variables, no matter their relation.
Even more satisfying is this next rule:

./variance.html#Rule1
./variance.html#Rule2
./variance.html#Rule2
./variance.html#Rule3
./variance.html#Rule4
./variance.html#Rule2
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• Rule 9

𝐶𝑜𝑣 (𝑋1 −𝑋2, 𝑋3) = 𝐶𝑜𝑣 (𝑋1, 𝑋3) − 𝐶𝑜𝑣 (𝑋2, 𝑋3)

Yay! The minus sign behaves sensibly now! Of course, since covariances can be
positive or negative (unlike variances which are always positive!) we can more
safely subtract two of them without worry. And this rule, like Rule 8, does not
depend on 𝑋1 and 𝑋2 being independent. They can be any two variables.

There are versions of these rules with the addition or subtraction on the other
side, but these are just minor variations of Rule 8 and Rule 9, so they’re not
worth mentioning as a separate rule. Remember that covariance is symmetric,
so you can always swap things on the left and right of the comma.

𝐶𝑜𝑣 (𝑋1, 𝑋2 ±𝑋3) = 𝐶𝑜𝑣 (𝑋1, 𝑋2) ± 𝐶𝑜𝑣 (𝑋1, 𝑋3)

• Rule 10

If 𝑎 is any number,

𝐶𝑜𝑣 (𝑎𝑋1, 𝑋2) = 𝑎𝐶𝑜𝑣 (𝑋1, 𝑋2) = 𝐶𝑜𝑣 (𝑋1, 𝑎𝑋2)

This rule is also very sensible. Instead of Rule 4 that takes a number 𝑎 and
pulls out an 𝑎2, Rule 10 just pulls out a single factor of 𝑎 (from either slot).

Just a couple more rules. We were talking about independence in conjunction
with Rule 8 and Rule 9. That leads directly to an interesting and super-
important rule:

• Rule 11

If 𝑋1 and 𝑋2 are independent, then

𝐶𝑜𝑣 (𝑋1, 𝑋2) = 0

Why is Rule 11 true, intuitively?

It’s interesting to note that this rule only works one way. In other words, if you
know that two variables are independent, then you can conclude their covariance
is zero. However, if you know the covariance is zero, that doesn’t necessarily
mean that the two variables are independent. We’ll see an example of this later
in the chapter.

Finally, one rule to rule them all:

./variance.html#Rule4
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• Rule 12

For any two variables 𝑋1 and 𝑋2:

𝑉 𝑎𝑟(𝑎𝑋1 + 𝑏𝑋2) = 𝑎2𝑉 𝑎𝑟(𝑋1) + 𝑏2𝑉 𝑎𝑟(𝑋2) + 2𝑎𝑏𝐶𝑜𝑣(𝑋1, 𝑋2)

This brings practically everything we know together into one rule!

Proving Rule 12 will give us good practice with the type of manipulation we’ll
need to do in future chapters. So here goes. For the first few steps, you name
what rule we’re invoking. Then, you’ll pick up the thread and follow it through
the last few steps on your own.

𝑉 𝑎𝑟(𝑎𝑋1 + 𝑏𝑋2) = 𝐶𝑜𝑣(𝑎𝑋1 + 𝑏𝑋2, 𝑎𝑋1 + 𝑏𝑋2) (3.1)
= 𝐶𝑜𝑣(𝑎𝑋1 + 𝑏𝑋2, 𝑎𝑋1) + 𝐶𝑜𝑣(𝑎𝑋1 + 𝑏𝑋2, 𝑏𝑋2) (3.2)
= 𝐶𝑜𝑣(𝑎𝑋1, 𝑎𝑋1) + 𝐶𝑜𝑣(𝑏𝑋2, 𝑎𝑋1)+ (3.3)

𝐶𝑜𝑣(𝑎𝑋1, 𝑏𝑋2) + 𝐶𝑜𝑣(𝑏𝑋2, 𝑏𝑋2) (3.4)
= ??? (3.5)

You’ll need these rules to do calculations in future chapters. Rather than having
to search for them in Chapter 2 and this chapter, we’ve gathered up all the rules
in one convenient place in Appendix A.

3.4 Correlation

The pros and cons for calculating covariance are similar to those for variance.
The mathematics is much nicer for covariance, but we lose interpretability.

Let’s suppose that 𝑋1 measures salary in dollars and 𝑋2 measures years of edu-
cation. We would expect there to be some association between these variables,
so we calculate the covariance. What is the unit of measurement of the resulting
number?

The solution to the problem here is not as simple as it was for variance. Since
variance had squared units, all we had to do was take the square root. Covari-
ance has a weird product of units, so we have to do something more clever.

Following up on the activity above, let’s suppose we have a covariance with
units of “dollar-years”. If we divide by a number expressed in dollars, we get rid
of those units and we’re left with years. But that seems unsatisfying; covariance
should express something about both variables that went into it. Likewise, it
makes no sense to divide by a number expressed in years as that would leave us
just with dollars.
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The solution to the dilemma is to accept that we aren’t going to be able to
keep any units in a meaningful way. Therefore, what we want is something
standardized, meaning that it has no units.

If 𝑋1 is expressed in dollars, can you think of a statistic that measures spread
and is also in units of dollars?

Likewise, if 𝑋2 is measured in years, what statistic that measures spread is also
in units of years?

The previous activity gives us an idea. What if we divide the covariance by both
the standard deviation of 𝑋1 and the standard deviation of 𝑋2?

𝐶𝑜𝑣(𝑋1, 𝑋2)
𝑆𝐷(𝑋1)𝑆𝐷(𝑋2)

Sometimes it’s written like this:

𝐶𝑜𝑣(𝑋1, 𝑋2)
√𝑉 𝑎𝑟(𝑋1)√𝑉 𝑎𝑟(𝑋2)

But that’s the same thing, right?

This quantity has no units. We call this the correlation between 𝑋1 and 𝑋2.
We’ll either write

𝐶𝑜𝑟𝑟(𝑋1, 𝑋2)
or, if we need to be more concise,

𝑟𝑋1𝑋2

Yes, this is the same as the correlation coefficient you learned about in your
intro stats class, although it wasn’t likely presented to you quite this way.1

One great thing about correlation is that it has no units, so it serves as a sort
of “universal” measure of how two variables co-vary. But the best part is that
it has a nice intuitive meaning precisely because it factors out the pieces of
the covariance that are only there because of the spread of the two variables
individually. In other words, the fact that 𝑋1 and 𝑋2 have their own variabil-
ity actually complicates the notion of covariance. Those individual variances
“corrupt” the interpretation of covariance. But after excising them, all that’s
left in the correlation is the “pure” part of the covariance that expresses the
relationship or association between 𝑋1 and 𝑋2.

1Karl Pearson is credited with inventing the correlation coefficient. Pearson was a life-long
eugenicist and a proponent of using “science” to prove that some races were superior to others.
It important to disentangle the truly valuable notion of correlation from the discredited hands
that may have first written it down. Therefore, we will not be referring to it in this text as
the Pearson correlation coefficient.
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3.5 Covariance with standardized data

In the last chapter, you showed that the variance of a standardized variable was
1. What is the covariance between two standardized variables?

Let’s standardize both 𝑋1 and 𝑋2. To make the math a little easier, we’ll use
similar notation to what we used at the end of the last chapter.

𝑀1 = 𝑋1

𝑆1 = 𝑆𝐷(𝑋1)
𝑀2 = 𝑋2

𝑆2 = 𝑆𝐷(𝑋2)
And we’ll write the z-scores in a way that is more amenable to mathematical
manipulation (like before):

𝑍1 = 1
𝑆1

(𝑋1 −𝑀1)

𝑍2 = 1
𝑆2

(𝑋2 −𝑀2)

This looks a little more intimidating, but if you apply the rules, it works out:

𝐶𝑜𝑣(𝑍1, 𝑍2) = 𝐶𝑜𝑣( 1
𝑆1

(𝑋1 −𝑀1) ,
1
𝑆2

(𝑋2 −𝑀2)) (3.6)

= ??? (3.7)

Work this out. Take your time. Apply the rules carefully. So that you know
what you’re aiming for, you should get

𝐶𝑜𝑣(𝑍1, 𝑍2) =
𝐶𝑜𝑣 (𝑋1, 𝑋2)

𝑆1𝑆2

Okay, now remember that 𝑆1 is just a convenient substitute for 𝑆𝐷(𝑋1) and 𝑆2
is just a substitute for 𝑆𝐷(𝑋2). Wait, does that answer look familiar?

This is cool! Correlation is simply the covariance of two variables after they’ve
been standardized.

This also reinforces the earlier comment about interpreting covariance after
removing the extraneous influence of the spread of the individual variables.
Standardizing variables makes the spread of all variables 1, so their covariance
is now a pure representation of just the association between them.
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You probably remember from intro stats that correlation takes on values be-
tween -1 and 1. That fact is not obvious from the formula we have. Why should
the fraction

𝐶𝑜𝑣(𝑋1, 𝑋2)
𝑆𝐷(𝑋1)𝑆𝐷(𝑋2)

be bounded by -1 and 1?
Let’s go back to standardized variable to keep things simple. The correlation is
just the covariance of two standardized variables:

𝐶𝑜𝑟𝑟(𝑋1, 𝑋2) = 𝐶𝑜𝑣(𝑍1, 𝑍2)

Use the rules to calculate this:

𝑉 𝑎𝑟(𝑍1 + 𝑍2)

Remember that 𝑍1 and 𝑍2 are not necessarily independent. (In fact, we hope
they are not. Otherwise, why do we care about their correlation? It would be
zero!) So you need Rule 12, not Rule 2. Keep manipulating until you get

2 + 2𝐶𝑜𝑟𝑟(𝑋1, 𝑋2)

Since variances are always non-negative, we now know that

0 ≤ 2 + 2𝐶𝑜𝑟𝑟(𝑋1, 𝑋2)
Solve this inequality for 𝐶𝑜𝑟𝑟(𝑋1, 𝑋2).
Now follow the exact same steps for

𝑉 𝑎𝑟(𝑍1 − 𝑍2)

Very little should change in your answer, but there is one small change. Again,
solve the resulting inequality. (Don’t forget the key rule when working with
inequalities that multiplying or dividing by a negative number changes the di-
rection of the inequality.)
Here is a fact we will state without proof:
Correlations are only interpretable as the strength of linear associations.
Why is this? Basically, it boils down to the fact that a “perfect” correlation
of 1 or -1 is only achievable when data points lie on a perfectly straight line.
Therefore, thinking of correlation as lying between 0 and 1 (or 0 and -1) is only
sensible if you are judging how close points are to lying on a straight line. We’ll
see examples of this in the next section when we plot some data.
To calculation correlation in R, use the cor command:

./variance.html#Rule2
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cor(airquality$Temp, airquality$Wind)

## [1] -0.4579879

Use R to confirm that the number above is the covariance divided by the product
of the standard deviations.

3.6 Visualizing correlation

Covariance is hard to interpret, so when we’re visualizing data and we want to
understand any association that might exist between two variables, correlation
is a much better statistic to calculate. Let’s see how correlation relates to the
graph of two variables.

Before getting into the graphing, we will need to load some packages. The
tidyverse is a whole set of commonly used packages that will allow us to work
with data frames (or “tibbles” as the cool kids are calling them) and make
graphs. Be sure to load the package by typing the following in R before going
any further:

library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --

## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

In fact, from here on out, we’ll start each chapter by loading any necessary
libraries in R that we’ll need.

The standard graph of two numerical variables is a scatterplot. Let’s start
with a straight line relationship. First, we define two variables. We’ll use some
shortcuts here to make our lives a little easier. The seq command just generates
a sequence of numbers.
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X5 <- seq(1, 9)
X5

## [1] 1 2 3 4 5 6 7 8 9

Then we can establish a linear relationship just by declaring one in a formula:

X6 <- 3 + 0.5 * X5
X6

## [1] 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

To put both variables into the same graph, it helps to make them both columns
in a single tibble.

linear_data <- tibble(X5, X6)
linear_data

## # A tibble: 9 x 2
## X5 X6
## <int> <dbl>
## 1 1 3.5
## 2 2 4
## 3 3 4.5
## 4 4 5
## 5 5 5.5
## 6 6 6
## 7 7 6.5
## 8 8 7
## 9 9 7.5

And here is the graph:

ggplot(linear_data, aes(y = X6, x = X5)) +
geom_point()
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Now the correlation:

cor(X5, X6)

## [1] 1

It is 1, as expected.

What about a perfectly straight line with a negative slope?

X7 <- 5 - 0.2 * X5
X7

## [1] 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2

We’ll throw this new variable into the tibble we already have (for convenience).
To explain the syntax below, the %>% symbol is called a “pipe” and it tells
R to pass the linear_data tibble on to the next row to process it. And the
processing itself is dictated by the bind_cols command which tells R to “bind a
new column” to the tibble. The part that says X7 = X7 may be a little confusing.
It says to add the new column X7, but also still call it X7.
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linear_data <- linear_data %>%
bind_cols(X7 = X7)

linear_data

## # A tibble: 9 x 3
## X5 X6 X7
## <int> <dbl> <dbl>
## 1 1 3.5 4.8
## 2 2 4 4.6
## 3 3 4.5 4.4
## 4 4 5 4.2
## 5 5 5.5 4
## 6 6 6 3.8
## 7 7 6.5 3.6
## 8 8 7 3.4
## 9 9 7.5 3.2

ggplot(linear_data, aes(y = X7, x = X5)) +
geom_point()

3.5

4.0

4.5

2.5 5.0 7.5
X5

X
7

cor(X5, X7)

## [1] -1
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Again, that is what we expected.

What happens if we plot random data? The runif command just chooses
random numbers uniformly between 0 and 1.2 We use set.seed to make our
work reproducible. You will get the same set of random numbers on your
machine if you use the same seed as we use here.

set.seed(1234)
X8 <- runif(20)
X9 <- runif(20)

X8

## [1] 0.113703411 0.622299405 0.609274733 0.623379442 0.860915384 0.640310605
## [7] 0.009495756 0.232550506 0.666083758 0.514251141 0.693591292 0.544974836
## [13] 0.282733584 0.923433484 0.292315840 0.837295628 0.286223285 0.266820780
## [19] 0.186722790 0.232225911

X9

## [1] 0.31661245 0.30269337 0.15904600 0.03999592 0.21879954 0.81059855
## [7] 0.52569755 0.91465817 0.83134505 0.04577026 0.45609148 0.26518667
## [13] 0.30467220 0.50730687 0.18109621 0.75967064 0.20124804 0.25880982
## [19] 0.99215042 0.80735234

random_data <- tibble(X8, X9)
random_data

## # A tibble: 20 x 2
## X8 X9
## <dbl> <dbl>
## 1 0.114 0.317
## 2 0.622 0.303
## 3 0.609 0.159
## 4 0.623 0.0400
## 5 0.861 0.219
## 6 0.640 0.811
## 7 0.00950 0.526
## 8 0.233 0.915
## 9 0.666 0.831
## 10 0.514 0.0458
## 11 0.694 0.456

2Sean’s brain always want to parse this command as “run if”. Run if what? No, no, it’s “r
unif”.
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## 12 0.545 0.265
## 13 0.283 0.305
## 14 0.923 0.507
## 15 0.292 0.181
## 16 0.837 0.760
## 17 0.286 0.201
## 18 0.267 0.259
## 19 0.187 0.992
## 20 0.232 0.807

ggplot(random_data, aes(y = X9, x = X8)) +
geom_point()
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What do you guess is the correlation between 𝑋8 and 𝑋9?

Now calculate it using R? Did you get the exact answer you guessed? If not,
why not?

What about data that follows a perfect mathematical relationship that is not a
straight line? For example, here is a part of a parabola.

X10 <- 0.1 * X5^2
X10

## [1] 0.1 0.4 0.9 1.6 2.5 3.6 4.9 6.4 8.1
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nonlinear_data <- tibble(X5, X10)
nonlinear_data

## # A tibble: 9 x 2
## X5 X10
## <int> <dbl>
## 1 1 0.1
## 2 2 0.4
## 3 3 0.9
## 4 4 1.6
## 5 5 2.5
## 6 6 3.6
## 7 7 4.9
## 8 8 6.4
## 9 9 8.1

ggplot(nonlinear_data, aes(y = X10, x = X5)) +
geom_point()
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Now for the correlation:

cor(X5, X10)

## [1] 0.975281
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This is a large correlation, but it is not exactly 1, even though the points follow
a precise mathematical relationship. That relationship is not linear.

