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Introduction

Welcome to statistics!

If you want, you can also download this book as a PDF or EPUB file. Be
aware that the print versions are missing some of the richer formatting of the
online version. Besides, the recommended way to work through this material
is to download the R notebook file (.Rmd) at the top of each chapter and work
through it in RStudio.

History and goals

In 2015, a group of interdisciplinary faculty at Westminster College (Salt Lake
City, UT) started a process that led to the creation of a new Data Science pro-
gram. Preparatory to creating a more rigorous introductory statistics course
using the statistical software R, I wrote a series of 22 modules that filled a
gap in the R training literature. Most R training at the time was focused ei-
ther on learning to program using R as a computer language, or using R to
do sophisticated statistical analysis. We needed our students to use R as a
tool for elementary statistical methods and we needed the learning curve to
be as gentle as possible. I decided early on that to make the modules more
useful, they needed to be structured more like an interactive textbook rather
than just a series of lab exercises, and so I spent the summer of 2016 writing a
free, open-source, self-contained, and nearly fully-featured introductory statis-
tics textbook. The first sections of the newly-created DATA 220 were offered in
Fall, 2016, using the materials I created.

Since then, I have been revising and updating the modules a little every
semester. At some point, however, it became clear that some big changes
needed to happen:

• The modules were more or less aligned with the OpenIntro book In-
troduction to Statistics with Randomization and Simulation (ISRS) by
David Diez, Christopher Barr, and Mine Çetinkaya-Rundel. That book
has now been supplanted by Introduction to Modern Statistics (IMS) by
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Mine Çetinkaya-Rundel and Johanna Hardin, also published through the
OpenIntro project.

• The initial materials were written mostly using a mix of base R tools,
some tidyverse tools, and the amazing resources of the mosaic package.
I wanted to convert everything to be more aligned with tidyverse pack-
ages now that they are mature, well-supported, and becoming a de facto
standard for doing data analysis in R.

• The initial choice of data sets that served as examples and exercises for
students was guided by convenience. As I had only a short amount of
time to write an entire textbook from scratch, I tended to grab the first
data sets I could find that met the conditions needed for the statistical
principles I was trying to illustrate. It has become clear in the last few
years that the material will be more engaging with more interesting data
sets. Ideally, we should use at least some data sets that speak to issues of
social justice.

• Making statistics more inclusive requires us to confront some ugly chapters
in the development of the subject. Statistical principles are often named
after people. (These are supposedly the people who “discovered” the prin-
ciple, but keep in mind Stigler’s Law of Eponymy which states that no
scientific discovery is truly named after its original discoverer. In a neat bit
of self-referential irony, Stephen Stigler was not the first person to make
this observation.) The beliefs of some of these people were problematic.
For example, Francis Galton (famous for the concept of “regression to the
mean”), Karl Pearson (of the Pearson correlation coefficient), and Ronald
Fisher (famous for many things, including the P-value) were all deeply in-
volved in the eugenics movement of the late 19th and early 20th century.
The previous modules almost never referenced this important historical
background and context. Additionally, it’s important to discuss ethics,
whether that be issues of data provenance, data manipulation, choice of
analytic techniques, framing conclusions, and many other topics.

The efforts of my revisions are here online. I’ve tried to address all the concerns
mentioned above:

• The chapter are arranged to align somewhat with IMS. There isn’t quite
a one-to-one correspondence, but teachers who want to use the chapters
of my book to supplement instruction from IMS, or vice versa, should be
able to do so pretty easily. In the Appendix, I’ve included a concordance
that shows how the books’ chapters match up, along with some notes that
explain when one book does more or less than the other.

• The book is now completely aligned with the tidyverse and other pack-
ages that are designed to integrate into the tidyverse. All plotting is
done with ggplot2 and all data manipulation is done with dplyr, tidyr,
and forcats. Tables are created using tabyl from the janitor package.
Inference is taught using the cool tools in the infer package.
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• I have made an effort to find more interesting data sets. It’s tremendously
difficult to find data that is both fascinating on its merits and also meets
the pedagogical requirements of an introductory statistics course. I would
like to use even more data that addresses social justice issues. There’s
some in the book now, and I plan to incorporate even more in the future
as I come across data sets that are suitable.

• When statistical tools are introduced, I have tried to give a little historical
context about their development if I can. I’ve also tried to frame every
step of the inferential process as a decision-making process that requires
not only analytical expertise, but also solid ethical grounding. Again,
there’s a lot more I could do here, and my goal is to continue to develop
more such discussion as I can in future revisions.

Now, instead of a bunch of separate module files, all the material is gathered
in one place as chapters of a book. In each chapter (starting with Chapter 2),
students can download the chapter as an R notebook file, open it in RStudio,
and work through the material.

Philosophy and pedagogy

To understand my statistics teaching philosophy, it’s worth telling you a little
about my background in statistics.

At the risk of undermining my own credibility, I’d like to tell you about the
first statistics class I took. In the mid-2000s, I was working on my Ph.D. at the
University of California, San Diego, studying geometric topology. To make a
little extra money and get some teaching experience under my belt, I started
teaching night and summer classes at Miramar College, a local community col-
lege in the San Diego Community College District. I had been there for several
semesters, mostly teaching pre-calculus, calculus, and other lower-division math
classes. One day, I got a call from my department chair with my assignment
for the upcoming semester. I was scheduled to teach intro stats. I was about
to respond, “Oh, I’ve never taken a stats class before.” But remembering this
was the way I earned money to be able to live in expensive San Diego County,
I said, “Sounds great. By the way, do you happen to have an extra copy of the
textbook we’ll be using?”

Yes, the first statistics class I took was the one I taught. Not ideal, I know.

I was lucky to start teaching with Intro Stats by De Veaux, Velleman, and
Bock, a book that was incredibly well-written and included a lot of resources
for teachers like me. (I learned quickly that I wasn’t the only math professor
in the world who got thrown into teaching statistics classes with little to no
training.) I got my full-time appointment at Westminster College in 2008 and
continued to teach intro stats classes for many years to follow. As I mentioned
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earlier, we started the Data Science program at Westminster College in 2016
and moved everything from our earlier hodgepodge of calculators, spreadsheets,
and SPSS, over to R.