Here’s a fascinating example. For this, we’ll want a parabola that goes down
and then up.

X11 <- 0.5 * (X5 - 5)^2
X11

## [1] 8.0 4.5 2.0 0.5 0.0 0.5 2.0 4.5 8.0

nonlinear_data <- nonlinear_data %>%
bind_cols(X11 = X11)

nonlinear_data

## # A tibble: 9 x 3
## X5 X10 X11
## <int> <dbl> <dbl>
## 1 1 0.1 8
## 2 2 0.4 4.5
## 3 3 0.9 2
## 4 4 1.6 0.5
## 5 5 2.5 0
## 6 6 3.6 0.5
## 7 7 4.9 2
## 8 8 6.4 4.5
## 9 9 8.1 8

ggplot(nonlinear_data, aes(y = X11, x = X5)) +
geom_point()
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Before looking at the answer, what is your guess for the correlation between 𝑋5
and 𝑋11?

Now calculate the correlation in R.

Again, there’s a perfect mathematical relationship between these two variables.
They are most definitely associated. So why is the correlation 0?

Recall the earlier promise to discuss Rule 11. If two variables are indepen-
dent, then their covariance is zero, and, therefore, their correlation is also zero.
However, this rule doesn’t work the other way around. The claim is that know-
ing the covariance/correlation is zero does not imply (necessarily) that the two
variables are independent. Here is the promised example of that phenomenon.
𝑋5 and 𝑋11 have zero correlation. And yet, 𝑋5 and 𝑋11 are definitely not
independent.

This is important enough for a fancy box:

When you see that the correlation between two variables is zero or
near zero, be careful not to conclude that the variables are indepen-
dent.

A zero or near-zero correlation indicates only the lack of a linear association
between two variables. There may be nonlinear associations. That’s why it’s
always a good idea to graph your data.

Real data is, of course, much messier and it’s just not possible to have perfect
correlations between two variables measured out there in the real world. (If
you do find a perfect correlation between two columns of your data, chances are
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that you either recorded the same column twice, or the second column is some
simple transformation of first column, like multiplying every value by the same
number or something like that.)

Here is a plot of the temperature (degrees Fahrenheit) and wind speed (mph)
from the New York air quality data set.

ggplot(airquality, aes(y = Temp, x = Wind)) +
geom_point()
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Just looking at the scatterplot (without calculating anything), is the correlation
between these two variables positive or negative? Try guessing the exact value
of the correlation.

Now calculate the exact value of the correlation to see how close you were.

If you want some practice with looking at scatterplots and guessing the corre-
lation, try this online game:

Guess the Correlation

Turn up the sound! If the whole class plays at the same time, your classroom
will sound like an arcade. Compete with your classmates to see who can get the
high score.

http://guessthecorrelation.com/
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Chapter 4

Simple regression

Preliminaries

We need to load the packages we will use for this chapter. The tidyverse
package has all sorts of utilities for working with tibbles (data frames). The
broom package will be used to calculate and store the residuals of the model.
This will also be our first introduction to the lavaan package that will be used
throughout the rest of the book.

library(tidyverse)
library(broom)
library(lavaan)

## This is lavaan 0.6-11
## lavaan is FREE software! Please report any bugs.

59
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4.1 Some friendly advice

Even if you have seen regression before reading this book, be sure to read and
study the this chapter and the next chapter thoroughly. If nothing else, you
need to be comfortable with the notation and terminology established here.
But we will also take special care to motivate and justify all the calculations
that are taken for granted in some treatments of regression. This framework
will be important as we move into mediation and path analysis in the following
chapters. If you are comfortable with the content of this chapter, there won’t
be much “new” to say about multiple regression, mediation, and path analysis
more generally.

4.2 Prediction

One of the most important tasks in statistics is prediction. Given some data,
can we predict the value of something important about a population of interest?
Suppose you have gathered some data on anxiety among Utah high school stu-
dents. There are various instruments available for measuring anxiety, so say you
have administered the Beck Anxiety Inventory. This instrument assigns a score
from 0 to 63, with lower numbers indicating less anxiety and higher numbers
indicating more.
You take care to make sure your sample is as close to a simple random sample
as possible so that it’s representative of the population (all high school students
in the state of Utah). From your sample data, you can calculate summary
statistics. For example, you might find that the mean anxiety score for Utah
high school students is 7.1 with a standard deviation of 3.9.
A random Utah high school student walks through the door. You don’t know
anything about them. Can you say anything about their anxiety? What is your
best guess as to what their score might be on the Beck Anxiety Inventory?
We can do a lot better if we have another variable we can measure. For example,
let’s suppose our data records not only anxiety, but also the minutes of smart
phone usage per day.
In theory, why would having information about smart phone usage potentially
help us make better predictions of anxiety?
Do you suspect that the association between anxiety and smart phone usage
is positive or negative? (You can Google this question to check if there is any
empirical evidence out there for your guess.)
Now imagine that another random Utah high school student walks through the
door. This time, I tell you that their smart phone usage is average (sitting at
the mean). What is your best prediction for their anxiety score? (Give an exact
value.)

https://en.wikipedia.org/wiki/Beck_Anxiety_Inventory
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What if I told you that the student who walked through the door had higher than
average smart phone usage? What would be your prediction of their anxiety
score? (You can’t give an exact value here, but give a qualitatively sensible
answer.)

What if I told you that the student who walked through the door had lower than
average smart phone usage? What would be your prediction of their anxiety
score? (Again, just give a qualitatively sensible answer.)

4.3 Regression terminology

When we have one variable we suspect may help us predict another variable,
one way to study it is using a simple regression model.

This is related to, but somewhat different from, covariance. Covariance is sym-
metric, so it expresses the idea that two variables are mutually related. But
there is no “directionality” to that relationship. By way of contrast, a simple
regression model asserts that one of the variables is a “predictor” and the other
is “response”. In other words, we start with the values or properties of the pre-
dictor variable and try to deduce what we can about the values or properties of
the response variable.

Keep in mind that “directionality” is not the same as “causality”. While it’s
possible that one variable causes another, there needs to be a data collection
process (often a carefully controlled experiment) and a clear scientific rationale
that justifies a causal relationship between variables before we can start thinking
about inferring causality. For purposes of much of this book, directionality
just means that we wish to establish a predictive relationship wherein we start
with the properties of one variable and try to predict the properties of another
variable. There is often a “sensible” order in which to do this based on the
research questions asked or the hypotheses posed.

There are many different terminological conventions in statistics, so be aware
that “predictor” variables are also called—often depending on the discipline
and the context—features, covariates, controls, regressors, inputs, explanatory
variables, or independent variables. In fact, in the context of structural equation
modeling, we will use the term “exogenous” to refer to variables that play this
role. (That term has a much more precise definition that we’ll discuss in future
chapters.) And “response” variables might be called outcomes, outputs, targets,
criteria, predicted variables, explained variables, or dependent variables, among
others. In this book, we will often use the term “endogenous” (again, in a very
specific way yet to be explained). If there is a data collection process and a
clear scientific rationale that justifies a causal relationship between variables,
then we might be able to refer to variables as either “cause” or “effect”.

Keep in mind that it’s the scientific question we want to ask that determines
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the predictor/response relationship. A different researcher with a different hy-
pothesis might use the same two variables but with the roles reversed.

In the anxiety/smart-phone example above, which variable is predictor and
which is response, at least according to the way we stated the scenario?

4.4 The simple regression model

Here is the figure from the top of the chapter, only now we have decorated it
with some letters (and a number):
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The goal of this section is to explain all these.

The variable names are 𝑋 and 𝑌 . 𝑋 is the exogenous variable and 𝑌 is the
endogenous variable. For example, 𝑋 might be smart phone usage and 𝑌 might
be the anxiety score from the example above. In this section, we’re going to
do some concrete calculations using the example from the last chapter about
wind speed and temperature from the airquality data set. In the last chap-
ter, we simply calculated the (symmetric) correlation between wind speed and
temperature. Here, we will consider wind speed as exogenous and temperature
as endogenous. In other words, our goal is to use the wind speed as a predictor
of temperature.

The letter 𝑣 requires no further explanation. This is the variance of the variable
𝑋, so we already know about it.

The parameter 𝑏 is supposed to measure something about the predictive rela-
tionship between 𝑋 and 𝑌 . It is attached to an arrow that is drawn a little
thicker than the other arrows in the diagram. More to say about that in a
moment.

The really weird, new part is the circle on the right. This will be the “error”
term.
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What is “error” and why is it here? To illustrate, let’s plot wind speed against
temperature. Before plotting and analyzing these variables, we are going to
mean-center them and put them in a tibble.

X <- airquality$Wind - mean(airquality$Wind)
Y <- airquality$Temp - mean(airquality$Temp)
airquality_mc <- tibble(X, Y)
airquality_mc

## # A tibble: 153 x 2
## X Y
## <dbl> <dbl>
## 1 -2.56 -10.9
## 2 -1.96 -5.88
## 3 2.64 -3.88
## 4 1.54 -15.9
## 5 4.34 -21.9
## 6 4.94 -11.9
## 7 -1.36 -12.9
## 8 3.84 -18.9
## 9 10.1 -16.9
## 10 -1.36 -8.88
## # ... with 143 more rows

ggplot(airquality_mc, aes(y = Y, x = X)) +
geom_point()
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Note that the exogenous variable (wind speed) is on the x-axis and the endoge-
nous variable (temperature) is on the y-axis.

We can see a negative and reasonably linear association between these variables,
so let’s add a line of best fit to the data.

ggplot(airquality_mc, aes(y = Y, x = X)) +
geom_point() +
geom_smooth(method = lm, se = FALSE)

## `geom_smooth()` using formula 'y ~ x'
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The line passes right through the origin (0, 0). Why?

The slope of this line is −1.23. We’ll see how to calculate this slope in a bit.
But what does this slope mean?

Look at the help file for the airquality data set. (Either use the Help tab in
RStudio or type ?airquality at the Console.)

What are the units of measurement of 𝑋? What are the units of measurement
of 𝑌 ? Since slope is “rise over run”, what are the units of the slope?

So, the idea is that for every additional mile per hour of wind speed, we predict
that the temperature goes down by 1.23 degrees Fahrenheit.

Why is the following sentence incorrect?

For every additional mile per hour of wind speed, the temperature
goes down by 1.23 degrees Fahrenheit.

The point is that the line is a model that makes predictions. As long as 𝑋 and
𝑌 are both mean-centered, the equation of this line is

̂𝑌 = 𝑏𝑋

There is a new piece of notation here: ̂𝑌 . This symbol represents the predicted
value of 𝑌 according to the model. We will not get the actual value of 𝑌 from
this piece of the model because the actual values of 𝑌 differ from the model
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because real-world data doesn’t lie on a perfect straight line. More on that in a
moment.

According to the information above, we can estimate that the value of 𝑏 is −1.23:

̂𝑌 = −1.23𝑋

This is a proportional effect. Again, as long as 𝑋 and 𝑌 are both mean-centered,
knowing the value of 𝑋 allows us to predict the value of 𝑌 by multiplying by 𝑏.
But those predictions will almost always be wrong. On any given day, given
an increase of 1 mile per hour wind in wind speed, it will very rarely happen
that the temperature will drop by exactly 1.23 degrees. That’s just a sort of
“average” over time. On average, there’s a slight temperature change associated
with 1 mph change in wind speed, and the number -1.23 is the best estimate of
that average change across our whole data set. We need to be especially clear
that an increase in wind speed does not necessary cause a drop in temperature. I
mean, that might be partially true, but we can’t prove it from our observational
data. There are all sorts of other reasons to explain both an increase in wind
speed and a drop in temperature (like a cold front moving in).

Since our predictions are average effects and not specific guarantees, every pre-
diction we make will be wrong by some amount. (We could get extremely lucky,
but even then, it’s difficult to imagine a situation in which our prediction is pre-
cisely correct to, say, 10 decimal places or something like that.) Therefore, there
is error in our prediction. The new equation—accounting for error—is

𝑌 = 𝑏𝑋 + 𝐸
or

𝑌 = −1.23𝑋 + 𝐸

Now we use 𝑌 instead of ̂𝑌 . Once we include the error, we can recover the exact
value of 𝑌 , so this is no longer just a prediction from the straight-line model.
Remember this:

If you write down a regression equation for an endogenous variable that includes
all incoming arrows, including the error term, use 𝑌 .

If you write down a regression equation for an endogenous variable that includes
all incoming arrows, excluding the error term, use ̂𝑌 .

Error is a funny word because it has a negative connotation. It sounds like we
made a mistake. Well, the model does make mistakes. Every model prediction
is technically wrong. But this is not the kind of mistake that results from doing
our arithmetic wrong or anything like that. It’s simply the “natural” error that
results from the messiness of the real world and the impossibility of predicting
anything with certainty. For this reason, we will often prefer the term “residual”.
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It’s what is “left over” after we have made a prediction. It’s the extra change
in temperature, for example, that is not accounted for by the model with wind
speed alone.
The residuals are evident in the plot above. If there were no residuals, every
data point would lie on a perfect straight line. But the data points are all either
a little above or below the line. Those vertical distances between the data and
the line are the residuals or errors. Here is an example of two residuals plotted
below in red.

ggplot(airquality_mc, aes(y = Y, x = X)) +
geom_point() +
geom_smooth(method = lm, se = FALSE) +
annotate("segment",

x = -2.56, y = 3.15,
xend = -2.56, yend = 3.15 - 14.03,
color = "red", size = 1.5) +

annotate("segment",
x = 4.94, y = -6.08,
xend = 4.94, yend = -6.08 + 9.20,
color = "red", size = 1.5)

## `geom_smooth()` using formula 'y ~ x'
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Points below the line have negative residuals and points above the line have
positive residuals.
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The residuals do not appear as observed or measured variables in our data. They
are a consequence of a variety of unmeasured factors that determine temperature
aside from wind speed. An unmeasured variable that appears in a model is
called a latent variable. We will discuss latent variables in far greater detail in
Chapter 8. For now, just know that latent variables are indicated by circles in
the diagram. That’s why there is a circle with the letter 𝐸 inside.
The equation

𝑌 = 𝑏𝑋 + 𝐸
can also be written as

𝑌 = 𝑏𝑋 + 1 ⋅ 𝐸

How is that “1” represented in the diagram?
The letters 𝑣, 𝑏, and 𝑒 are called free parameters because they are free to vary
depending on the data. The “1” is called a fixed parameter. It is attached to
an arrow, so it’s technically a parameter of the model, but it is not a parameter
that we need to calculate. It is “fixed” at the value 1 because the error term
in the model is represented by +𝐸 with a fixed coefficient of 1. In general,
throughout the book, if the word “parameter” is used without qualification, you
can assume we are talking only about the free parameters, the ones we need to
calculate.
Arrows that represent the coefficients of regression relationships will be drawn
a little thicker than the other arrows in the diagram. This convention is, to our
knowledge, unique to this book. It is not absolutely necessary, but it will be
helpful later when there are more arrows floating about to distinguish between
the regression relationship and other kinds of relationships (like error terms or
covariances, for example).
The only thing in the diagram that hasn’t been explained yet is 𝑒.
Where does 𝑒 appear in the diagram? Given where it appears, what does it
represent mathematically?
We know that curved arrows represent variance. But what does it mean to
measure the variance of a variable we can’t observe?
What would the scatterplot look like if the error variance were very small. What
about if the error variance were large?
There is variability in the size of the residuals. Some are small (points that are
close to the line) and some are large (points that are far from the line). This
spread of residuals can be estimated from data, just like any other variance
calculation.1 It turns out to be about 70.8. We’ll see how to calculate that

1We know that variance is close to the average squared deviation, except we divide by 𝑛−1
instead of 𝑛. Well, residuals are a little more weird still. To get an unbiased estimate, you
have divide by 𝑛 − 2. However, the calculation that appears next is the one that uses 𝑛 − 1.
This is for reasons that, regrettably, we’ll have to sweep under the rug here.
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below.

Let’s put everything together into a diagram.

First, we need the variance of 𝑋 (wind speed). Calculate it in R. You should
get 12.4.

Does it matter if you calculate the variance of the variable Wind from the original
airquality data, or the variance of the 𝑋 variable from airqualilty_mc? Why
or why not?

X Y E

12.4

-1.23 1

70.8

While it’s helpful to see 𝑋 and 𝑌 as generic prototypes for any simple regression
model, in most applied problems from now on we’ll refer to variables using
contextually meaningful names. The final diagram looks like this:

WIND TEMP E

12.4

-1.23 1

70.8

Is the error variable 𝐸 exogenous or endogenous?

One final note about this diagram: you may have noticed that the 𝑌 variable
(or TEMP) does not have a variance term attached. There is no double-headed
arrow on that box. Why not? The point here is that we are trying to understand
the variance of 𝑌 using other elements of the model. In other words, 𝑌 has a
variance, but that variance is partially predicted by 𝑋. And the rest of the
variance not predicted by 𝑋 is swept up in the error term 𝐸. So all the variance
is 𝑌 is accounted for through the contribution of 𝑋 and 𝐸 combined.
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4.5 Simple regression assumptions

All the calculations we need to do, and our ability to interpret the results,
depend on certain assumptions being met.

If you look up regression assumptions, you might find a huge list of require-
ments. Some of these requirements relate to calculating statistics like P-values
for regression parameters. For now, we are content simply to know that it makes
sense to interpret the parameters in the model above.

For that, we really only need five assumptions:

1. The data should come from a “good” sample.
2. The values of the exogenous variable should be measured without error.
3. The relationship between 𝑌 and 𝑋 should be approximately linear.
4. The residuals should be independent of the 𝑋 values.
5. There should be no influential outliers.

Let’s address these one at a time:

1. What do we mean by a “good” sample? While a simple random sample is
the gold standard, it’s usually not possible to obtain one in the real world.
So we make our sampling process as random as possible and ensure that
the resulting sample is as representative of the population we’re trying to
study as possible.

2. We should always strive to measure things precisely. When measuring
physical phenomena with precise scientific instruments, we can usually
minimize so-called “measurement error”. But some measurements are a
lot messier. You might ask a person a series of survey questions today and
then ask them the same questions tomorrow and get somewhat different
answers. Or you might have to record data that consists of “educated
guess” estimates about things that are difficult to pin down precisely.
Whenever you have an exogenous variable that is unreliable, that can
introduce bias into your model. (Curiously, measurement error in the en-
dogenous variable doesn’t matter quite as much. It may introduce more
variability in your estimates, but it will not bias the values of the param-
eters of the regression model.)

3. You can check linearity with a scatterplot. Just make sure the pattern of
dots doesn’t have strong curvature to it.

4. There should be no patterns in the residuals at all. They should be ran-
domly scattered around the best-fit line and the average size of the resid-
uals should not change radically from one side of the graph to the other.2
You can check this by plotting the residuals, but that can’t be done until

2This property of similarly-sized residuals is called homoskesdasticity. The violation of
that condition is called heteroskedasticity which is one of Sean’s favorite words ever!
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after the model is fit. (The residuals don’t exist until we have a value of
̂𝑌 with which to compare 𝑌 .)

5. Check the scatterplot for outliers. If there are serious ones, assess them to
make sure they are not data entry mistakes. If they correspond to valid
data, you cannot just throw them away.3 Often, the solution is to run the
analysis both including and (temporarily) excluding the outliers to make
sure their presence doesn’t radically alter the parameter estimates.

4.6 Calculating regression parameters

Now we’ll show one way to calculate the parameters (the numbers) in the above
diagram. This isn’t the only way to do it. In fact, this is not the approach that
is used in most intro stats classes. But this approach will be helpful to illustrate
the way we will do these calculations in future chapters.

Let’s go back to the diagram without the numbers:
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The letter 𝑣 is easy because it’s just the variance of 𝑋:

𝑉 𝑎𝑟(𝑋) = 𝑣

We can estimate it directly from the data. (You already did it in R above for
wind speed.) Through completing the activities below, we will also calculate 𝑏
and 𝑒.
To get the other parameters, we have to set up a few equations. The first
observation we need to make is that, as important as the arrows are in a diagram,
it’s just as important where the arrows are not.

3In other words, don’t follow the all-too-common “rule of thumb” for outliers, which is just
covering them up with your thumb and pretending they don’t exist.
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Are there any arrows directly connecting 𝑋 and 𝐸? What might that imply
about the relationship between 𝑋 and 𝐸? Which regression assumption is
related to this question?

So what would that imply about the value of 𝐶𝑜𝑣(𝐸,𝑋)?
We have to be a little careful with the line of reasoning above. Even if there are
no direct paths from 𝑋 to 𝐸, are there any indirect paths from 𝑋 to 𝐸? Such
an indirect path might be the source of some kind of association between 𝑋 and
𝐸.

The only possible path goes through 𝑌 and looks like

𝑋 → 𝑌 ← 𝐸

For reasons that we won’t explain here (but will be explained in Chapter 6),
this type of path does not imply any kind of association between 𝑋 and 𝐸.
Therefore, the model does imply that 𝑋 and 𝐸 are independent, and, therefore,
𝐶𝑜𝑣(𝐸,𝑋) = 0.

Next, because 𝑌 is the combination of 𝑋 and 𝐸, we’ve already seen that we can
write

𝑌 = 𝑏𝑋 + 𝐸

Therefore, we can calculate 𝑉 𝑎𝑟(𝑌 ) according to this formula using the estab-
lished rules. (A convenient list of all of them in one place is located in Appendix
A.)

Keep simplifying the following as much as possible:

𝑉 𝑎𝑟(𝑌 ) = 𝑉 𝑎𝑟(𝑏𝑋 + 𝐸) (4.1)
= ??? (4.2)

You should end up with

𝑏2𝑣 + 𝑒

Don’t forget that 𝑉 𝑎𝑟(𝑋) = 𝑣 and 𝑉 𝑎𝑟(𝐸) = 𝑒 in the diagram!

We also need to use information about the covariance between 𝑌 and 𝑋. Keep
simplifying the calculation below:

𝐶𝑜𝑣(𝑌 ,𝑋) = 𝐶𝑜𝑣(𝑏𝑋 + 𝐸,𝑋) (4.3)
= ??? (4.4)
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You should end up with

𝑏𝑣

Use R to calculate 𝑉 𝑎𝑟(𝑌 ) and 𝐶𝑜𝑣(𝑌 ,𝑋) for the airquality data. (You’ve
already computed 𝑉 𝑎𝑟(𝑋). It was 12.4.)

You should get 89.6 and -15.3, respectively.

Now we can set up all the equations we need to solve for the various letters we
want. Here are the three equations we have established:

12.4 = 𝑣 (4.5)
89.6 = 𝑏2𝑣 + 𝑒 (4.6)

−15.3 = 𝑏𝑣 (4.7)

Time to do a little algebra. You know 𝑣. Using that value, solve for 𝑏 first
(using the last equation). Then, using both values of 𝑏 and 𝑣, solve for 𝑒 in the
second equation.

Check that the values you got are the same as the ones from the earlier diagram
(with the possibility of a little rounding error).

Now let’s go through that again, but this time, in full generality:

𝑉 𝑎𝑟(𝑋) = 𝑣 (4.8)
𝑉 𝑎𝑟(𝑌 ) = 𝑏2𝑣 + 𝑒 (4.9)

𝐶𝑜𝑣(𝑌 ,𝑋) = 𝑏𝑣 (4.10)

Therefore,

𝑣 = 𝑉 𝑎𝑟(𝑋)

𝑏 = 𝐶𝑜𝑣(𝑌 ,𝑋)
𝑉 𝑎𝑟(𝑋)

𝑒 = 𝑉 𝑎𝑟(𝑌 ) − (𝐶𝑜𝑣(𝑌 ,𝑋)
𝑉 𝑎𝑟(𝑋) )

2
𝑉 𝑎𝑟(𝑋)
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4.7 The model-implied matrix

It will be convenient in future chapters to collect up all these numbers we need
in an array of terms called a sample covariance matrix. (Sometimes this is called
a variance-covariance matrix.) The idea is to take the covariance of all possible
pairs of observed variables and arrange them as follows:

[𝐶𝑜𝑣(𝑋,𝑋) 𝐶𝑜𝑣(𝑋, 𝑌 )
𝐶𝑜𝑣(𝑌 ,𝑋) 𝐶𝑜𝑣(𝑌 , 𝑌 )]

There are some immediate simplifications to make.

1. Since 𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑌 ,𝑋), there is no point in writing it twice. We
will just use a dot (•) to replace 𝐶𝑜𝑣(𝑋, 𝑌 ).

2. We can replace the upper-left and lower-right entries (the entries on the
so-called “diagonal” of the matrix) with variances.

This is our final sample covariance matrix:

[ 𝑉 𝑎𝑟(𝑋) •
𝐶𝑜𝑣(𝑌 ,𝑋) 𝑉 𝑎𝑟(𝑌 )]

Alternatively, we could also write this:

[𝑉 𝑎𝑟(𝑋) 𝐶𝑜𝑣(𝑋, 𝑌 )
• 𝑉 𝑎𝑟(𝑌 ) ]

The former is called the lower-triangular form, and the latter is the upper-
triangular form. Both contain the same information, so it really doesn’t matter
which one we use.

With the data we have, we can calculate numbers for all these quantities.

There is another important matrix called the model-implied matrix. Given the
model, what does the covariance matrix look like? From the calculations above,
we know that the model-implied matrix is

[ 𝑣 •
𝑏𝑣 𝑏2𝑣 + 𝑒]

The letters 𝑏, 𝑣, and 𝑒 are unknowns. Okay, 𝑣 is not very unknown. It’s an
unknown in the sense of being a parameter in the model, but you don’t have to
work very hard to find it. The point is that model parameters are estimated by
equating the covariance matrix (calculated from the data) with model-implied
matrix and trying to solve for all the unknown parameters.
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There is no new math to do in this section. The matrices are just convenient
ways to organize the work we’ve already done. All parameter estimation in
structural equation modeling is essentially setting these two matrices (the sam-
ple covariance matrix and the model-implied matrix) equal to each other and
solving:

[ 𝑉 𝑎𝑟(𝑋) •
𝐶𝑜𝑣(𝑌 ,𝑋) 𝑉 𝑎𝑟(𝑌 )] = [ 𝑣 •

𝑏𝑣 𝑏2𝑣 + 𝑒]

Don’t forget that the matrix on the left—the sample covariance matrix—consists
of numbers that we calculate from data. The matrix on the right—the model-
implied matrix—contains letters, which are the unknown parameters we’re try-
ing to find.

4.8 Coefficients in terms of correlation

The formulas we derived are fine as far as they go. They allow you to take
quantities calculated from data (variances and covariances of observed variables)
and translate that into estimates of model parameters.

The formula for the slope parameter 𝑏 is pretty simple and has some intuitive
content. It’s the covariance between 𝑌 and 𝑋, but dividing by the variance of
𝑋 to make sure it has the right units.

𝑏 = 𝐶𝑜𝑣(𝑌 ,𝑋)
𝑉 𝑎𝑟(𝑋)

Another way to look at this formula is to rearrange things a bit as follows:

The formula for 𝑏 above is equivalent to

𝑏 = 𝐶𝑜𝑣(𝑌 ,𝑋)√𝑉 𝑎𝑟(𝑌 )
𝑉 𝑎𝑟(𝑋)√𝑉 𝑎𝑟(𝑌 )

Why?

Now write it like this:

𝑏 = 𝐶𝑜𝑣(𝑌 ,𝑋)√𝑉 𝑎𝑟(𝑌 )
√𝑉 𝑎𝑟(𝑋)√𝑉 𝑎𝑟(𝑋)√𝑉 𝑎𝑟(𝑌 )

What happened here?

Finally, write it like this:
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𝑏 = ( 𝐶𝑜𝑣(𝑌 ,𝑋)
√𝑉 𝑎𝑟(𝑋)√𝑉 𝑎𝑟(𝑌 )

)(√𝑉 𝑎𝑟(𝑌 )
√𝑉 𝑎𝑟(𝑋)

)

Explain why this simplifies to

𝑏 = 𝐶𝑜𝑟𝑟(𝑌 ,𝑋)(𝑆𝐷(𝑌 )
𝑆𝐷(𝑋))

This is often the formula taught in intro stats classes. In more concise notation:

𝑏 = 𝑟𝑌𝑋 (𝑠𝑌
𝑠𝑋

)

The intuition here is that 𝑏 is basically just the correlation between 𝑌 and 𝑋,
but it has to account for the scales and units of 𝑌 and 𝑋.

Why does the standard deviation of 𝑌 have to be in the numerator and the
standard deviation of 𝑋 have to be in the denominator? Think about the units
𝑏 must have.

The formula for the error variance 𝑒 is a little more gross. With similar trickery,
though, we can simplify that formula quite a bit.

Here is the starting point:

𝑒 = 𝑉 𝑎𝑟(𝑌 ) − (𝐶𝑜𝑣(𝑌 ,𝑋)
𝑉 𝑎𝑟(𝑋) )

2
𝑉 𝑎𝑟(𝑋)

Explain why the right-hand side can be rewritten as

𝑉 𝑎𝑟(𝑌 ) − 𝐶𝑜𝑣(𝑌 ,𝑋)2
𝑉 𝑎𝑟(𝑋)

Explain why the next step is valid:

𝑉 𝑎𝑟(𝑌 ) − 𝐶𝑜𝑣(𝑌 ,𝑋)2𝑉 𝑎𝑟(𝑌 )
𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 )

What about this next one?

𝑉 𝑎𝑟(𝑌 )(1 − 𝐶𝑜𝑣(𝑌 ,𝑋)2
𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 ))

Why would we do such a thing? In other words, does the new fraction on the
right look familiar in any way?
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We hope you recognize that the fraction on the right is just the correlation
coefficient squared. The whole equation can now be written as

𝑒 = 𝑉 𝑎𝑟(𝑌 ) (1 − 𝑟2𝑌𝑋)

There is a nice consequence of this last equation. The term in parentheses
(1 − 𝑟2𝑌𝑋) is a number between 0 and 1, right? Since we are multiplying this by
the variance of 𝑌 , we can think of the term in parentheses as a proportion. All
the variance of 𝑌 is explained in our model in one of two ways. The thick arrow
coming in from the left uses 𝑋 to predict some of the variance of 𝑌 . All the
rest of the variance of 𝑌 is left over in the error term 𝑒. Therefore, (1 − 𝑟2𝑌𝑋)
is the proportion of the variance of 𝑌 left over as error.

And if that is true, it must also be the case that 𝑟2𝑌𝑋 is the proportion of the
variance of 𝑌 explained by 𝑋. Calculating one minus a proportion gives the
complementary proportion. For example, if (1 − 𝑟2𝑌𝑋) = 0.3, then 30% of the
variance of 𝑌 is left over as error. But that implies that 70% of the variance of
𝑌 is explained by 𝑋. 1 − 0.3 = 0.7.

Most authors will write 𝑅2 instead of 𝑟2 for some reason. Rearranging the
equation above, replacing 𝑟2𝑌𝑋 with 𝑅2, and writing 𝑒 as 𝑉 𝑎𝑟(𝐸) looks like

𝑅2 = 1 − 𝑉 𝑎𝑟(𝐸)
𝑉 𝑎𝑟(𝑌 )

In other words, we can think of the error variance as a proportion of the total
variance of 𝑌 , and then 𝑅2 is the complementary proportion. Therefore, 𝑅2 is
the proportion of the variance accounted for by the model.

4.9 Regression with standardized variables

Recall that if we convert our variables to z-scores, variances are all 1 and co-
variances become correlation coefficients. In other words, the covariance matrix
becomes a correlation matrix and looks like this:

[ 1 •
𝑟𝑌𝑋 1]

The model-implied matrix does not change. Solving for the parameters as before
is the same, then, except we can now replace 𝑉 𝑎𝑟(𝑋) and 𝑉 𝑎𝑟(𝑌 ) with 1, and
𝐶𝑜𝑣(𝑌 ,𝑋) with 𝑟𝑌𝑋.