Eventually, I got interested in Bayesian statistics and read everything I could get
my hands on. I became convinced that Bayesian statistics is the “right” way to
do statistical analysis. I started teaching special topics courses in Bayesian Data
Analysis and working with students on research projects that involved Bayesian
methods. If it were up to me, every introductory statistics class in the
world would be taught using Bayesian methods. I know that sounds like
a strong statement. (And I put it in boldface, so it looks even stronger.) But I
truly believe that in an alternate universe where Fisher and his disciples didn’t
“win” the stats wars of the 20th century (and perhaps one in which computing
power got a little more advanced a little earlier in the development of statistics),
we would all be Bayesians. Bayesian thinking is far more intuitive and more
closely aligned with our intuitions about probabilities and uncertainty.

Unfortunately, our current universe timeline didn’t play out that way. So we
are left with frequentism. It’s not that I necessarily object to frequentist tools.
All tools are just tools, after all. However, the standard form of frequentist
inference, with its null hypothesis significance testing, P-values, and confidence
intervals, can be confusing. It’s bad enough that professional researchers strug-
gle with them. We teach undergraduate students in introductory classes.

Okay, so we are stuck not in the world we want, but the world we’ve got. At my
institution and most others, intro stats is a service course that trains far more
people who are outside the fields of mathematics and statistics. In that world,
students will go on to careers where they interact with research that reports
p-values and confidence intervals.

So what’s the best we can do for our students, given that limitation? We need
to be laser-focused on teaching the frequentist logic of inference the best we can.
I want student to see P-values in papers and know how to interpret those P-
values correctly. I want students to understand what a confidence intervals tells
them—and even more importantly, what it does not tell them. I want students
to respect the severe limitations inherent in tests of significance. If we’re going
to train frequentists, the least we can do is help them become good frequentists.

One source of inspiration for good statistical pedagogy comes from the Guide-
lines for Assessment and Instruction in Statistics Education (GAISE), a set of
recommendations made by experienced stats educators and endorsed by the
American Statistical Association. Their college guidelines are as follows:

1. Teach statistical thinking.

• Teach statistics as an investigative process of problem-solving and
decision-making.

• Give students experience with multivariable thinking.

https://www.amstat.org/education/guidelines-for-assessment-and-instruction-in-statistics-education-(gaise)-reports
https://www.amstat.org/education/guidelines-for-assessment-and-instruction-in-statistics-education-(gaise)-reports
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2. Focus on conceptual understanding.
3. Integrate real data with a context and purpose.
4. Foster active learning.
5. Use technology to explore concepts and analyze data.
6. Use assessments to improve and evaluate student learning.

In every element of this book, I’ve tried to follow these guidelines:

1. The first part of the book is an extensive guide for exploratory data anal-
ysis. The rest of the book is about inference in the context of specific
research questions that are answered using statistical tools. While mul-
tivariable thinking is a little harder to do in an intro stats class, I take
the opportunity whenever possible to use graphs to explore more variables
than we can handle with intro stats inferential techniques. I point out the
the simple analyses taught in this class are only the first step in more
comprehensive analyses that incorporate more information and control
for confounders. I emphasize that students can continue their statistical
growth by enrolling in more advanced stats classes.

2. I often tell students that if they forget everything else from their stats
class, the one think I want them to be able to do is interpret a P-value
correctly. It’s not intuitive, so it takes an entire semester to set up the idea
of a sampling distribution and explain over and over again how the P-value
relates to it. In this book, I try to reinforce the logic of inference until
the students know it almost instinctively. A huge pedagogical advantage
is derived by using randomization and simulation to keep students from
getting lost in the clouds of theoretical probability distributions. But they
also need to know about the latter too. Every hypothesis test is presented
both ways, a task made easy when using the infer package.

3. This is the thing I struggle with the most. Finding good data is hard.
Over the years, I’ve found a few data sets I really like, but my goal is to
continue to revise the book to incorporate more interesting data, especially
data that serves to highlight issues of social justice.

4. Back when I wrote the first set of modules that eventually became this
book, the goal was to create assignments that merged content with activ-
ities so that students would be engaged in active learning. When these
chapters are used in the classroom, students can collaborate with each
other and with their professor. They learn by doing.

5. Unlike most books out there, this book does not try to be agnostic about
technology. This book is about doing statistics in R.

6. This one I’ll leave in the capable hands of the professors who use these
materials. The chapter assignments should be completed and submitted,
and that is one form of assessment. But I also believe in augmenting this
material with other forms of assessment that may include supplemental
assignments, open-ended data exploration, quizzes and tests, projects, etc.
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Course structure

As explained above, this book is meant to be a workbook that students complete
as they’re reading.
At Westminster College, we host RStudio Workbench on a server that is con-
nected to our single sign-on (SSO) systems so that students can access RStudio
through a browser using their campus online usernames and passwords. If you
have the ability to convince your IT folks to get such a server up and running,
it’s highly worth it. Rather than spending the first day of class troubleshooting
while students try to install software on their machines, you can just have them
log in and get started right away. Campus admins install packages and tweak
settings to make sure all students have a standardized interface and consistent
experience.
If you don’t have that luxury, you will need to have students download and
install both R and RStudio. The installation processes for both pieces of soft-
ware are very easy and straightforward for the majority of students. The book
chapters here assume that the necessary packages are installed already, so if
your students are running R on their own machines, they will need to use
install.packages at the beginning of some of the chapters for any new pack-
ages that are introduced. (They are mentioned at the beginning of each chapter
with instructions for installing them.)
Chapter 1 is fully online and introduces R and RStudio very gently using only
commands at the Console. By the end of Chapter 1, they will have created
a project called intro_stats in RStudio that should be used all semester to
organize their work. There is a reminder at the beginning of all subsequent
chapter to make sure they are in that project before starting to do any work.
(Generally, there is no reason they will exit the project, but some students get
curious and click on stuff.)
In Chapter 2, students are taught to click a link to download an R Notebook
file (.Rmd). I have found that students struggle initially to get this file to the
right place. If students are using RStudio Workbench online, they will need to
use the “Upload” button in the Files tab in RStudio to get the file from their
Downloads folder (or wherever they tell their machine to put downloaded files
from the internet) into RStudio. If students are using R on their own machines,
they will need to move the file from their Downloads folder into their project
directory. There are some students who have never had to move files around
on their computers, so this is a task that might require some guidance from
classmates, TAs, or the professor. The location of the project directory and the
downloaded files can vary from one machine to the next. They will have to use
something like File Explorer for Windows or the Finder for MacOS, so there
isn’t a single set of instructions that will get all students’ files successfully in
the right place. Once the file is in the correct location, students can just click
on it to open it in RStudio and start reading. Chapter 2 is all about using R
Notebooks: markdown syntax, R code chunks, and inline code.
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By Chapter 3, a rhythm is established that students will start to get used to:

• Open the book online and open RStudio.
• Install any packages in RStudio that are new to that chapter. (Not nec-

essary for those using RStudio Workbench in a browser.)
• Check to make sure they’re are in the intro_stats project.
• Click the link online to download the R Notebook file.
• Move the R Notebook file from the Downloads folder to the project direc-

tory.
• Open up the R Notebook file.
• Restart R and Run All Chunks.
• Start reading and working.

Chapters 3 and 4 focus on exploratory data analysis for categorical and numer-
ical data, respectively.

Chapter 5 is a primer on data manipulation using dplyr.

Chapters 6 and 7 cover correlation and regression. This “early regression” ap-
proach mirrors the IMS text. (IMS eventually circles back to hypothesis testing
for regression, but this book does not. That’s a topic that is covered extensively
in most second-semester stats classes.)

Chapters 8–11 are crucial for building the logical foundations for inference. The
idea of a sampling distribution under the assumption of a null hypothesis is built
up slowly and intuitively through randomization and simulation. By the end of
Chapter 11, students will be fully introduced to the structure of a hypothesis
test, and hopefully will have experienced the first sparks of intuition about why
it “works.” All inference in this book is conducted using a “rubric” approach—
basically, the steps are broken down into bite-sized pieces and students are
expected to work through each step of the rubric every time they run a test.
(The rubric steps are shown in the Appendix.)

Chapter 12 introduces a few more steps to the rubric for confidence intervals.
As we are still using randomization to motivate inference, confidence intervals
are calculated using the bootstrap approach for now.

Once students have developed a conceptual intuition for sampling distributions
using simulation, we can introduce probability models as well. Chapter 13 intro-
duces normal models and Chapter 14 explains why they are often appropriate
for modeling sampling distributions.

The final chapters of the book (Chapters 15–22) are simply applications of in-
ference in specific data settings: inference for one (Ch. 15) and two (Ch. 16)
proportions, Chi-square tests for goodness-of-fit (Ch. 17) and independence
(Ch. 18), inference for one mean (Ch. 19), paired data (Ch. 20), and two
independent means (Ch. 21), and finally ANOVA (Ch. 22). Along the way,
students learn about the chi-square, Student t, and F distributions. Although
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the last part of the book follows a fairly traditional parametric approach, every
chapter still includes randomization and simulation to some degree so that stu-
dents don’t lose track of the intuition behind sampling distributions under the
assumption of a null hypothesis.

Onward and upward

I hope you enjoy the textbook. You can provide feedback two ways:

1. The preferred method is to file an issue on the Github page: https://
github.com/VectorPosse/intro_stats/issues

2. Alternatively, send me an email: sraleigh@westminstercollege.edu

https://github.com/VectorPosse/intro_stats/issues
https://github.com/VectorPosse/intro_stats/issues
mailto:sraleigh@westminstercollege.edu


Chapter 1

Introduction to R

Functions introduced in this chapter:

<-, c, sum, mean, library, ?, ??, View, head, tail, str, NROW, NCOL, summary,
$

1.1 Introduction

Welcome to R! This chapter will walk you through everything you need to know
to get started using R.

As you go through this chapter (and all future chapters), please read slowly
and carefully, and pay attention to detail. Many steps depend on the correct
execution of all previous steps, so reading quickly and casually might come back
to bite you later.

1.2 What is R?

R is a programming language specifically designed for doing statistics. Don’t
be intimidated by the word “programming” though. The goal of this course is
not to make you a computer programmer. To use R to do statistics, you don’t
need know anything about programming at all. Every chapter throughout the
whole course will give you examples of the commands you need to use. All you
have to do is use those example commands as templates and make the necessary
changes to adapt them to the data you’re trying to analyze.

The greatest thing about R is that it is free and open source. This means that
you can download it and use it for free, and also that you can inspect and modify
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the source code for all R functions. This kind of transparency does not exist in
commercial software. The net result is a robust, secure, widely-used language
with literally tens of thousands of contributions from R users all over the world.

R has also become a standard tool for statistical analysis, from academia to
industry to government. Although some commercial packages are still widely
used, many practitioners are switching to R due to its cost (free!) and relative
ease of use. After this course, you will be able to list some R experience on your
résumé and your future employer will value this. It might even help get you a
job!

1.3 RStudio

RStudio is an “Integrated Development Environment,” or IDE for short. An
IDE is a tool for working with a programming language that is fancier than just
a simple text editor. Most IDEs give you shortcuts, menus, debugging facilities,
syntax highlighting, and other things to make your life as easy as possible.

Open RStudio so we can explore some of the areas you’ll be using in the future.

On the left side of your screen, you should see a big pane called the “Console”.
There will be some startup text there, and below that, you should see a “com-
mand prompt”: the symbol “>” followed by a blinking cursor. (If the cursor is
not blinking, that means that the focus is in another pane. Click anywhere in
the Console and the cursor should start blinking again.)

A command prompt can be one of the more intimidating things about starting
to use R. It’s just sitting there waiting for you to do something. Unlike other
programs where you run commands from menus, R requires you to know what
you need to type to make it work.

We’ll return to the Console in a moment.

Next, look at the upper-right corner of the screen. There are at least three tabs
in this pane starting with “Environment”, “History”, and “Connections”. The
“Environment” (also called the “Global Environment”) keeps track of things
you define while working with R. There’s nothing to see there yet because we
haven’t defined anything! The “History” tab will likewise be empty; again, we
haven’t done anything yet. We won’t use the “Connections” tab in this course.
(Depending on the version of RStudio you are using and its configuration, you
may see additional tabs, but we won’t need them for this course.)