[ 1 •
𝑟𝑌𝑋 1] = [ 𝑣 •

𝑏𝑣 𝑏2𝑣 + 𝑒]
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1 = 𝑣 (4.11)
𝑟𝑌𝑋 = 𝑏𝑣 (4.12)

1 = 𝑏2𝑣 + 𝑒 (4.13)

Therefore,

𝑣 = 1

𝑏 = 𝑟𝑌𝑋

𝑒 = 1 − 𝑟2𝑌𝑋

When the variables are standardized, the slope of the regression is just the
correlation! And the error variance is just a proportion between 0 and 1 which
is complementary to 𝑟2𝑌𝑋 (aka, 𝑅2, or the variance explained by the model).
Those two variances, 𝑒 and 𝑅2 now add up to 1.

We’ll use the scale command to create standardized variables for temperature
and wind speed and put them in a new tibble.

X_std <- scale(airquality$Wind)
Y_std <- scale(airquality$Temp)
airquality_std <- tibble(X_std, Y_std)
airquality_std

## # A tibble: 153 x 2
## X_std[,1] Y_std[,1]
## <dbl> <dbl>
## 1 -0.726 -1.15
## 2 -0.556 -0.621
## 3 0.750 -0.410
## 4 0.438 -1.68
## 5 1.23 -2.31
## 6 1.40 -1.26
## 7 -0.385 -1.36
## 8 1.09 -1.99
## 9 2.88 -1.78
## 10 -0.385 -0.938
## # ... with 143 more rows
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Modify the ggplot code from earlier in the chapter to create a scatterplot of the
new standardized variables along with a best-fit line. What is the slope of this
line? (Hint: calculate the correlation coefficient between the two standardized
variables.)

4.10 Simple regression in R

4.10.1 Using lm

The straightforward way to run regression in R is to use the lm command. This
stands for “linear model”. It uses a special symbol, the tilde ~, to express the
relationship between the endogenous variable and the exogenous variable. The
endogenous (response) variable always goes on the left, before the tilde. The
exogenous (predictor) variable goes on the right, after the tilde. Finally, there
is a data argument to tell lm where to find the variables to model.

YX_lm <- lm(Y ~ X, data = airquality_mc)
YX_lm

##
## Call:
## lm(formula = Y ~ X, data = airquality_mc)
##
## Coefficients:
## (Intercept) X
## 1.117e-14 -1.230e+00

Which of the two numbers above is the slope 𝑏?
We haven’t talked about the intercept yet, but according to this output, what is
it? (Hint: it’s not literally 1.117×10−14. What does that number really mean?)

Run the lm command, but this time using the standardized variables from the
airquality_std tibble. The value of the slope should not surprise you. Explain
why it is what it is.

Don’t forget: these parameters make no sense to interpret unless the regression
assumptions are met. We looked at a scatterplot already and determined that
is was approximately linear. But we haven’t checked the residuals.

The residuals can be obtained most easily from the model by using the augment
command from the broom package in the following way:
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YX_aug <- augment(YX_lm)
YX_aug

## # A tibble: 153 x 8
## Y X .fitted .resid .hat .sigma .cooksd .std.resid
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -10.9 -2.56 3.15 -14.0 0.0100 8.39 0.0141 -1.67
## 2 -5.88 -1.96 2.41 -8.29 0.00857 8.44 0.00420 -0.986
## 3 -3.88 2.64 -3.25 -0.631 0.0102 8.47 0.0000292 -0.0751
## 4 -15.9 1.54 -1.90 -14.0 0.00780 8.39 0.0109 -1.66
## 5 -21.9 4.34 -5.34 -16.5 0.0165 8.36 0.0328 -1.98
## 6 -11.9 4.94 -6.08 -5.80 0.0195 8.46 0.00478 -0.694
## 7 -12.9 -1.36 1.67 -14.6 0.00751 8.39 0.0113 -1.73
## 8 -18.9 3.84 -4.73 -14.2 0.0144 8.39 0.0208 -1.69
## 9 -16.9 10.1 -12.5 -4.40 0.0611 8.46 0.00942 -0.538
## 10 -8.88 -1.36 1.67 -10.6 0.00751 8.43 0.00596 -1.25
## # ... with 143 more rows

There are many columns here and we’re not going to discuss most of them, but
the residuals of the model are stored in the column called .resid. There are
also standardized residuals stored in column std.resid. Both will look exactly
the same in a plot except for the scale of the axes, so it doesn’t much matter
which we use.

The residuals are now stored in a new tibble called YX_aug, so be sure to use
that in the following ggplot command and not the original data. We’ll put the
residuals on the y-axis. Since we’re interested in checking that the residuals are
independent of the 𝑋 variable, we will put that, unsurprisingly, on the x-axis.
A reference line at 𝑦 = 0 helps us see where the residuals are centered.

ggplot(YX_aug, aes(y = .resid, x = X)) +
geom_point() +
geom_hline(yintercept = 0, color = "blue")
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or

ggplot(YX_aug, aes(y = .std.resid, x = X)) +
geom_point() +
geom_hline(yintercept = 0, color = "blue")
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What do you see in the graphs above? Is this good or bad? What indicates in
these graphs that the residuals are independent of 𝑋?

4.10.2 Using lavaan

We will also introduce you briefly to the lavaan package. While it’s totally
overkill for simple regression, getting used to the syntax now will make it easier
to continue to build up your confidence in using it when it will be the only tool
we use.

A lavaan model is built in a similar way to lm using the tilde ~ notation. One
big difference is that the model needs to be specified inside quotation marks
first and assigned to a name like this:

TEMP_WIND_model <- "Y ~ X"

Then we pass that model text to the sem function from lavaan:

TEMP_WIND_fit <- sem(TEMP_WIND_model, data = airquality_mc)

The model is now stored as TEMP_WIND_fit. One way to learn about the model
is to use the parameterEstimates function.
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parameterEstimates(TEMP_WIND_fit)

## lhs op rhs est se z pvalue ci.lower ci.upper
## 1 Y ~ X -1.230 0.193 -6.373 0 -1.609 -0.852
## 2 Y ~~ Y 70.337 8.042 8.746 0 54.575 86.098
## 3 X ~~ X 12.330 0.000 NA NA 12.330 12.330

There is a lot of output here, and we’re not going to talk about most of it now.
Focus on the est column.
You should recognize these three estimates. Explain what these numbers rep-
resent.
In particular, pay close attention to the second line. If you are hasty, you may
think this is the variance of 𝑌 , but that is not correct.
We can also produce the standardized estimates.

standardizedSolution(TEMP_WIND_fit)

## lhs op rhs est.std se z pvalue ci.lower ci.upper
## 1 Y ~ X -0.458 0.060 -7.577 0 -0.576 -0.340
## 2 Y ~~ Y 0.790 0.055 14.273 0 0.682 0.899
## 3 X ~~ X 1.000 0.000 NA NA 1.000 1.000

Again, explain these three numbers. (They are now listed in a column called
est.std for “standardized estimates”.)
Verify that the second line is actually the error variance. (Hint: remember
1 − 𝑟2𝑌𝑋.) How do we know it’s not the standardized variance of 𝑌 ? (In other
words, what do you actually know to be the standardized variance of 𝑌 ?)
One downside of using lavaan is that it doesn’t store the residuals, so we have
no way of checking that regression assumption. For more complex models in
future chapters where lavaan (or some comparable package) is the only choice,
the residual independence assumption will be just that: an assumption. We
must have substantive reason to believe that’s true when we specify the model.

4.11 What about intercepts?

If you are familiar with regression from another course, you may be wondering
where the intercepts went. Because we mean-centered and/or standardized all
the data, there were no intercepts. The regression line always passes through
(0, 0) for mean-centered or standardized data.
[PUT A REFERENCE HERE IF WE DECIDE TO COVER MEAN STRUC-
TURE IN A FUTURE CHAPTER.]
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Chapter 5

Multiple regression

Preliminaries

We will load the tidyverse package to work with tibbles, the broom package
to calculate residuals, and lavaan.

85
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library(tidyverse)
library(broom)
library(lavaan)

5.1 The multiple regression model

This chapter is an extension of all the ideas established in the last chapter.
Multiple regression is like simple regression, but with more exogenous variables.
There will still be only one endogenous variable. Although the archetype il-
lustrated at the beginning of the chapter has three predictor variables, we will
start with only two predictor variables to keep things simple. If you understand
what happens with two variables, it’s fairly straightforward to generalize that
knowledge to three or more predictors. The logic is the same.

Here is a multiple regression model with two predictors and with all paths given
parameter labels:

v1

X1

X2

Y Ev2
c12

b1

b2

1

e

How many free parameters appear in this model?

How many fixed parameters appear in this model?

The equation describing the relationship among these variables can be written
as either
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̂𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2

or

𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 +𝐸

Why do we use ̂𝑌 in the first equation and 𝑌 in the second equation?

Although we’ll work through the details for only two predictors, a multiple
regression model with 𝑘 predictors will look like

̂𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑘𝑋𝑘

or

𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑘𝑋𝑘 +𝐸

5.2 Multiple regression assumptions

Fortunately, the assumptions for multiple regression are basically the same as
they are for simple regression with a few minor modifications and one addition:

1. The data should come from a “good” sample.
2. The exogenous variables should be measured without error.
3. The relationship between 𝑋1,… ,𝑋𝑘, and 𝑌 should be approximately lin-

ear.
4. The residuals should be independent of the 𝑋1,… ,𝑋𝑘 values.
5. There should be no influential outliers.
6. The exogenous variables should not be highly correlated with one another.

We discuss these briefly:

1. Nothing has changed here. Good analysis starts with good data collection
practices.

2. Nothing has changed here. It’s a good idea to try to measure all our
variables with as little error as possible, but in particular, measurement
errors in the exogenous variables can bias our parameter estimates.

3. With only 𝑌 against 𝑋, the regression model is a line. With 𝑌 against
𝑋1 and 𝑋2, the regression model is a plane (a 2-dimensional plane sitting
in 3-dimensional space) which is a little challenging to graph. With more
predictors, the regression model lives in even higher dimensions and it’s
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impossible to visualize. To check this condition, the best you can usually
do is to check that the scatterplots of 𝑌 against each 𝑋𝑖 individually are
approximately linear.

4. Once we fit the model, we can check the residuals. Rather than plotting
the residuals against each 𝑋𝑖 separately, we can employ a trick that we’ll
explain later in the chapter.

5. Nothing changes here.
6. This is the new condition. When two or more predictors variables are

highly correlated with each other, this induces a condition called multi-
collinearity.

To illustrate why multicollinearity is a problem, think about the two-variable
case:

̂𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2

In general, we will be able to compute the values of 𝑏1 and 𝑏2 that best fit the
model to data.

But now suppose that 𝑋2 is just a multiple of 𝑋1, say 𝑋2 = 2𝑋1. Now the
equation looks more like

̂𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 (5.1)
= 𝑏1𝑋1 + 𝑏2(2𝑋1) (5.2)
= (𝑏1 + 2𝑏2)𝑋1 (5.3)

So even though it “looked like” there were two distinct predictors variables, this
is just a simple regression in disguise. Okay, so now let’s suppose we try to
calculate the slope of this simple regression. Say it’s 10. What are the values of
𝑏1 and 𝑏2? In other words, what values of 𝑏1 and 𝑏2 solve the following equation?

𝑏1 + 2𝑏2 = 10

Explain why it is impossible to pin down unique values for 𝑏1 and 𝑏2 that make
the above equation true.

If you choose a large, negative value of 𝑏1, what does that imply about the value
of 𝑏2?

If you choose a large, positive value of 𝑏1, what does that imply about the value
of 𝑏2?

Multicollinearity works a lot like that. Even when variables are not exact mul-
tiples of each other, sets of highly correlated variables will result in equations
with a large range of possible values that are consistent with the data. Even
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more dangerously, your fitting algorithm may estimate values for these coeffi-
cients, but those numbers will likely be meaningless. A completely different set
of numbers may also be perfectly consistent with the data.

To be clear, it’s not a problem that there is covariance among our predictors.
We expect that. The problem only arises when two or more predictors are highly
correlated with each other.

5.3 Calculating regression parameters

There is nothing new here, but the calculations do start to get a little messy. Ev-
erything that follows is for two predictors only. We will not do any calculations
for three or more predictors. It gets out of hand pretty quickly.

First, let’s remember what we’re trying to do. From the data, we can calculate
the sample covariance matrix. These are all the variances and covariances among
the observed variables:

⎡⎢
⎣

𝑉 𝑎𝑟(𝑋1) • •
𝐶𝑜𝑣(𝑋2, 𝑋1) 𝑉 𝑎𝑟(𝑋2) •
𝐶𝑜𝑣(𝑌 ,𝑋1) 𝐶𝑜𝑣(𝑌 ,𝑋2) 𝑉 𝑎𝑟(𝑌 )

⎤⎥
⎦

Remember that these entries are all just numbers that we calculate directly from
the data.

To get started on the model-implied matrix, let’s extend Rule 12 a little.

For any three variables 𝑋1, 𝑋2, and 𝑋3:

𝑉 𝑎𝑟(𝑎𝑋1 + 𝑏𝑋2 + 𝑐𝑋3) = 𝑎2𝑉 𝑎𝑟(𝑋1) + 𝑏2𝑉 𝑎𝑟(𝑋2) + 𝑐2𝑉 𝑎𝑟(𝑋3) (5.4)
+ 2𝑎𝑏𝐶𝑜𝑣(𝑋1, 𝑋2) (5.5)
+ 2𝑎𝑐𝐶𝑜𝑣(𝑋1, 𝑋3) (5.6)
+ 2𝑏𝑐𝐶𝑜𝑣(𝑋2, 𝑋3) (5.7)

This can be extended to any number of variables. Each variance appears with a
coefficient squared and each pair of variables gets a covariance term with 2 times
the product of the corresponding variable coefficients. (It’s hard to describe in
words, but it’s still more trouble than it’s worth writing it down in formal
mathematical notation. Hopefully you can see how the pattern of coefficients
generalizes.)

Now we can compute, for example, 𝑉 𝑎𝑟(𝑌 ):

./covariance.html#Rule12


90 CHAPTER 5. MULTIPLE REGRESSION

𝑉 𝑎𝑟(𝑌 ) = 𝑉 𝑎𝑟(𝑏1𝑋1 + 𝑏2𝑋2 +𝐸) (5.8)
= 𝑏21𝑉 𝑎𝑟(𝑋1) + 𝑏22𝑉 𝑎𝑟(𝑋2) + 𝑉 𝑎𝑟(𝐸) (5.9)

+ 2𝑏1𝑏2𝐶𝑜𝑣(𝑋1, 𝑋2) (5.10)
+ 2𝑏1𝐶𝑜𝑣(𝑋1, 𝐸) (5.11)
+ 2𝑏2𝐶𝑜𝑣(𝑋2, 𝐸) (5.12)

What happens to the last two lines above? Why?

Therefore,

𝑉 𝑎𝑟(𝑌 ) = 𝑏21𝑣1 + 𝑏22𝑣2 + 2𝑏1𝑏2𝑐12 + 𝑒

Rule 8 and Rule 9 extend in a similar way to sums of three or more terms.
But that’s even easier: just split up the covariance into as many pieces as there
are terms to split.

Your turn.

Calculate 𝐶𝑜𝑣(𝑌 ,𝑋1). You should get

𝑏1𝑣1 + 𝑏2𝑐12
Calculate 𝐶𝑜𝑣(𝑌 ,𝑋2). You should get

𝑏2𝑣2 + 𝑏1𝑐12

That turns out to be all the computation we need to write down the model-
implied matrix.

The first three entries are easy because they are just the parameters 𝑣1, 𝑐12, and
𝑣2. The last column contains the entries we just calculated above.

Therefore, the model-implied matrix is

⎡⎢
⎣

𝑣1 • •
𝑐12 𝑣2 •

𝑏1𝑣1 + 𝑏2𝑐12 𝑏2𝑣2 + 𝑏1𝑐12 𝑏21𝑣1 + 𝑏22𝑣2 + 2𝑏1𝑏2𝑐12 + 𝑒
⎤⎥
⎦

If we set these expressions equal to the numbers from the sample covariance
matrix, in theory we could then solve for the unknown parameters in the model-
implied matrix above. Three of them are basically already done since we can
just read off 𝑣1, 𝑐12, and 𝑣2. But solving for 𝑏1, 𝑏2, and 𝑒 is no joke! And even if
we did, the resulting expressions are not particularly enlightening. This is where
we are quite happy turning over the computational details to a computer.

./covariance.html#Rule8
./covariance.html#Rule9
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5.4 Interpreting the coefficients

Without explicit mathematical expressions for these parameters, it’s a bit chal-
lenging to explain their interpretation. For now, we’ll take it on faith that the
following is true:
In a multiple regression model, each 𝑏𝑖 represents the slope of the linear associ-
ation between 𝑌 and 𝑋𝑖 while holding the value of all other predictors constant.
What does this mean?
Let’s work with a concrete example. Suppose we think that college GPA can
be predicted using high school GPA along with the number of hours per week
spent studying in college. Here is what such a model might look like:

v1

HSGPA

HOURS

CGPA Ev2
c12

b1

b2

1

e

If high school GPA and hours per week studying are correlated (and they likely
are), they influence each other, and some of the influence has the danger of
“corrupting” the estimates of the path coefficients. For example, if 𝑏2 is posi-
tive, that would suggest that hours spent studying is associated with predicted
increases in college GPA. But how do we know that’s really due to the study-
ing? Maybe students who did well in high school are just “smarter”.1 Sure, they
also put in more hours studying, but maybe that doesn’t matter. Maybe those
students would do just as well in college even if they didn’t study a whole lot.
If that were the case, the coefficient 𝑏2 would be positive just because that set
of students (who happen to study more, even though it doesn’t matter) also are
the ones who have high college GPAs.
This is why it’s important to control for other variables. All this means is that
we need to temporarily fix the value of other variables to make the comparison

1For the record, we don’t actually believe that is true.
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fair. For example, we could look only at students with a 3.0 in high school.
Among those students, there will be variability in the number of hours they
study in college. If that variability is associated with variability in college GPA,
we know that the hours spent studying is at least partly associated with that
change. (There are lots of other factors too, but those will be swept up in the
error variance.) The high school GPA can’t predict that because it was fixed at
3.0, so we’re comparing apples to apples. Students who got a 2.0 in high school
may do more poorly overall, but the relative increase in GPA due to studying
would be the same (at least if everything is linear, as is assumed).

If the parameter 𝑏2 is estimated to be 0.13, that suggests that each additional
hour of study time per week predicts an increase of 0.13 points in the college
GPA, holding high school GPA constant. This means that the increase of 0.13
is only predicted within groups of students with the same high school GPA.

If the parameter 𝑏1 is estimated to be 1.2, that suggests that college GPA is
predicted to increase 1.2 points for every point increase in high school GPA.
This coefficient can only be interpreted while holding hours per week studying
constant. This means that this estimate only makes sense to interpret within
groups of students who put in the same number of hours of studying. That
takes out the hours of studying as an explanation and only accounts for changes
in high school GPA to be associated with changes in college GPA.

5.5 Regression with standardized variables

Things get a little easier (although not completely trivial) with standardized
variables.

First, a notational simplification. The correlations between our variables—
according to our convention—would be called 𝑟𝑋2𝑋1

, 𝑟𝑌𝑋1
, and 𝑟𝑌𝑋2

. These
are a little hard to look at in complex expressions, so we will replace them
with 𝑟21, 𝑟𝑌 1, and 𝑟𝑌 2. (Don’t be confused by 𝑟21 vs 𝑟12 or 𝑐21 vs 𝑐12. Since
covariance and correlation are symmetric, the order of the subscripts does not
matter.)

Let’s look at the sample covariance matrix and the model-implied matrix for
standardized variables:

⎡⎢
⎣

1 • •
𝑟21 1 •
𝑟𝑌 1 𝑟𝑌 2 1

⎤⎥
⎦

= ⎡⎢
⎣

𝑣1 • •
𝑐12 𝑣2 •

𝑏1𝑣1 + 𝑏2𝑐12 𝑏2𝑣2 + 𝑏1𝑐12 𝑏21𝑣1 + 𝑏22𝑣2 + 2𝑏1𝑏2𝑐12 + 𝑒
⎤⎥
⎦

The entry in the lower-left corner yields

𝑟𝑌 1 = 𝑏1𝑣1 + 𝑏2𝑐12
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which simplifies to
𝑟𝑌 1 = 𝑏1 + 𝑏2𝑟21

The next entry to the right of that yields

𝑟𝑌 2 = 𝑏2𝑣2 + 𝑏1𝑐12
which simplifies to

𝑟𝑌 2 = 𝑏2 + 𝑏1𝑟21

These two equations can be solved for the two unknown parameters 𝑏1 and 𝑏2.

Are you feeling brave? Are your algebra skills sharp? Totally optional, but see
if you can derive the final answers below:

𝑏1 = 𝑟𝑌 1 − 𝑟𝑌 2𝑟21
1 − 𝑟221

𝑏2 = 𝑟𝑌 2 − 𝑟𝑌 1𝑟21
1 − 𝑟221

These are still pretty gross, but there is some intuitive content to them. Look at
the numerator of the fraction for 𝑏1. Essentially, this is just 𝑟𝑌 1 with some extra
stuff. If this were simple regression, we would expect the slope 𝑏1 to simply be
the correlation between 𝑋1 and 𝑌 . But in multiple regression, we also have
to control for any contribution to the model coming from 𝑋2. How do we do
that? By subtracting off that contribution, which turns out to be 𝑟𝑌 2𝑟21. And
why does the latter term appear the way it does? Because we only need to
control for the effect of 𝑋2 if 𝑋2 is providing some of the same “information”
to the regression model as 𝑋1. Therefore, we don’t need to subtract all of 𝑟𝑌 2
to control for 𝑋2, just a fraction of 𝑟𝑌 2. What fraction? 𝑟21! We just need the
part of 𝑋2 that it has in common with 𝑋1. We don’t want to “double-count”
the contribution to the model that is common to both 𝑋2 and 𝑋1.

Here’s another way to think about it. What if 𝑋1 and 𝑋2 are independent?
Calculate 𝑏1 and 𝑏2 from the above formulas in this much easier case. (Don’t
overthink this. What is 𝑟21 in this case?)

So if 𝑋1 and 𝑋2 are independent, they both offer a unique contribution to
predicting 𝑌 in the model. And that contribution is just their correlation with
𝑌 (𝑟𝑌 1 and 𝑟𝑌 2, respectively). There is no overlap. But if 𝑋1 and 𝑋2 are
correlated, then some of their “influence” is counted twice. We have to subtract
out that influence so that 𝑏1 and 𝑏2 are only measuring the “pure” contribution
of 𝑋1 and 𝑋2, controlling for the other one.

What about the 1 − 𝑟221 in the denominator? There’s less of a good intuitive
explanation here. It’s there because—mathematically speaking—it has to be
there. It rescales the slope coefficients to make everything work out the way it
has to.
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The final equation is the one for 𝑉 𝑎𝑟(𝑌 ) in the lower-right corner of the matrix.
It says

1 = 𝑏21𝑣1 + 𝑏22𝑣2 + 2𝑏1𝑏2𝑐12 + 𝑒
which simplifies to

1 = 𝑏21 + 𝑏22 + 2𝑏1𝑏2𝑟21 + 𝑒
Rearranging to solve for 𝑒,

𝑒 = 1 − (𝑏21 + 𝑏22 + 2𝑏1𝑏2𝑟21)

It is not enlightening in any way to replace 𝑏1 and 𝑏2 here with the earlier
fractions. We can leave 𝑒 like this.

Since the standardized variance of 𝑌 is 1, the stuff inside the parentheses above
represents the variance accounted for by the model. (That is subtracted from 1,
then, to be left with 𝑒, the error variance.) This is analogous to the 𝑅2 term
described in the last chapter.

This makes some conceptual sense too. All the pieces of (𝑏21 + 𝑏22 + 2𝑏1𝑏2𝑟21)
correspond to various pieces of the model. The first two relate to the direct
effects of 𝑋1 and 𝑋2 and the third piece relates to an “indirect” effect shared
between them.

5.6 Multiple regression in R

Let’s fit a multiple regression model on some data about music. The data is a
sample of 10,000 songs from the Million Song Dataset, a collection of metrics
about the audio for a million contemporary popular music tracks.

This data set was downloaded from the CORGIS Dataset Project and more
information about the variables in this data set can be found here.

music <- read_csv("https://raw.githubusercontent.com/VectorPosse/sem_book/main/data/music.csv")

## Rows: 10000 Columns: 35
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (4): artist.id, artist.name, artist.terms, song.id
## dbl (31): artist.familiarity, artist.hotttnesss, artist.latitude, artist.loc...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

http://millionsongdataset.com/
https://corgis-edu.github.io/corgis/csv/
https://corgis-edu.github.io/corgis/csv/music/
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music

## # A tibble: 10,000 x 35
## artist.familiarity artist.hotttnes~ artist.id artist.latitude artist.location
## <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0.582 0.402 ARD7TVE1~ 0 0
## 2 0.631 0.417 ARMJAGH1~ 35.1 0
## 3 0.487 0.343 ARKRRTF1~ 0 0
## 4 0.630 0.454 AR7G5I41~ 0 0
## 5 0.651 0.402 ARXR32B1~ 0 0
## 6 0.535 0.385 ARKFYS91~ 0 0
## 7 0.556 0.262 ARD0S291~ 0 0
## 8 0.801 0.606 AR10USD1~ 0 0
## 9 0.427 0.332 AR8ZCNI1~ 0 0
## 10 0.551 0.423 ARNTLGG1~ 0 0
## # ... with 9,990 more rows, and 30 more variables: artist.longitude <dbl>,
## # artist.name <chr>, artist.similar <dbl>, artist.terms <chr>,
## # artist.terms_freq <dbl>, release.id <dbl>, release.name <dbl>,
## # song.artist_mbtags <dbl>, song.artist_mbtags_count <dbl>,
## # song.bars_confidence <dbl>, song.bars_start <dbl>,
## # song.beats_confidence <dbl>, song.beats_start <dbl>, song.duration <dbl>,
## # song.end_of_fade_in <dbl>, song.hotttnesss <dbl>, song.id <chr>, ...

The endogenous variable of interest to us will be the measure of the song’s
popularity, called song.hotttnesss (on a scale from 0 to 1).2 There are many
possible exogenous predictors, but let’s focus on three:

• artist.hotttnesss

– This is the popularity of the artist (on a scale from 0 to 1).

• song.loudness

– Not clear from the website what this is exactly, but it appears to be
some kind of average dBFS (decibels relative to full scale). Numbers
close to zero are actually as loud as recordings reasonably go and
increasingly negative numbers represent softer volumes.

• song.tempo

– This is measured in beats per minute (BPM).

Let’s plot song.hotttnesss against each of the three proposed predictors to
test the linearity assumption, starting with artist.hotttnesss:

2Very important that there are three t’s and three s’s!
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ggplot(music, aes(y = song.hotttnesss,
x = artist.hotttnesss)) +

geom_point()
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Uh, we’ve got some issues here to deal with. Since song.hotttness is supposed
to be from 0 to 1, we can guess that the -1 values are likely coded to represent
“missing” data. Even the values of 0 don’t seem valid given that there is a
big gap between the row of zeros and any of the rest of the cluster of actual
data. The artist.hotttness variable also seems to have some zeros that are
disconnected from the rest of the data. These may be genuine outliers, but it’s
more likely that these were artists for whom no data was collected.

While we’re suspecting issues, let’s also check song.loudness and song.tempo.

ggplot(music, aes(y = song.hotttnesss,
x = song.loudness)) +

geom_point()
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The song.loudness distribution looks reasonable. It’s definitely skewed to the
left, but there are no strict requirements about the predictor variables having
any particular type of distribution.

ggplot(music, aes(y = song.hotttnesss,
x = song.tempo)) +

geom_point()
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Is it possible for a song tempo to be 0 BPM?

To make it a little cleaner, the following code will select only the variables
in which we’re interested. Then it will filter out the values we want to keep
(discarding the ones that represent missing/invalid data). We’ll put this into a
new tibble called music_clean.

music_clean <- music %>%
select(song.hotttnesss, artist.hotttnesss,

song.loudness, song.tempo) %>%
filter(song.hotttnesss > 0,

artist.hotttnesss > 0,
song.tempo > 0)

music_clean

## # A tibble: 4,157 x 4
## song.hotttnesss artist.hotttnesss song.loudness song.tempo
## <dbl> <dbl> <dbl> <dbl>
## 1 0.602 0.402 -11.2 92.2
## 2 0.605 0.402 -4.50 130.
## 3 0.266 0.332 -13.5 86.6
## 4 0.266 0.352 -7.54 118.
## 5 0.405 0.448 -8.58 120.
## 6 0.335 0.331 -16.1 128.
## 7 0.684 0.513 -5.27 150.
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## 8 0.314 0.378 -8.05 112.
## 9 0.667 0.542 -4.26 167.
## 10 0.495 0.306 -12.3 138.
## # ... with 4,147 more rows

This has reduced the number of rows to 4,157, but that is still a huge sample
size.

Let’s check the scatterplots once more, now with the music_clean data.

ggplot(music_clean, aes(y = song.hotttnesss,
x = artist.hotttnesss)) +

geom_point()
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ggplot(music_clean, aes(y = song.hotttnesss,
x = song.loudness)) +

geom_point()
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ggplot(music_clean, aes(y = song.hotttnesss,
x = song.tempo)) +

geom_point()
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There doesn’t appear to be much of an association with loudness or tempo. But
that doesn’t violate any assumptions. (A violation of the assumptions would
be a decidedly non-linear association, not just a near-zero association.) Given
these graphs, we will expect the model to tell us that song popularity is maybe
somewhat associated with artist popularity, but not much with loudness or
tempo.

5.6.1 Using lm

The lm model specification is a minor extension of what you learned for simple
regression. Just use plus signs on the right side of the tilde ~ to add more
predictors. Be sure to use music_clean and not music!

SONG_lm <- lm(song.hotttnesss ~ artist.hotttnesss +
song.loudness +
song.tempo,

data = music_clean)
SONG_lm

##
## Call:
## lm(formula = song.hotttnesss ~ artist.hotttnesss + song.loudness +
## song.tempo, data = music_clean)
##
## Coefficients:
## (Intercept) artist.hotttnesss song.loudness song.tempo
## 0.1636446 0.7003692 0.0036969 0.0002057

We didn’t go to the trouble of mean-centering the data this time, so the intercept
is no longer 0. But we will not attempt to interpret the intercept anyway. The
other three coefficients are 𝑏1, 𝑏2 and 𝑏3, the path coefficients of the model.
These are interpreted as follows:

• 𝑏1:
– Song popularity is predicted to increase 0.7 points for every point

increase in artist popularity.

While this is mathematically true, it’s kind of nonsensical to report using num-
bers of that magnitude. Both scales only go from 0 to 1, so an increase in 1
point would be measuring the difference between an artist with 0 popularity (the
lowest possible value of popularity) to an artist with 1 popularity (the highest
possible value of popularity).

A better way to report this would be to scale everything down by a factor of 10:
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• Song popularity is predicted to increase 0.07 points for every 0.1 increase
in artist popularity.

• 𝑏2:

– Song popularity is predicted to increase 0.004 points for every in-
crease of 1 dB of loudness.

An increase of 1 dB is not very much, so again, we can scale the result to make
it more meaningful. This time we’ll multiply by a factor of 10:

• Song popularity is predicted to increase 0.04 points for every increase of
10 dB of loudness.

• 𝑏3:

– Song popularity is predicted to increase 0.0002 points for every in-
crease of 1 BPM in the tempo.

Restate the interpretation of 𝑏3 on a scale that makes sense. If you’re not familiar
with BPM, Google it to get a sense of what a reasonable jump in tempo might
be.

Now that we have the model fit, we can use broom to capture the residuals.