Now look at the lower-right corner of the screen. There are likely five tabs
here: “Files”, “Plots”, “Packages”, “Help”, and “Viewer”. The “Files” tab will
eventually contain the files you upload or create. “Plots” will show you the result
of commands that produce graphs and charts. “Packages” will be explained
later. “Help” is precisely what it sounds like; this will be a very useful place for
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you to get to know. We will never use the “Viewer” tab, so don’t worry about
it.

1.4 Try something!

So let’s do something in R! Go back to the Console and at the command prompt
(the “>” symbol with the blinking cursor), type

1+1

and hit Enter.

Congratulations! You just ran your first command in R. It’s all downhill from
here. R really is nothing more than a glorified calculator.

Okay, let’s do something slightly more sophisticated. It’s important to note that
R is case-sensitive, which means that lowercase letters and uppercase letters are
treated differently. Type the following, making sure you use a lowercase c, and
hit Enter:

x <- c(1, 3, 4, 7, 9)

You have just created a “vector”. When we use the letter c and enclose a list
of things in parentheses, we tell R to “combine” those elements. So, a vector is
just a collection of data. The little arrow <- says to take what’s on the right
and assign it to the symbol on the left. The vector x is now saved in memory.
As long as you don’t terminate your current R session, this vector is available
to you.

Check out the “Environment” pane now. You should see the vector x that you
just created, along with some information about it. Next to x, it says num, which
means your vector has numerical data. Then it says [1:5] which indicates that
there are five elements in the vector x.

At the command prompt in the Console, type

x

and hit Enter. Yup, x is there. R knows what it is. You may be wondering
about the [1] that appears at the beginning of the line. To see what that
means, try typing this (and hit Enter—at some point here I’m going to stop
reminding you to hit Enter after everything you type):

y <- letters
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R is clever, so the alphabet is built in under the name letters.

Type

y

Now can you see what the [1] meant above? Assuming the letters spilled onto
more than one line of the Console, you should see a number in brackets at the
beginning of each line telling you the numerical position of the first entry in
each new line.

Since we’ve done a few things, check out the “Global Environment” in the upper-
right corner. You should see the two objects we’ve defined thus far, x and y.
Now click on the “History” tab. Here you have all the commands you have run
so far. This can be handy if you need to go back and re-run an earlier command,
or if you want to modify an earlier command and it’s easier to edit it slightly
than type it all over again. To get an older command back into the Console,
either double-click on it, or select it and click the “To Console” button at the
top of the pane.

When we want to re-use an old command, it has usually not been that long
since we last used it. In this case, there is an even more handy trick. Click in
the Console so that the cursor is blinking at the blank command prompt. Now
hit the up arrow on your keyboard. Do it again. Now hit the down arrow once
or twice. This is a great way to access the most recently used commands from
your command history.

Let’s do something with x. Type

sum(x)

I bet you figured out what just happened.

Now try

mean(x)

What if we wanted to save the mean of those five numbers for use later? We
can assign the result to another variable! Type the following and observe the
effect in the Environment.

m <- mean(x)

It makes no difference what letter or combination of letters we use to name our
variables. For example,
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mean_x <- mean(x)

just saves the mean to a differently named variable. In general, variable names
can be any combination of characters that are letters, numbers, underscore sym-
bols (_), and dots (.). (In this course, we will prefer underscores over dots.) You
cannot use spaces or any other special character in the names of variables.1 You
should avoid variable names that are the same words as predefined R functions;
for example, we should not type mean <- mean(x).

1.5 Load packages

Packages are collections of commands, functions, and sometimes data that peo-
ple all over the world write and maintain. These packages extend the capa-
bilities of R and add useful tools. For example, we would like to use the
palmerpenguins package because it includes an interesting data set on pen-
guins.
If you have installed R and RStudio on your own machine instead
of accessing RStudio Workbench through a browser, you’ll need to
type install.packages("palmerpenguins") if you’ve never used the
palmerpenguins package before. If you are using RStudio Workbench through
a browser, you may not be able to install packages because you may not have
admin privileges. If you need a package that is not installed, contact the person
who administers your server.
The data set is called penguins. Let’s see what happens when we try to access
this data set without loading the package that contains it. Try typing this:

penguins

You should have received an error. That makes sense because R doesn’t know
anything about a data set called penguins.
Now—assuming you have the palmerpenguins package installed—type this at
the command prompt:

library(palmerpenguins)

It didn’t look like anything happened. However, in the background, all the stuff
in the palmerpenguins package became available to use.
Let’s test that claim. Hit the up arrow twice and get back to where you see this
at the Console (or you can manually re-type it, but that’s no fun!):

1The official spec says that a valid variable name “consists of letters, numbers and the dot
or underline characters and starts with a letter or the dot not followed by a number.”
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penguins

Now R knows about the penguins data, so the last command printed some of
it to the Console.
Go look at the “Packages” tab in the pane in the lower-right corner of the screen.
Scroll down a little until you get to the “P”s. You should be able to find the
palmerpenguins package. You’ll also notice a check mark by it, indicating that
this package is loaded into your current R session.
You must use the library command in every new R session in which you want
to use a package.2 If you terminate your R session, R forgets about the package.
If you are ever in a situation where you are trying to use a command and you
know you’re typing it correctly, but you’re still getting an error, check to see if
the package containing that command has been loaded with library. (Many R
commands are “base R” commands, meaning they come with R and no special
package is required to access them. The set of letters you used above is one
such example.)

1.6 Getting help

There are four important ways to get help with R. The first is the obvious
“Help” tab in the lower-right pane on your screen. Click on that tab now. In
the search bar at the right, type penguins and hit Enter. Take a few minutes
to read the help file.
Help files are only as good as their authors. Fortunately, most package develop-
ers are conscientious enough to write decent help files. But don’t be surprised
if the help file doesn’t quite tell you what you want to know. And for highly
technical R functions, sometimes the help files are downright inscrutable. Try
looking at the help file for the grep function. Can you honestly say you have
any idea what this command does or how you might use it? Over time, as
you become more knowledgeable about how R works, these help files get less
mysterious.
The second way of getting help is from the Console. Go to the Console and
type

?letters

The question mark tells R you need help with the R command letters. This
will bring up the help file in the same Help pane you were looking at before.