SONG_aug <- augment(SONG_lm)
SONG_aug

## # A tibble: 4,157 x 10
## song.hotttnesss artist.hotttnesss song.loudness song.tempo .fitted .resid
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.602 0.402 -11.2 92.2 0.423 0.179
## 2 0.605 0.402 -4.50 130. 0.455 0.149
## 3 0.266 0.332 -13.5 86.6 0.364 -0.0984
## 4 0.266 0.352 -7.54 118. 0.406 -0.140
## 5 0.405 0.448 -8.58 120. 0.470 -0.0652
## 6 0.335 0.331 -16.1 128. 0.362 -0.0273
## 7 0.684 0.513 -5.27 150. 0.535 0.150
## 8 0.314 0.378 -8.05 112. 0.422 -0.108
## 9 0.667 0.542 -4.26 167. 0.562 0.105
## 10 0.495 0.306 -12.3 138. 0.361 0.134
## # ... with 4,147 more rows, and 4 more variables: .hat <dbl>, .sigma <dbl>,
## # .cooksd <dbl>, .std.resid <dbl>
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But how do we graph them now that there are three predictor variables? We
could graph the residuals against all three predictors separately, but there’s a
more efficient method.

Calculate

𝐶𝑜𝑣(𝐸, ̂𝑌 )

by substituting

̂𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3

If we assume that 𝐸 is independent of all the predictors, what is the value of
𝐶𝑜𝑣(𝐸, ̂𝑌 )?

Of course, if 𝐶𝑜𝑣(𝐸, ̂𝑌 ) = 0, that does not necessarily imply that all the
𝐶𝑜𝑣(𝐸,𝑋𝑖) must be zero. And even if those are zero, that doesn’t imply inde-
pendence. But if 𝐶𝑜𝑣(𝐸, ̂𝑌 ) ≠ 0, then we know at least one of the 𝐶𝑜𝑣(𝐸,𝑋𝑖)
also must be non-zero. Therefore, we can plot the residuals against the
fitted values and this will serve as a disqualifying condition. A prob-
lem in the plot of residuals against fitted values serves as evidence of
a problem with the model.

One of the nice features of the augment output is that it also has a column
called .fitted that stores the ̂𝑌 values.

Here are the (standardized) residuals graphed against the fitted values:

ggplot(SONG_aug, aes(y = .std.resid, x = .fitted)) +
geom_point() +
geom_hline(yintercept = 0, color = "red")
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The weirdness in the residuals is not ideal. It doesn’t prevent us from fitting the
model, but we will state our results cautiously knowing that variance toward
the left half of the graph is compressed relative to the right side of the graph.
Therefore, the error variance is not “acting” in the model the same way across
all combinations of the predictor variables.

Go back and look at the original scatterplots of the data (from music_clean
and see if you can figure out why the residuals are cut off funny like that in the
lower left quadrant.)

5.6.2 Using lavaan

Model specification in lavaan happens in a separate step with the model in
quotes:

SONG_model <- "song.hotttnesss ~ artist.hotttnesss +
song.loudness +
song.tempo"

Then the model is fit with the sem function.

SONG_fit <- sem(SONG_model, data = music_clean)

Here are the unstandardized parameter estimates:
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parameterEstimates(SONG_fit)

## lhs op rhs est se z pvalue ci.lower
## 1 song.hotttnesss ~ artist.hotttnesss 0.700 0.021 33.427 0.000 0.659
## 2 song.hotttnesss ~ song.loudness 0.004 0.000 7.987 0.000 0.003
## 3 song.hotttnesss ~ song.tempo 0.000 0.000 3.096 0.002 0.000
## 4 song.hotttnesss ~~ song.hotttnesss 0.021 0.000 45.591 0.000 0.020
## 5 artist.hotttnesss ~~ artist.hotttnesss 0.012 0.000 NA NA 0.012
## 6 artist.hotttnesss ~~ song.loudness 0.112 0.000 NA NA 0.112
## 7 artist.hotttnesss ~~ song.tempo 0.091 0.000 NA NA 0.091
## 8 song.loudness ~~ song.loudness 25.426 0.000 NA NA 25.426
## 9 song.loudness ~~ song.tempo 27.118 0.000 NA NA 27.118
## 10 song.tempo ~~ song.tempo 1185.061 0.000 NA NA 1185.061
## ci.upper
## 1 0.741
## 2 0.005
## 3 0.000
## 4 0.022
## 5 0.012
## 6 0.112
## 7 0.091
## 8 25.426
## 9 27.118
## 10 1185.061

Focus on the estimate column (est).

Do you recognize the values from lines 1 through 3?

What does line 4 mean? (Hint: it’s not the variance of song.hotttnesss even
though the notation makes it look like that.)

What’s going on in lines 5 through 10?

Here are the standardized parameter estimates:

standardizedSolution(SONG_fit)

## lhs op rhs est.std se z pvalue ci.lower
## 1 song.hotttnesss ~ artist.hotttnesss 0.459 0.012 39.345 0.000 0.436
## 2 song.hotttnesss ~ song.loudness 0.111 0.014 8.051 0.000 0.084
## 3 song.hotttnesss ~ song.tempo 0.042 0.014 3.100 0.002 0.016
## 4 song.hotttnesss ~~ song.hotttnesss 0.752 0.011 69.186 0.000 0.731
## 5 artist.hotttnesss ~~ artist.hotttnesss 1.000 0.000 NA NA 1.000
## 6 artist.hotttnesss ~~ song.loudness 0.202 0.000 NA NA 0.202
## 7 artist.hotttnesss ~~ song.tempo 0.024 0.000 NA NA 0.024
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## 8 song.loudness ~~ song.loudness 1.000 0.000 NA NA 1.000
## 9 song.loudness ~~ song.tempo 0.156 0.000 NA NA 0.156
## 10 song.tempo ~~ song.tempo 1.000 0.000 NA NA 1.000
## ci.upper
## 1 0.482
## 2 0.138
## 3 0.069
## 4 0.773
## 5 1.000
## 6 0.202
## 7 0.024
## 8 1.000
## 9 0.156
## 10 1.000

Focus on the estimates again (est.std).

Why is it easier to compare the values in lines 1 though 3 in this output than it
was in the unstandardized table? (Hint: think about units of measurement or
lack thereof.)

What does the value in line 4 tell you? (Hint: it’s closer to 1 than to 0.)

Why are lines 5, 8, and 10 equal to 1?

How do you interpret lines 6, 7, and 9?

This is the final model with all variables labeled and all unstandardized param-
eter estimates identified:
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This is the same thing, but with standardized parameter estimates:
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Chapter 6

Mediation

Preliminaries

We will load the tidyverse package to work with tibbles and lavaan.

library(tidyverse)
library(lavaan)

109
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6.1 Arrows going everywhere!

To start off, let’s look at all possible paths that connect three variables with
two arrows. (For the moment, we’ll leave out variances, covariances, and error
terms.)

The second model is just a copy of the first model reversed, so we can disregard
it. The other three models are genuinely distinct models with somewhat different
consequences for the relationship among the three variables:

• The first model represents a “mediator”.
• The third model represents a “confounder”.
• The fourth model represents a “collider”.

The first part of this chapter will make these distinctions clear.
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6.2 Exogenous and endogenous variables

Look at the first model above. It’s clear that the variable on the left is exogenous
and the variable on the right is endogenous. The middle variable is called a
mediator. Is it exogenous or endogenous?

Here we give a more specific definition of these two terms:

An exogenous variable is one that has no unidirectional arrows (so not counting
double-headed arrows) entering it in the model diagram. It has only unidirec-
tional arrows leaving it.

An endogenous variable is one that has at least one unidirectional arrow entering
it (again, not counting double-headed arrows). It may have other unidirectional
arrows both entering and/or leaving.

• The prefix exo- means “outside”. So whatever variability there is in an ex-
ogenous variable must come from “outside” the model. There are no uni-
directional arrows coming in, so there is nothing in the model to account
for its variance, or, for that matter, its covariance with other exogenous
variables.

• The prefix endo- means “within”. The variability of endogenous vari-
ables is accounted for by other variables (including error terms) inside the
model. The fact that there might be arrows leaving endogenous variables
is irrelevant for this definition. It’s only about arrows coming in.

According to the definition above, is a mediator exogenous or endogenous?

Here are the Really Important Rules (RIR™) for working with exogenous and
endogenous variables in models. They come in three pairs:

• Rule 1:

– Every exogenous variable in a model requires a double-headed arrow
pointing to itself, representing its variance.

– No endogenous variable should have a double-headed arrow pointing
to itself.

• Rule 2:

– Every pair of exogenous variables in a model—except error terms—
requires a double-headed arrow joining them, representing their co-
variance.

– No other pair of variables in a model (between exogenous and endoge-
nous, or between endogenous) should have a double-headed arrow
joining them.

• Rule 3:



112 CHAPTER 6. MEDIATION

– Every endogenous variable in a model requires an error term.
– No exogenous variable in a model should have an error term.

These rules have important justifications. Don’t just memorize the rules blindly.
Understand why they are imperative.

• Rule 1:

– Exogenous variables vary, but the source of their variance is not in
the model. (That’s what makes them exogenous.) Therefore, we have
to represent their variance “manually” in the model by indicating it
with a double-headed arrow.

– On the other hand, the variance of endogenous variables is accounted
for by other variables in the model already, so it doesn’t need a
separate parameter representing its variance.

• Rule 2:

– Pairs of exogenous variables co-vary. The source of that covariance is
not in the model, so we have to represent it “manually” by indicating
it with a double-headed arrow. Error terms are the exception to this
rule. While it’s possible that error terms can co-vary, that usually
isn’t sensible for most models. A future chapter [LINK] will cover
how and when error terms can be correlated, but it should never be
the default assumption of the model.

– Covariances between other types of variables (exogenous to endoge-
nous, or endogenous to endogenous) are consequences of the other
arrows in the diagram that create direct and indirect paths among
the variables, so their covariance is not separately drawn as a double-
headed arrow.

• Rule 3:

– While the model is supposed to account for the variance of endoge-
nous variables through incoming arrows, it will never be able to ex-
plain 100% of that variance just using other variables in the model.
There will always be residuals, so these residuals have to be repre-
sented “manually” in the model using error terms.

– Exogenous variables are assumed to be measured without error.
While that assumption is not always very realistic in the real world,
we don’t have much of a choice. By their very definition, the
variance of exogenous variable isn’t accounted for by anything else
in the model, so error terms just don’t make any sense for them.

Here’s the first model of the four shown earlier:
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Draw this model on your own piece of paper. Following the rules above, draw in
all variances, covariances, or error terms that should be present in the diagram.
(Don’t worry about labeling anything with letters yet. Just draw the arrows
and the circles.)

6.3 Naming conventions

We need to establish some conventions for naming things.

• We need to name our variables. When we model real-world data, we’ll
use contextually meaningful names, but for abstract models we draw, we
need a consistent way of labeling them.

– Exogenous variables will be called 𝑋𝑖 (using numbers as subscripts).
– Endogenous variables will be called 𝑌𝑖 (also using numbers as sub-

scripts).
– Error terms will be called 𝐸𝑖 with subscripts matching the ones on

the endogenous variables 𝑌𝑖 to which they’re attached.

• We need to label the parameters along the various paths of the model:

– Variances will be called 𝑣𝑖 with subscripts matching the exogenous
variables 𝑋𝑖 to which they’re attached.

– Error variances will be called 𝑒𝑖 with subscripts matching the error
terms 𝐸𝑖 to which they’re attached.

– Covariances will be called 𝑐𝑖𝑗 connecting exogenous variables 𝑋𝑖 and
𝑋𝑗. (Since covariance is symmetric, it could also be called 𝑐𝑗𝑖.)

– Unidirectional arrows from error terms to their corresponding en-
dogenous variables will always be fixed parameters labeled with “1”.

– Thick, unidirectional arrows between an exogenous variable 𝑋𝑖 and
an endogenous variable 𝑌𝑗 will be called 𝑏𝑗𝑖. Note the order of the
subscripts: we always start with the subscript of the target variable
and end with the subscript of the predictor.

– Thick, unidirectional arrows between an endogenous variable 𝑌𝑖 and
another endogenous variable 𝑌𝑗 will be called 𝑎𝑗𝑖.

Why do we not need a naming convention for thick arrows between two exoge-
nous variables?
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6.4 Mediators

With all the rules in place for our diagrams, we can now revisit the model
from above, but now, let’s include all the extra bits of the model required by
the aforementioned rules: a variance term for the exogenous variable 𝑋1, error
terms for the two endogenous variables 𝑌1 and 𝑌2, and parameter labels for
everything.

X1 Y1 Y2

v1

E1

1

e1

E2

1

e2

b11 a21

Why did we not include any covariances in the model above?

As a concrete example to illustrate this phenomenon, imagine that the variables
measure the following:

• 𝑋1 is smoking.
• 𝑌1 is tar deposits in the lungs.
• 𝑌2 is lung cancer.

The idea is that smoking is associated with lung cancer. But what smoking really
does is cause specific chemical processes in the lungs (including the deposition
of tar), and that—among other factors—is what contributes to lung cancer. Tar
serves as a “mediator” for the process that connects smoking to lung cancer.

Since there are two endogenous variables present in this model, there are two
regression equations we have to write down:

𝑌1 = 𝑏11𝑋1 +𝐸1 (6.1)
𝑌2 = 𝑎21𝑌1 +𝐸2 (6.2)
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The sample covariance matrix will look like

⎡⎢
⎣

𝑉 𝑎𝑟(𝑋1) • •
𝐶𝑜𝑣(𝑌1, 𝑋1) 𝑉 𝑎𝑟(𝑌1) •
𝐶𝑜𝑣(𝑌2, 𝑋1) 𝐶𝑜𝑣(𝑌2, 𝑌1) 𝑉 𝑎𝑟(𝑌2)

⎤⎥
⎦

When working through covariance calculations in the past chapters, we’ve seen
lots of terms pop out of the form 𝐶𝑜𝑣(𝐸,𝑋). We’ve gotten used to canceling
these terms because they are zero. (Why must they be zero?)

In this model, some of the covariance calculations will result in terms of the form
𝐶𝑜𝑣(𝐸, 𝑌 ). These will not necessarily cancel, so we need to be more cautious.

Calculate 𝐶𝑜𝑣(𝐸1, 𝑌1) for the model above by substituting the regression equa-
tion 𝑌1 = 𝑏11𝑋1 +𝐸1. You should get 𝑒1 (and not zero).

Without doing any calculations, why would we also expect 𝐶𝑜𝑣(𝐸1, 𝑌2) to be
non-zero? (Hint: how are 𝐸1 and 𝑌2 connected in the diagram?)

On the other hand, why would we expect 𝐶𝑜𝑣(𝐸1, 𝐸2) to be zero in general?
(Hint: look back to Really Important Rule 2 above.)

Finally, we will expect 𝐶𝑜𝑣(𝐸2, 𝑌1) to be zero. Why? If you’re stuck, go ahead
and do the calculation to confirm.

Calculate the full model-implied matrix. You should get the following:

⎡⎢
⎣

𝑣1 • •
𝑏11𝑣1 𝑏211𝑣1 + 𝑒1 •

𝑎21𝑏11𝑣1 𝑎21𝑏211𝑣1 + 𝑎21𝑒1 𝑎221𝑏211𝑣1 + 𝑎221𝑒1 + 𝑒2
⎤⎥
⎦

If this is too tedious and time-consuming, just pick one or two of these entries
to compute.

If we standardize our variables, the sample covariance matrix (which is now a
correlation matrix) is

⎡⎢
⎣

1 • •
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) 1 •
𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) 1

⎤⎥
⎦

We’ve switched to using 𝐶𝑜𝑟𝑟 instead of using the letter 𝑟 for this exercise.
That’s because 𝑟𝑌1𝑋1

, 𝑟𝑌2𝑋1
, and 𝑟𝑌2𝑌1

have subscripts inside of subscripts and
are hard to read and process.

Setting the correlation matrix equal to the model-implied matrix above, we get

𝑣1 = 1

pretty much for free.
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Now solve for 𝑏11 and 𝑒1 next using the two terms in the second row of the
matrix. You should get:

𝑏11 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) (6.3)
𝑒1 = 1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 (6.4)

Why is this not surprising? (Hint: if you ignore 𝑌2 altogether and only pay
attention to relationships between 𝑋1, 𝑌1, and 𝐸1, what kind of model is this?)

The parameter 𝑎21 is interesting. The equation implied by the lower-left element
of the matrix—corresponding to 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)—is

𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) = 𝑎21𝑏11𝑣1 (6.5)
= 𝑎21𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) (6.6)

Solving for 𝑎21:

𝑎21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)

On the other hand, the equation implied by the center element on the bottom
row of the matrix—corresponding to 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)—is

𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) = 𝑎21𝑏211𝑣1 + 𝑎21𝑒1 (6.7)
= 𝑎21𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 + 𝑎21 (1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2) (6.8)
= 𝑎21𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 + 𝑎21 − 𝑎21𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 (6.9)
= 𝑎21 (6.10)

So we get two different answers for 𝑎21!