2If you have installed R and RStudio on your own machine instead of accessing RStudio
Workbench through a browser, you’ll want to know that install.packages only has to be
run once, the first time you want to install a package. If you’re using RStudio Workbench,
you don’t even need to type that because your server admin will have already done it for you.
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Sometimes, you don’t know exactly what the name of the command is. For ex-
ample, suppose we misremembered the name and thought it was letter instead
of letters. Try typing this:

?letter

You should have received an error because there is no command called letter.
Try this instead:

??letter

and scroll down a bit in the Help pane. Two question marks tell R not to be
too picky about the spelling. This will bring up a whole bunch of possibilities
in the Help pane, representing R’s best guess as to what you might be searching
for. (In this case, it’s not easy to find. You’d have to know that the help file
for letters appeared on a help page called base::Constants.)

The fourth way to get help—and often the most useful way—is to use your best
friend Google. You don’t want to just search for “R”. (That’s the downside of
using a single letter of the alphabet for the name of a programming language.)
However, if you type “R __________” where you fill in the blank with
the topic of interest, Google usually does a pretty good job sending you to
relevant pages. Within the first few hits, in fact, you’ll often see an online
copy of the same help file you see in R. Frequently, the next few hits lead to
StackOverflow where very knowledgeable people post very helpful responses to
common questions.

Use Google to find out how to take the square root of a number in R. Test out
your newly-discovered function on a few numbers to make sure it works.

1.7 Understanding the data

Let’s go back to the penguins data contained in the penguins data set from the
palmerpenguins package.

The first thing we do to understand a data set is to read the help file on it.
(We’ve already done this for the penguins data.) Of course, this only works
for data files that come with R or with a package that can be loaded into R. If
you are using R to analyze your own data, presumably you don’t need a help
file. And if you’re analyzing data from another source, you’ll have to go to that
source to find out about the data.

When you read the help file for penguins, you may have noticed that it described
the “Format” as being “A tibble with 344 rows and 8 variables.” What is a
“tibble”?

https://stackoverflow.com
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The word “tibble” is an R-specific term that describes data organized in a
specific way. A more common term is “data frame” (or sometimes “data table”).
The idea is that in a data frame, the rows and the columns have very specific
interpretations.

Each row of a data frame represents a single object or observation. So in the
penguins data, each row represents a penguin. If you have survey data, each
row will usually represent a single person. But an “object” can be anything
about which we collect data. State-level data might have 50 rows and each row
represents an entire state.

Each column of a data frame represents a variable, which is a property, attribute,
or measurement made about the objects in the data. For example, the help file
mentions that various pieces of information are recorded about each penguin,
like species, bill length, flipper length, boy mass, sex, and so on. These are
examples of variables. In a survey, for example, the variables will likely be the
responses to individual questions.

We will use the terms tibble and data frame interchangeably in this course. They
are not quite synonyms: tibbles are R-specific implementations of data frames,
the latter being a more general term that applies in all statistical contexts.
Nevertheless, there are no situations (at least not encountered in this course)
where it makes any difference if a data set is called a tibble or a data frame.

We can also look at the data frame in “spreadsheet” form. Type

View(penguins)

(Be sure you’re using an upper-case “V” in View.) A new pane should open up
in the upper-left corner of the screen. In that pane, the penguins data appears
in a grid format, like a spreadsheet. The observations (individual penguins) are
the rows and the variables (attributes and measurements about the penguins)
are the columns. This will also let you sort each column by clicking on the
arrows next to the variable name across the top.

Sometimes, we just need a little peek at the data. Try this to print just a few
rows of data to the Console:

head(penguins)

We can customize this by specifying the number of rows to print. (Don’t forget
about the up arrow trick!)

head(penguins, n = 10)

The tail command does something similar.
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tail(penguins)

When we’re working with HTML documents like this one, it’s usually not nec-
essary to use View, head, or tail because the HTML format will print the data
frame a lot more neatly than it did in the Console. You do not need to type the
following code; just look below it for the table that appears.

## Warning: package 'palmerpenguins' was built under R version 4.3.1

penguins

## # A tibble: 344 x 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750
## 2 Adelie Torgersen 39.5 17.4 186 3800
## 3 Adelie Torgersen 40.3 18 195 3250
## 4 Adelie Torgersen NA NA NA NA
## 5 Adelie Torgersen 36.7 19.3 193 3450
## 6 Adelie Torgersen 39.3 20.6 190 3650
## 7 Adelie Torgersen 38.9 17.8 181 3625
## 8 Adelie Torgersen 39.2 19.6 195 4675
## 9 Adelie Torgersen 34.1 18.1 193 3475
## 10 Adelie Torgersen 42 20.2 190 4250
## # i 334 more rows
## # i 2 more variables: sex <fct>, year <int>

You can scroll through the rows by using the numbers at the bottom or the
“Next” button. You can scroll through the variables by clicked the little black
arrow pointed to the right in the upper-right corner. The only thing you can’t
do here that you can do with View is sort the columns.

We want to understand the “structure” of our data. For this, we use the str
command. Try it:

str(penguins)

This tells us several important things. First it says that we are looking at
a tibble with 344 observations of 8 variables. We can isolate those pieces of
information separately as well, if needed:

NROW(penguins)
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NCOL(penguins)

These give you the number of rows and columns, respectively.
The str command also tells us about each of the variables in our data set. We’ll
talk about these later.
We need to be able to summarize variables in the data set. The summary com-
mand is one way to do it:

summary(penguins)

You may not recognize terms like “Median” or “1st Qu.” or “3rd Qu.” yet.
Nevertheless, you can see why this summary could come in handy.

1.8 Understanding the variables

When we want to look at only one variable at a time, we use the dollar sign to
grab it. Try this:

penguins$body_mass_g

This will list the entire body_mass_g column, in other words, the body masses
(in grams) of all the penguins in this particular study. If we only want to see
the first few, we can use head like before.

head(penguins$body_mass_g)

If we want the structure of the variable body_mass_g, we do this:

str(penguins$body_mass_g)

Notice the letters int at the beginning of the line. That stands for “integer”
which is another word for whole number. In other words, the penguins’ body
masses all appear in this data set as whole numbers. There are other data types
you’ll see in the future:

• num: This is for general numerical data (which can be integers as well as
having decimal parts).