Use 𝑎21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) along with everything else you’ve learned to solve for
𝑒2 using the equation in the lower-right corner of the matrix. (This is the only
one we can use because it’s the only term involving 𝑒2!)

It may look ugly, but you might be surprised at the simplicity of the answer
that pops out. You should get

𝑒2 = 1 − 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)2

Again, though, why is that not really all that surprising? (Hint: what if you
ignore 𝑋1 and treat the relationship between 𝑌1, 𝑌2, and 𝐸2 as a simple regres-
sion?)



6.5. CONFOUNDERS 117

Since we got two different answers for 𝑎21, if this model is correct, they must
be equal:

𝑎21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) =
𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)

which, if we rearrange the fraction, implies

𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) = 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)

Another way to state this is that the correlation along the first path (𝑏11) and
the correlation along the second path (𝑎21) multiply to give the correlation along
both paths combined.

But these three correlations are numbers that are measured using the data. Is
there any guarantee that the product of two of the correlations will necessarily
equal the third?

No!

In fact, this will almost never be true with real data.

So if the model implies that there must be a mathematical relationship among
the correlations, but the data does not support that implication, what does that
say about the model?

Think about the ramifications of the above discussion for smoking and lung
cancer. Smoking is correlated to tar deposits, and tar deposits are correlated
with lung cancer. But if the product of those two correlations doesn’t equal the
overall correlation between smoking and lung cancer, what does that say about
the model? What other “path” might be missing in the model that would help
account for the discrepancy?

We’ll return to this example in a moment. But first, let’s explore the other
model configurations set up at the beginning of the chapter.

6.5 Confounders

The variable in the middle of the diagram below is called a “confounder”:
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Draw this model on your own piece of paper.

Identify which variables are exogenous or endogenous.

Following the Really Important Rules, draw in all variances, covariances, or
error terms that should be present in the diagram.

Finally, see if you can label all paths with letters and subscripts according to
the naming conventions described earlier.

Here is the final model:

X1Y1 Y2
b21b11

v1

E1

1

e1

E2

1

e2

As a concrete example to illustrate this phenomenon, imagine that the variables
measure the following:

• 𝑌1 is the presence of power lines near homes.
• 𝑌2 is the incidence of cancer.

For a moment, we’re not going say what 𝑋1 is.

Does a positive correlation between power lines and cancer imply that living
near power lines causes cancer?

Does a positive correlation between power lines and cancer imply that cancer
causes people to live near power lines? (Okay, that one is a little ridiculous, but
we’re making a point here.)

So if 𝑌1 doesn’t cause 𝑌2 and 𝑌2 doesn’t cause 𝑌1, why else might they be
correlated?

There may be several plausible answers to the last question above, but here is
one possibility:
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• 𝑋1 is poverty.

Give a plausible explanation for how poverty might be correlated to both living
near power lines and cancer.
Now we turn our attention to the mathematics.
The two regression equations are

𝑌1 = 𝑏11𝑋1 +𝐸1 (6.11)
𝑌2 = 𝑏21𝑋1 +𝐸2 (6.12)

The sample covariance matrix will look exactly the same as it did for the medi-
ation model above.

⎡⎢
⎣

𝑉 𝑎𝑟(𝑋1) • •
𝐶𝑜𝑣(𝑌1, 𝑋1) 𝑉 𝑎𝑟(𝑌1) •
𝐶𝑜𝑣(𝑌2, 𝑋1) 𝐶𝑜𝑣(𝑌2, 𝑌1) 𝑉 𝑎𝑟(𝑌2)

⎤⎥
⎦

This is because there are still three observed variables and they have the same
three names, even if they are connected with arrows in a different way.
This also means the sample correlation matrix is the same:

⎡⎢
⎣

1 • •
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) 1 •
𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) 1

⎤⎥
⎦

Calculate the full model-implied matrix. You should get the following:

⎡⎢
⎣

𝑣1 • •
𝑏11𝑣1 𝑏211𝑣1 + 𝑒1 •
𝑏21𝑣1 𝑏11𝑏21𝑣1 𝑏221𝑣1 + 𝑒2

⎤⎥
⎦

Don’t slack off on this one! Unlike the mediation example, all these terms are
very straightforward to compute.
Now calculate the standardized solution. In other words, solve for all the free
parameters using the sample correlation matrix.
You should get the following:

𝑣1 = 1 (6.13)
𝑏11 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) (6.14)
𝑒1 = 1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 (6.15)
𝑒2 = 1 − 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)2 (6.16)
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Check that two of the equations give two different solutions for 𝑏21:

𝑏21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) (6.17)

𝑏21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)

(6.18)

The last calculation implies that

𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) = 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)

Another way to state this is that the correlation along the first path (𝑏11) and
the correlation along the second path (𝑏21) multiply to give the correlation along
both paths combined.

But these three correlations are numbers that are measured using the data. Is
there any guarantee that the product of two of the correlations will necessarily
equal the third?

No!

In fact, this will almost never be true with real data.

So if the model implies that there must be a mathematical relationship among
the correlations, but the data does not support that implication, what does that
say about the model?

Does this all sound familiar? It’s even more déjà vu than you think. Here are
the standardized parameter solutions from the mediator example:

𝑣1 = 1 (6.19)
𝑒1 = 1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 (6.20)
𝑒2 = 1 − 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)2 (6.21)
𝑏11 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) (6.22)

𝑎21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) =
𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)

(6.23)

And here are the standardized parameter solutions from the confounder exam-
ple:
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𝑣1 = 1 (6.24)
𝑒1 = 1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 (6.25)
𝑒2 = 1 − 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)2 (6.26)
𝑏11 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) (6.27)

𝑏21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) =
𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)

(6.28)

Other than just a change of notation—owing to the fact that the roles of 𝑋1
and 𝑌1 are reversed in the confounder example—the solutions are identical.

Think about the ramifications of the above discussion for living near power
lines and cancer. Living near power lines is correlated to poverty, and poverty
is correlated with cancer. But if the product of those two correlations doesn’t
equal the overall correlation between power lines and cancer, what does that
say about the model? What other “path” might be missing in the model that
would help account for the discrepancy?

Now suppose that scientists are able to use a carefully controlled experiment
(ethical considerations aside) to prove that there is no direct effect of power lines
on cancer. Note that this is not the same thing as saying that the correlation
between power lines and cancer is zero. How does the model explain this?

When a confounder accounts for all (or nearly all) the covariance between two
variables, the resulting association is called spurious. The association exists,
but it doesn’t exist due to any direct pathway.

Given that the mediator model and the confounder model are statistically iden-
tical, why would you use one model versus the other? Are there “philosophical”
differences between mediators and confounders, even though the two models
give the same results?

One of the most important takeaways from this section is the realization that
the arrows along an indirect path between two variables need not go in the same
direction to imply a statistical relationship between those variables.

For a mediator, the arrows do go the same way:

𝑋1 → 𝑌1 → 𝑌2

And it’s no surprise to anyone that 𝑋1 and 𝑌2 are associated. The association
is “transmitted” from 𝑋1 to 𝑌1 and then from 𝑌1 to 𝑌2 in an obvious way.

But for a confounder, the arrows don’t go the same way:

𝑌1 ← 𝑋1 → 𝑌2
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And, yet, there is still an association between 𝑌1 and 𝑌2. Sometimes even
“backwards” arrows can “transmit” an association through indirect pathways.
This is often called a “backdoor path”.

But there are limits to that logic. The next example will illustrate.

6.6 Colliders

The variable in the middle of the diagram below is called a “collider”:

Draw this model on your own piece of paper.

Identify which variables are exogenous or endogenous.

Following the Really Important Rules, draw in all variances, covariances, or
error terms that should be present in the diagram.

Finally, see if you can label all path with letters and subscripts according to the
naming conventions described earlier.

Here is the final model:
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Y1X1 X2

E1

1

e1

v1 v2

c12

b11 b12

As a concrete example to illustrate this phenomenon, imagine that the variables
measure the following:

• 𝑋1 is the height of basketball players.
• 𝑋2 is the shooting accuracy of basketball players.
• 𝑌1 is the probability of being selected to play in a professional league.

The paths 𝑏11 and 𝑏12 make sense. Taller players and players who shoot the
ball better are more likely to make it to a professional level of play. These
are positive associations. Do these two paths together create an indirect path
between height and shooting that accounts for covariance between them?

It turns out the answer is no!

This collider model is masquerading as another model that you have already
studied in a previous chapter. It was drawn a little differently there, but the
relationships among the variables and arrows are exactly the same. What is
that model?

Are there any restrictions on the value of 𝑐12 in a multiple regression model?

While the value of 𝑐12 does change the interpretation of the path coefficients in
a multiple regression model, analysis of the model-implied matrix always results
in
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𝑐12 = 𝐶𝑜𝑣(𝑋1, 𝑋2)

That value is just calculated directly from the data. It does not depend on any
other parameter of the model. Since 𝑋1 and 𝑋2 are exogenous, the source of
this covariance is independent of anything else in the model. In particular, it’s
possible that 𝑐12 = 0.

For example, in the basketball scenario, there’s no reason to believe that height
and shooting ability are correlated in the general population. The fact that they
are both correlated with a higher probability of being in a professional league
is irrelevant to their correlation in the population. Even if they were correlated
in the population (𝑐12 ≠ 0), this would have nothing to do with the collider
variable.

There’s no math to do in this section. All the math we need was already done
in the previous chapter.

The takeaway message here is that colliders do not transmit association through
them. Pathways like the following do not imply anything about the association
between 𝑋1 and 𝑋2:

𝑋1 → 𝑌1 ← 𝑋2

This does not mean that 𝑋1 and 𝑋2 are uncorrelated. They may be correlated,
but this correlation must arise from some other source—either “nature”, external
to the model (exogenous covariance), or some other path in the model (perhaps
through a mediator or confounder).

It is not a problem to have colliders in a model. In fact, as we’ll see below, every
model we have analyzed in this course so far contains collider variables! The goal
here is just to understand that they do not provide indirect paths for associations
to be transmitted from one variable to another. Any such association must be
accounted for some other way.

Consider a simple regression model:

X Y E

v

b 1

e

X Y E

v

b 1

e

X Y E

v

b 1

e
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In the simple regression chapter, we explained that the error term 𝐸 is uncor-
related with the exogenous variable 𝑋 because there is no arrow connecting 𝑋
and 𝐸. We can now admit that, while the fact about lack of correlation is true,
the explanation we gave was a little misleading. Correlations can be created
indirectly through sequences of paths. 𝑋 and and 𝐸 are connected through Y
as follows:

𝑋 → 𝑌 ← 𝐸

But why does this path not imply a correlation between 𝑋 and 𝐸?

Consider the multiple regression model:

v1

X1

X2

Y Ev2
c12

b1

b2

1

e

How do we know that the only covariance between 𝑋1 and 𝑋2 is captured by
𝑐12? In other words, why is no additional covariance explained by the following
path?

𝑋1 → 𝑌 ← 𝑋2

Consider the mediator example again:
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X1 Y1 Y2

v1

E1

1

e1

E2

1

e2

b11 a21

One of the Really Important Rules was that the error terms should not (at least
not by default) be correlated.

It’s true that we haven’t specified a double-headed arrow between 𝐸1 and 𝐸2,
but how do we know there isn’t an indirect path accounting for some covariance
between them?

Hint: the only possible path would be

𝐸1 → 𝑌1 → 𝑌2 ← 𝐸2

Why is that path not a problem?

Why do we have to be more careful about making assumptions about possible
covariances between 𝐸1 and 𝑌2?

6.7 The simple mediation model

We learned above that an indirect path through a mediator

𝑋1 → 𝑌1 → 𝑌2

implies a mathematical relationship among the correlations:

𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) = 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)

If the correlations among these variables in the data do not satisfy this equation,
then there is a problem with the model. There is some “left-over” association
that isn’t explain by this pathway.
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To accommodate this possibility (which, for real-world data, is almost always
the case), we can simply add a direct path between 𝑋1 and 𝑌2 that will “soak
up” any remaining association. The following model will be called the “simple
mediation” model:

X1

Y1

Y2

E1

E2

e1

e2

v1

b11 a21

b21

Another way to look at this model—maybe one that is more in line with typical
scientific hypotheses—is to focus on the relationship between two variables, 𝑋1
and 𝑌2. A simple regression will produce an estimate for the slope 𝑏. But is
that path coefficient meaningful?

Yes, it represents the “total effect” of 𝑋1 on 𝑌2. (If we’re being careful about
causal language, however, we might simply say that all covariance between 𝑋1
and 𝑌2 is accounted for by 𝑏.)
But does that one path coefficient tell the whole story? Maybe not. There
could be other variables that account for some of that covariance. Controlling
for those variables will tell a richer story about the sources of covariation in our
response variable.

To reprise the example from earlier, a scientist may want to know if smoking is
associated with lung cancer. (Actually, that scientist probably wants to know
if smoking causes lung cancer, but let’s set aside causal questions for now.) A
study shows a strong association. But by what mechanism is that association
created? What aspect of smoking is associated with lung cancer?

Someone posits that smoking leaves tar deposits in the lungs. So more data
is collected and analyzed. The model above can now tell us how much of the
association between smoking and lung cancer might be accounted for through
an indirect pathway that passes through 𝑌1, tar deposits in the lungs.

That’s not the end of the story, either, but to keep things simple, we’ll work
with this simple mediation model with only three variables.
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Here comes the math.

The regression equations are

𝑌1 = 𝑏11𝑋1 +𝐸1 (6.29)
𝑌2 = 𝑏21𝑋1 + 𝑎21𝑌1 +𝐸2 (6.30)

The sample correlation matrix is the same as for any three variables:

⎡⎢
⎣

1 • •
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) 1 •
𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) 1

⎤⎥
⎦

But the model-implied matrix is involved enough that it doesn’t even fit on the
screen (nor are we making you compute it by hand). Here are the six equations
separately:

1 = 𝑣1 (6.31)
𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) = 𝑏11𝑣1 (6.32)

1 = 𝑏211𝑣1 + 𝑒1 (6.33)
𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) = 𝑏21𝑣1 + 𝑎21𝑏11𝑣1 (6.34)
𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) = 𝑏11𝑏21𝑣1 + 𝑎21𝑏211𝑣1 + 𝑎21𝑒1 (6.35)

1 = 𝑏221𝑣1 + 𝑎221𝑏211𝑣1 + 𝑎221𝑒1 + 2𝑎21𝑏11𝑏21𝑣1 + 𝑒2 (6.36)

Skipping some algebra, we get the following (standardized) solution:

𝑣1 = 1 (6.37)
𝑏11 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1) (6.38)
𝑒1 = 1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2 (6.39)
𝑒2 = 1 − (𝑏221 + 𝑎221𝑏211 + 𝑎221𝑒1 + 2𝑎21𝑏11𝑏21) (6.40)

𝑎21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1) − 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1)𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)
1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2

(6.41)

𝑏21 = 𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) − 𝐶𝑜𝑟𝑟(𝑌2, 𝑌1)𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)
1 − 𝐶𝑜𝑟𝑟(𝑌1, 𝑋1)2

(6.42)

A few observations.

The expressions for 𝑣1, 𝑏11, and 𝑒1 are totally expected. Explain why.
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The expression for 𝑒2 is the only one not expressed in terms of all correlations.
But substituting in the values of 𝑎21, 𝑏11, and 𝑏21 would not be instructive in
the slightest.

The expressions for 𝑎21 and 𝑏21 have some intuitive content.

Review the content from last chapter called Regression with standardized vari-
ables, in particular the formulas given for 𝑏1 and 𝑏2.

Even though we had to make the notation a little more complicated, do you see
any similarities between those formulas and the ones shown above for 𝑎21 and
𝑏21?

Why might that be? Compare the diagrams for the simple mediation model in
this chapter and the multiple regression model from the last chapter. What are
the similarities and differences?

Hopefully you could see past the notation to realize that the formulas for 𝑏1 and
𝑏2 in a multiple regression model are identical to the formulas for 𝑎21 and 𝑏21
in our simple mediation model.