• chr: This means “character”, used for character strings, which can be any
sequence of letters or numbers. For example, if the researcher recorded
some notes for each penguin, these notes would be recorded in a character
variable.
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• factor: This is for categorical data, which is data that groups observa-
tions together into categories. For example, species is categorical. These
are generally recorded like character strings, but factor variables have
more structure because they take on a limited number of possible values
corresponding to a generally small number of categories. We’ll learn a lot
more about factor variables in future chapters.

There are other data types, but the ones above are by far the most common
that you’ll encounter on a regular basis.

If we want to summarize only the variable body_mass_g, we can do this:

summary(penguins$body_mass_g)

While executing the commands above, you may have noticed entries listed as
NA. These are “missing” values. It is worth paying attention to missing values
and thinking carefully about why they might be missing. For now, just make a
mental note that NA is the code R uses for data that is missing. (This would be
the same as a blank cell in a spreadsheet.)

1.9 Projects

Using files in R requires you to be organized. R uses what’s called a “working
directory” to find the files it needs. Therefore, you can’t just put files any old
place and expect R to be able to find them.

One way of ensuring that files are all located where R can find them is to
organize your work into projects. Look in the far upper-right corner of the
RStudio screen. You should see some text that says Project: (None). This
means we are not currently in a project. We’re going to create a new project in
preparation for the next chapter on using R Markdown.

Open the drop-down menu here and select New Project. When the dialog box
opens, select New Directory, then New Project.

You’ll need to give your project a name. In general, this should be a descriptive
name—one that could still remind you in several years what the project was
about. The only thing to remember is that project names and file names should
not have any spaces in them. In fact, you should avoid other kinds of special
characters as well, like commas, number signs, etc. Stick to letters and numerals
and you should be just fine. If you want a multi-word project name or file
name, I recommend using underscores. R will allow you to name projects with
spaces and modern operating systems are set up to handle file names with
spaces, but there are certain things that either don’t work at all or require
awkward workarounds when file names have spaces. In this case, let’s type
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intro_stats for the “Directory name”. Leave everything else alone and click
Create Project.

You will see the screen refresh and R will restart.

You will see a new file called intro_stats.Rproj in the Files pane, but you
should never touch that file. It’s just for RStudio to keep track of your
project details.

If everything works the way it should, creating a new project will create a new
folder, put you in that folder, and automatically make it your working directory.

Any additional files you need for your project should be placed in this directory.
In all future chapters, the first thing you will do is download the chapter file
from the book website and place it here in your project folder. If you have
installed R and RStudio on your own machine, you’ll need to navigate your
system to find the downloaded file and move or copy it to your project working
directory. (This is done most easily using File Explorer in Windows and the
Finder in MacOS.) If you are using RStudio Workbench through a web browser,
you’ll need to upload it to your project folder using the “Upload” button in the
Files tab.

1.10 Conclusion

It is often said that there is a steep learning curve when learning R. This is
true to some extent. R is harder to use at first than other types of software.
Nevertheless, in this course, we will work hard to ease you over that first hurdle
and get you moving relatively quickly. Don’t get frustrated and don’t give up!
Learning R is worth the effort you put in. Eventually, you’ll grow to appreciate
the power and flexibility of R for accomplishing a huge variety of statistical
tasks.

Onward and upward!
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Using R Markdown

2.0

Functions introduced in this chapter

No R functions are introduced here, but R Markdown syntax is explained.

2.1 Introduction

This chapter will teach you how to use R Markdown to create quality documents
that incorporate text and R code seamlessly.

First, though, let’s make sure you are set up in your project in RStudio.

2.1.1 Are you in your project?

If you followed the directions at the end of the last chapter, you should have
created a project called intro_stats. Let’s make sure you’re in that project.

Look at the upper right corner of the RStudio screen. Does it say
intro_stats? If so, congratulations! You are in your project.

If you’re not in the intro_stats project, click on whatever it does say in the
upper right corner (probably Project: (None)). You can click “Open Project”
but it’s likely that the intro_stats project appears in the drop-down menu in
your list of recently accessed projects. So click on the project intro_stats.

35
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2.1.2 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following commands
at the Console:

install.packages("rmarkdown")
install.packages("tidyverse")

2.1.3 Download the R notebook file

You need to download this chapter as an R Notebook (.Rmd) file. Please click
the following link to do so:

https://vectorposse.github.io/intro_stats/chapter_downloads/02-using_r_markdown.Rmd

The file is now likely sitting in a Downloads folder on your machine (or wherever
you have set up for web files to download). If you have installed R and RStudio
on your own machine, you will need to move the file from your Downloads
folder into the intro_stats project directory you created at the end of the last
chapter. (Again, if you haven’t created the intro_stats project, please go back
to Chapter 1 and follow the directions for doing that.) Moving files around is
most easily done using File Explorer in Windows or the Finder in MacOS. If you
are logged into RStudio Workbench instead, go to the Files tab and click the
“Upload” button. From there, leave the first box alone (“Target directory”).
Click the “Choose File” button and navigate to the folder on your machine
containing the file 02_using-r-markdown.Rmd. Select that file and click “OK”
to upload the file. Then you will be able to open the file in RStudio simply by
clicking on it.

If you are reading this text online in the browser, be aware that there are several
instructions below that won’t make any sense because you’re not looking at the
plain text file with all the code in it. Much of the material in this book can
be read and enjoyed online, but the real learning comes from downloading the
chapter files (starting with Chapter 2—this one) and working through them in
RStudio.

2.2 What is R Markdown?

The first question should really be, “What is Markdown?”
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Markdown is a way of using plain text with simple characters to indicate for-
matting choices in a document. For example, in a Markdown file, one can make
headers by using number signs (or hashtags as the kids are calling them these
days1). The notebook file itself is just a plain text file. To see the formatting,
the file has to be converted to HTML, which is the format used for web pages.
(This process is described below.)
R Markdown is a special version of Markdown that also allows you to include
R code alongside the text. Here’s an example of a “code chunk”:

1 + 1

## [1] 2

Click the little dark green, right-facing arrow in the upper-right corner of the
code chunk. (The icon I’m referring to is next to a faint gear icon and a lighter
green icon with a downward-facing arrow.) When you “run” the code chunk
like this, R produces output it. We’ll say more about code chunks later in this
document.
This document—with text and code chunks together—is called an R Notebook
file.