This is useful because it helps us interpret these path coefficients. As they were
for multiple regression, they are simply that part of the correlation due to a
direct path, controlling for the correlation along the indirect path.

If the main path of interest to our scientific hypothesis is

𝑋1 → 𝑌2

the path coefficient 𝑏21 is the estimate of interest. What other indirect path is
being “controlled for” in that estimate?

For a mediation model, the activity above tells us the right way to think about
the path coefficient 𝑏21. But it’s also instructive to consider 𝑎21.

Suppose the substantive path of scientific interest was

𝑌1 → 𝑌2

In that case, how do we interpret its path coefficient 𝑎21? It is the strength of
the association between 𝑌1 and 𝑌2 controlling for the indirect path where?

What kind of indirect path is that? In other words, what role does 𝑋1 play
along the indirect path from 𝑌1 to 𝑌2? (Go back and look at the diagram and
the arrows.)

Suppose the substantive path of scientific interest was

𝑋1 → 𝑌1

In that case, how do we interpret its path coefficient 𝑏11? It is the strength of
the association between 𝑋1 and 𝑌2, but does it account for any indirect paths?
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The answer is “no”, but why not? What role does 𝑌2 play along an indirect
path from 𝑋1 to 𝑌1 and why does that not introduce any additional association
between them?

The three activities above illustrate the remarkable fact that the simple me-
diation model is actually an example of all three models we’ve studied in this
chapter: there’s a mediator, a confounder, and a collider! (Each variable plays
one of those roles with respect to the relationship between the other two.) So
while we call it the “simple mediation model”, we can actually use the implica-
tions of the model for any of the three.

6.8 Simple mediation in R

The data set we will use comes from the National Longitudinal Survey of Youth
(1997) representing “a nationally representative sample of 8,984 men and women
born during the years 1980 through 1984 and living in the United States at the
time of the initial survey in 1997.”

The data set below is a small set of variables taken from the larger survey. Rows
with missing data have been removed, leaving a sample size of 3861.

nls97 <- read_csv("https://raw.githubusercontent.com/VectorPosse/sem_book/main/data/nls_math_verb.csv")

## Rows: 3861 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## dbl (3): MOTHER_ED, EERI, MATH_VERB
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

nls97

## # A tibble: 3,861 x 3
## MOTHER_ED EERI MATH_VERB
## <dbl> <dbl> <dbl>
## 1 15 2 0.585
## 2 12 2 0.280
## 3 12 1 0.220
## 4 12 1 0.0358
## 5 14 1 0.306
## 6 6 3 0.675
## 7 12 2 0.260
## 8 11 2 0.445

https://www.bls.gov/nls/nlsy97.htm
https://www.bls.gov/nls/nlsy97.htm
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## 9 15 1 0.0934
## 10 15 1 0.0833
## # ... with 3,851 more rows

The three variables are as follows:

• 𝑋1: MOTHER_ED

– This is the highest grade completed by respondent’s residential
mother (includes both biological and non-biological mothers).
(Numbers over 12 refer to years in college as well.)

• 𝑌1: EERI

– This is the Enriching Environment Risk Index. Scores range from 0
to 3; higher scores indicate a more enriching environment.

• 𝑌2: MATH_VERB

– This is the ASVAB Math/Verbal Score computed by combining tests
of mathematical knowledge, arithmetic reasoning, word knowledge,
and paragraph comprehension. The values are from 0 to 1 and—when
multiplied by 100—should be interpreted as percentiles.

The model we propose is the following:

MOTHER_ED

EERI

MATH_VERB

E1

E2

e1

e2

v1

b11 a21

b21

Explain the research hypothesis implied by this model. In other words, what
relationship is this model trying to study and what role could the mediator
possibly play?

The lm function is no longer adequate for this model. It’s more complex than
the lm function was designed to handle. So we will fit the model (and all future
models) in lavaan.
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Since there are two endogenous variables, there are two regression equations
implied by this model:

EERI = 𝑏11MOTHER_ED +𝐸1 (6.43)
MATH_VERB = 𝑏21MOTHER_ED + 𝑎21EERI +𝐸2 (6.44)

These are translated into two separate lines of the lavaan model. Note that
we still require quotation marks around the model specification, but to make it
easier to read, the quotes are on different lines from the model text.

nls_model <- "
EERI ~ MOTHER_ED
MATH_VERB ~ MOTHER_ED + EERI

"

Then we fit the model with the sem command:

nls_fit <- sem(nls_model, data = nls97)

Here are the unstandardized parameter estimates:

parameterEstimates(nls_fit)

## lhs op rhs est se z pvalue ci.lower ci.upper
## 1 EERI ~ MOTHER_ED 0.096 0.004 24.043 0 0.088 0.104
## 2 MATH_VERB ~ MOTHER_ED 0.031 0.002 20.506 0 0.028 0.034
## 3 MATH_VERB ~ EERI 0.108 0.006 19.004 0 0.097 0.119
## 4 EERI ~~ EERI 0.517 0.012 43.937 0 0.494 0.540
## 5 MATH_VERB ~~ MATH_VERB 0.064 0.001 43.937 0 0.062 0.067
## 6 MOTHER_ED ~~ MOTHER_ED 8.372 0.000 NA NA 8.372 8.372

The path coefficients are interpretable as slopes, just like in multiple regression.

In the second line of the output (labeled MATH_VERB ~ MOTHER_ED), what does
0.031 mean? In other words, what does it mean to change MOTHER_ED by 1, and
what is the predicted change in MATH_VERB? What does that mean on the 0–1
scale of that test?

Are there are other sources of covariance between MOTHER_ED and MATH_VERB
in the model? (Another way to ask this: are there any indirect paths from
MOTHER_ED to MATH_VERB that transmit covariance?)

The activity above highlights the main source of our interest, the direct path
from MOTHER_ED to MATH_VERB after controlling for the mediator EERI. In other
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words, how much of the relationship between mother’s education and test scores
is accounted for “directly”? The theory is that some of that association might
be due to the fact that a mother’s education level influences how enriching the
environment might be for their child. And that, in turn, may be what accounts
for increases in test scores. If that were the case, then the “direct” pathway
would be “reduced” by that influence (presumably while keeping the influence
of other factors that are not explicitly part of the model).
In the first line of the output (labeled EERI ~ MOTHER_ED), what does 0.096
mean? What is the predicted change in EERI? What does that mean on the 0–3
scale of that test?
Are there are other sources of covariance between MOTHER_ED and EERI in the
model? Another way to ask this: are there any indirect paths from MOTHER_ED
to EERI that transmit covariance? (The answer is no. Make sure you understand
why.)
In the third line of the output (labeled MATH_VERB ~ EERI), what does 0.108
mean?
Are there are other sources of covariance between EERI and MATH_VERB in the
model? Another way to ask this: are there any indirect paths from EERI to
MATH_VERB that transmit covariance? (The answer is yes. Make sure you un-
derstand why.)
Lines 4, 5, and 6 are labeled very similarly (all of the form VARIABLE ~~
VARIABLE). But—in the immortal words of Sesame Street—one of these lines is
not like the other.
Explain why line 6 is estimating one type of parameter while lines 4 and 5 are
estimating a completely different type of parameter.
Unstandardized variables have one advantage in that they are interpretable us-
ing the units of the raw data. However, because all three variables are measured
using totally different units, it’s hard to make comparisons among them.
For that purpose, it’s often easier to use standardized variables:

standardizedSolution(nls_fit)

## lhs op rhs est.std se z pvalue ci.lower ci.upper
## 1 EERI ~ MOTHER_ED 0.361 0.014 26.663 0 0.334 0.387
## 2 MATH_VERB ~ MOTHER_ED 0.308 0.014 21.768 0 0.281 0.336
## 3 MATH_VERB ~ EERI 0.286 0.015 19.636 0 0.257 0.314
## 4 EERI ~~ EERI 0.870 0.010 89.042 0 0.851 0.889
## 5 MATH_VERB ~~ MATH_VERB 0.760 0.012 65.343 0 0.737 0.782
## 6 MOTHER_ED ~~ MOTHER_ED 1.000 0.000 NA NA 1.000 1.000

These are now correlation coefficients—or, more properly, they are “part” cor-
relations that have had the influence of indirect paths removed from them.
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One entry of the model-implied matrix is this:

𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) = 𝑏21𝑣1 + 𝑎21𝑏11𝑣1

We know that for standardized variables, 𝑣1 = 1, so that goes away:

𝐶𝑜𝑟𝑟(𝑌2, 𝑋1) = 𝑏21 + 𝑎21𝑏11

Check that both sides of this equation match. That is, for the left-hand side,
calculate the correlation of MATH_VERB and MOTHER_ED in R. Then, for the right-
hand side, plug in the standardized path coefficients from the table above.

The expression 𝑏21 + 𝑎21𝑏11 gives a very clean and intuitive way to understand
the correlation here. The “total” correlation is decomposed into two pieces.
One piece—𝑏21—is the “direct effect”. The other piece—the product of the two
correlations 𝑏11 and 𝑎21—is the “indirect effect”.

Which is stronger in this model, the direct effect or the indirect effect? (For the
latter, don’t forget that you need the product of two parameters.)

Here is the final model. It is customary and strongly recommended (though
not universally observed) to report both unstandardized and standardized pa-
rameters in the model diagram. When both are reported, you’ll often see the
standardized estimates appear in parentheses right after the unstandardized
ones.

MOTHER_ED

EERI

MATH_VERB

E1

E2

0.517 

(0.870)

0.064 

(0.760)

8.372

(1.000)

0.096

(0.361)

0.108

(0.286)

0.031 (0.308)
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Confirmatory factor
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Structural equation models
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Chapter 11

Structural causal models

[COLLIDER BIAS EXAMPLE]

library(tidyverse)

Colliders are particularly dangerous due to a phenomenon called collider bias.
We return to the basketball example to illustrate.

Suppose there is no association in the population between the height and the
shooting accuracy of basketball players. (That may or not be true, but let’s as-
sume it for the time being.) Here is some simulated data of shooting percentages
and height in inches:

set.seed(1)
height <- rnorm(500, mean = 68, sd = 8)
shooting <- rnorm(500, mean = 0.5, sd = 0.2)
fake_basketball_data <- tibble(height, shooting)
ggplot(fake_basketball_data, aes(y = shooting, x = height)) +

geom_point()
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There is no correlation between these two variables:

cor(fake_basketball_data$height, fake_basketball_data$shooting)

## [1] -0.04122944

But now we’ll figure out who makes it into the professional league:

fake_basketball_data <- fake_basketball_data %>%
mutate(pro = ifelse((shooting > 0.75 & height > 72) |

(shooting > 0.50 & height > 80),
"Pro", "Non-pro"))

The condition here for making it into the pros is that either the player is a very
good shooter (and is reasonably tall), or is very tall (and is a reasonably good
shooter).

Here is the plot, with the pros colored with red points.

ggplot(fake_basketball_data,
aes(y = shooting, x = height, color = pro)) +

geom_point() +
scale_color_manual(values = c("black", "red"))
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We’ll isolate those pro players in the graph:

fake_basketball_data_pros <- fake_basketball_data %>%
filter(pro == "Pro")

ggplot(fake_basketball_data_pros,
aes(y = shooting, x = height)) +

geom_point(color = "red")
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Now there is a pretty large negative correlation.

cor(fake_basketball_data_pros$shooting,
fake_basketball_data_pros$height)

## [1] -0.6451966

So incorporating information into the model about the collider (the probability
of going pro) induces an association that wasn’t present in the population.
Here’s another way to think about this. If you know someone’s height, do you
know anything about their shooting ability? Or vice versa? In the population
at large, probably not much.
But what if I tell you the person is a professional basketball player? And what if
I tell you this person is quite short (at least for a pro player). What information
does that provide about their shooting ability?
And what if I tell you that a professional basketball player is not a very good
shooter. What information does that provide about their height?
Collider bias is often called selection bias because it happens most often when
you control for a variable that ends up selecting for certain traits in the popula-
tion. In this example, if you try to “control” for the pro league variable 𝑌1, you
end up looking at a set of players who have the same probability of going pro.
In that set, players will vary in their height and shooting ability, but shorter
players are forced to be better shooters, and players who don’t shoot well may
fare better if they are tall.



Appendix A

Variance/covariance rules

• Rule 1

If 𝐶 is constant, then

𝑉 𝑎𝑟 (𝐶) = 0

• Rule 2

If 𝑋1 and 𝑋2 are independent, then

𝑉 𝑎𝑟 (𝑋1 +𝑋2) = 𝑉 𝑎𝑟 (𝑋1) + 𝑉 𝑎𝑟 (𝑋2)

Consequence of Rule 1 and Rule 2:

𝑉 𝑎𝑟 (𝑋 + 𝐶) = 𝑉 𝑎𝑟 (𝑋)

• Rule 3

If 𝑋1 and 𝑋2 are independent, then

𝑉 𝑎𝑟 (𝑋1 −𝑋2) = 𝑉 𝑎𝑟 (𝑋1) + 𝑉 𝑎𝑟 (𝑋2)

• Rule 4
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If 𝑎 is any number,

𝑉 𝑎𝑟 (𝑎𝑋) = 𝑎2𝑉 𝑎𝑟 (𝑋)
Related to this rule is the corresponding one for standard deviations:

𝑆𝐷 (𝑎𝑋) = |𝑎| 𝑆𝐷 (𝑋)

• Rule 5

𝐶𝑜𝑣(𝑋,𝑋) = 𝑉 𝑎𝑟(𝑋)

• Rule 6

𝐶𝑜𝑣 (𝑋1, 𝑋2) = 𝐶𝑜𝑣 (𝑋2, 𝑋1)

• Rule 7

If 𝐶 is constant, then

𝐶𝑜𝑣 (𝑋,𝐶) = 0

• Rule 8

𝐶𝑜𝑣 (𝑋1 +𝑋2, 𝑋3) = 𝐶𝑜𝑣 (𝑋1, 𝑋3) + 𝐶𝑜𝑣 (𝑋2, 𝑋3)

• Rule 9

𝐶𝑜𝑣 (𝑋1 −𝑋2, 𝑋3) = 𝐶𝑜𝑣 (𝑋1, 𝑋3) − 𝐶𝑜𝑣 (𝑋2, 𝑋3)

Consequence of Rule 6, Rule 8, and Rule 9:

𝐶𝑜𝑣 (𝑋1, 𝑋2 ±𝑋3) = 𝐶𝑜𝑣 (𝑋1, 𝑋2) ± 𝐶𝑜𝑣 (𝑋1, 𝑋3)

• Rule 10
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If 𝑎 is any number,

𝐶𝑜𝑣 (𝑎𝑋1, 𝑋2) = 𝑎𝐶𝑜𝑣 (𝑋1, 𝑋2) = 𝐶𝑜𝑣 (𝑋1, 𝑎𝑋2)

• Rule 11

If 𝑋1 and 𝑋2 are independent, then

𝐶𝑜𝑣 (𝑋1, 𝑋2) = 0

• Rule 12

For any two variables 𝑋1 and 𝑋2:

𝑉 𝑎𝑟(𝑎𝑋1 + 𝑏𝑋2) = 𝑎2𝑉 𝑎𝑟(𝑋1) + 𝑏2𝑉 𝑎𝑟(𝑋2) + 2𝑎𝑏𝐶𝑜𝑣(𝑋1, 𝑋2)

For any three variables 𝑋1, 𝑋2, and 𝑋3:

𝑉 𝑎𝑟(𝑎𝑋1 + 𝑏𝑋2 + 𝑐𝑋3) = 𝑎2𝑉 𝑎𝑟(𝑋1) + 𝑏2𝑉 𝑎𝑟(𝑋2) + 𝑐2𝑉 𝑎𝑟(𝑋3) (A.1)
+ 2𝑎𝑏𝐶𝑜𝑣(𝑋1, 𝑋2) (A.2)
+ 2𝑎𝑐𝐶𝑜𝑣(𝑋1, 𝑋3) (A.3)
+ 2𝑏𝑐𝐶𝑜𝑣(𝑋2, 𝑋3) (A.4)

This can be extended to any number of variables. Each variance appears with
a coefficient squared and each pair of variables gets a covariance term with 2
times the product of the corresponding variable coefficients.
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LISREL notation
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