2.3 Previewing a document

There is a button in the toolbar right above the text that says “Preview”. Go
ahead and push it. See what happens.
Once the pretty output is generated, take a few moments to look back and forth
between it and the original R Notebook text file (the plain text in RStudio).
You can see some tricks that we won’t need much (embedding web links, making
lists, etc.) and some tricks that we will use in every chapter (like R code chunks).
At first, you’ll want to work back and forth between the R Notebook file and the
HTML file to get used to how the formatting in the plain text file get translated
to output in the HTML file. After a while, you will look at the HTML file less
often and work mostly in the R Notebook file, only previewing when you are
finished and ready to produce your final draft.

2.4 Literate programming

R Markdown is one way to implement a “literate programming” paradigm. The
concept of literate programming was famously described by Donald Knuth, an

1Also called “pound signs” or “octothorpes”. This is also an example of formatting a
footnote!
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eminent computer scientist. The idea is that computer programs should not
appear in a sterile file that’s full of hard-to-read, abstruse lines of computer code.
Instead, functional computer code should appear interspersed with writing that
explains the code.

2.5 Reproducible research

One huge benefit of organizing your work into R Notebooks is that it makes
your work reproducible. This means that anyone with access to your data and
your R Notebook file should be able to re-create the exact same analysis you
did.

This is a far cry from what generally happens in research. For example, if I do
all my work in Microsoft Excel, I make a series of choices in how I format and
analyze my data and all those choices take the form of menu commands that I
point and click with my mouse. There is no record of the exact sequence of clicks
that took me from point A to B all the way to Z. All I have to show for my work
is the “clean” spreadsheet and anything I’ve written down or communicated
about my results. If there were any errors along the way, they would be very
hard to track down.2

Reproducibility should be a minimum prerequisite for all statistical analysis.
Sadly, that is not the case in most of the research world. We are training you
to be better.

2.6 Structure of an R Notebook

Let’s start from the top. Look at the very beginning of the plain R Notebook
file. (If you’re in RStudio, you are looking at the R Notebook file. If you are
looking at the pretty HTML file, you’ll need to go back to RStudio.) The section
at the very top of the file that starts and ends with three hyphens is called the
YAML header. (Google it if you really care why.) The title of the document
appears already, but you’ll need to substitute your name and today’s date in
the obvious places. Scroll up and do that now.

You’ve made changes to the document, so you’ll need to push the “Preview”
button again. Once that’s done, look at the resulting HTML document. The
YAML header has been converted into a nicely formatted document header with
the new information you’ve provided.

Next, there is some weird looking code with instructions not to touch it. I
recommend heeding that advice. This code will allow you to answer questions

2If you think these errors are trivial, Google “Reinhart and Rogoff Excel error’ ’ to read
about the catastrophic consequences of seemingly trivial Excel mistakes.
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and have your responses appear in pretty blue boxes. In the body of the chapter,
such answer boxes will be marked with tags ::: {.answer} and :::. Let’s try
it:
Replace this text here with something else. Then preview the document and
see how it appears in the HTML file.
Be careful not to delete the two lines starting with the three colons
(:::) that surround your text! If you mess this up, the rest of the
document’s formatting will get screwed up.
To be clear, the colorful answer boxes are not part of the standard R Markdown
tool set. That’s why we had to define them manually near the top of the file.
Note that the weird code itself does not show up in the HTML file. It works in
the background to define the blue boxes that show up in the HTML file.
We also have section headers throughout, which in the R Notebook file look
like:

Section header

The hashtags are Markdown code for formatting headers. Additional hashtags
will create subsections:

Not quite as big

We could actually use a single number sign, but # makes a header as big as the
title, which is too big. Therefore, we will prefer ## for section headers and ###
for subsections.
You do need to make sure that there is a blank line before and after
each section header. To see why, look at the HTML document at this spot:
## Is this a new section? Do you see the problem?
Put a blank line before and after the line above that says “Is this a new section?”
Preview one more time and make sure that the line now shows up as a proper
section header.

2.7 Other formatting tricks

You can make text italic or bold by using asterisks. (Don’t forget to look at
the HTML to see the result.)
You can make bullet-point lists. These can be made with hyphens, but you’ll
need to start after a blank line, then put the hyphens at the beginning of each
new line, followed by a space, as follows:
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• First item
• Second item

If you want sub-items, indent at least two spaces and use a minus sign followed
by a space.

• Item

– Sub-item
– Sub-item

• Item
• Item

Or you can make ordered lists. Just use numbers and R Markdown will do all
the work for you. Sub-items work the same way as above. (Again, make sure
you’re starting after a blank line and that there is a space after the periods and
hyphens.)

1. First Item

• Sub-item
• Sub-item

2. Second Item
3. Third Item

We can make horizontal rules. There are lots of ways of doing this, but I prefer
a bunch of asterisks in a row.

There are many more formatting tricks available. For a good resource on all R
Markdown stuff, click on this link for a “cheat sheet”. And note in the previous
sentence the syntax for including hyperlinks in your document.3

2.8 R code chunks

The most powerful feature of R Markdown is the ability to do data analysis
right inside the document. This is accomplished by including R code chunks.

3You can also access cheat sheets through the main Help menu in RStudio.

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
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An R code chunk doesn’t just show you the R code in your output file; it also
runs that code and generates output that appears right below the code chunk.

An R code chunk starts with three “backticks” followed by the letter r enclosed
in braces, and it ends with three more backticks. (The backtick is usually in
the upper-left corner of your keyboard, next to the number 1 and sharing a key
with the tilde ~.)

In RStudio, click the little dark green, right-facing arrow in the upper-right
corner of the code chunk below, just as you did earlier.

# Here's some sample R code
test <- c(1, 2, 3, 4)
sum(test)

## [1] 10

After pushing the dark green arrow, you should notice that the output of the
R code appeared like magic. If you preview the HTML output, you should see
the same output appear. If you hover your mouse over the dark green arrow,
you should see the words “Run Current Chunk”. We’ll call this the Run button
for short.

We need to address something here that always confuses people new
to R and R Markdown. A number sign (aka “hashtag”) in an R Notebook
gives us headers for sections and subsections. In R, however, a number sign
indicates a “comment” line. In the R code above, the line # Here's some
sample R code is not executed as R code. But you can clearly see that the two
lines following were executed as R code. So be careful! Number signs inside and
outside R code chunks behave very differently.

Typically, the first code chunk that appears in our document will load any
packages we need. We will be using a package called tidyverse (which is really
a collection of lots of different packages) throughout the course. We load it now.
Click on the Run button (the dark green, right-facing arrow) in the code chunk
below.

library(tidyverse)

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.2 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.2 v tibble 3.2.1
## v lubridate 1.9.2 v tidyr 1.3.0
## v purrr 1.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
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## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

The output here consists of a bunch of information generated when trying to
load the package. These are not errors, even though one section is labeled
“Conflicts”. Usually, errors appear with the word “Error”, so it’s typically clear
when something just didn’t work. Also note that once you’ve loaded a package,
you don’t need to load it again until you restart your R session. For example,
if you go back and try to run the code chunk above one more time, the output
will disappear. That’s because tidyverse is already loaded, so the second “run”
doesn’t actually generate output anymore.

Okay, let’s do something interesting now. We’ll revisit the penguins data set
we introduced in the previous chapter. Remember, though, that this data set
also lives in a package that needs to be loaded. Run the code chunk below to
load the palmerpenguins package:

library(palmerpenguins)

Let’s see what happens when we try to run multiple commands in one code
chunk:

head(penguins)

## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750
## 2 Adelie Torgersen 39.5 17.4 186 3800
## 3 Adelie Torgersen 40.3 18 195 3250
## 4 Adelie Torgersen NA NA NA NA
## 5 Adelie Torgersen 36.7 19.3 193 3450
## 6 Adelie Torgersen 39.3 20.6 190 3650
## # i 2 more variables: sex <fct>, year <int>

tail(penguins)

## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Chinstrap Dream 45.7 17 195 3650
## 2 Chinstrap Dream 55.8 19.8 207 4000
## 3 Chinstrap Dream 43.5 18.1 202 3400
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## 4 Chinstrap Dream 49.6 18.2 193 3775
## 5 Chinstrap Dream 50.8 19 210 4100
## 6 Chinstrap Dream 50.2 18.7 198 3775
## # i 2 more variables: sex <fct>, year <int>

str(penguins)

## tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
## $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
## $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
## $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
## $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
## $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

If you’re looking at this in RStudio, it’s a bit of a mess. RStudio did its best
to give you what you asked for, but there are three separate commands here.
The first two (head and tail) print some of the data, so the first two boxes of
output are tables showing you the head and the tail of the data. The next one
(str) normally just prints some information to the Console. So RStudio gave
you an R Console box with the output of this command.

If you look at the HTML file, you can see the situation isn’t as bad. Each
command and its corresponding output appear nicely separated there.

Nevertheless, it will be good practice and a good habit to get into to put multiple
output-generating commands in their own R code chunks. Run the following
code chunks and compare the output to the mess you saw above:

head(penguins)

## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750
## 2 Adelie Torgersen 39.5 17.4 186 3800
## 3 Adelie Torgersen 40.3 18 195 3250
## 4 Adelie Torgersen NA NA NA NA
## 5 Adelie Torgersen 36.7 19.3 193 3450
## 6 Adelie Torgersen 39.3 20.6 190 3650
## # i 2 more variables: sex <fct>, year <int>
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tail(penguins)

## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Chinstrap Dream 45.7 17 195 3650
## 2 Chinstrap Dream 55.8 19.8 207 4000
## 3 Chinstrap Dream 43.5 18.1 202 3400
## 4 Chinstrap Dream 49.6 18.2 193 3775
## 5 Chinstrap Dream 50.8 19 210 4100
## 6 Chinstrap Dream 50.2 18.7 198 3775
## # i 2 more variables: sex <fct>, year <int>

str(penguins)

## tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
## $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
## $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
## $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
## $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
## $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

This won’t look any different in the HTML file, but it sure looks a lot cleaner
in RStudio.

What about the two lines of the first code chunk we ran above?

test <- c(1, 2, 3, 4)
sum(test)

## [1] 10

Should these two lines be separated into two code chunks? If you run it, you’ll
see only one piece of output. That’s because the line test <- c(1, 2, 3, 4)
works invisibly in the background. The vector test gets assigned, but no output
is produced. Try it and see (push the Run button):

test <- c(1, 2, 3, 4)
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So while there’s no harm in separating these lines and putting them in their
own chunks, it’s not strictly necessary. You really only need to separate lines
when they produce output. (And even then, if you forget, RStudio will kindly
give you multiple boxes of output.)
Suppose we define a new variable called test2 in a code chunk. FOR PUR-
POSES OF THIS EXERCISE, DO NOT HIT THE RUN BUTTON YET! But
do go look at the HTML file.

test2 <- c("a", "b", "c")
test2

## [1] "a" "b" "c"

The first line defines test2 invisibly. The second line asks R to print the value
of test2, but in the HTML file we see no output. That’s because we have not
run the code chunk yet. DON’T HIT THE RUN BUTTON YET!
Okay, now go to the Console in RStudio (in the lower left corner of the screen).
Try typing test2. You should get an “Error: object ‘test2’ not found.”
Why does this happen? The Global Environment doesn’t know about it yet.
Look in the upper right corner of the screen, under the “Environment” tab. You
should see test, but not test2.
Okay, NOW GO BACK AND CLICK THE RUN BUTTON IN THE LAST
CHUNK ABOVE. The output appears in RStudio below the code chunk and
the Global Environment has been updated.
The take home message is this:
Be sure to run all your code chunks in RStudio!
In RStudio, look in the toolbar above this document, toward the right. You
should see the word “Run” with a little drop-down menu next to it. Click on
that drop-down menu and select “Run All”. Do you see what happened? All the
code chunks ran again, and that means that anything in the Global Environment
will now be updated to reflect the definitions made in the R Notebook.
It’s a good idea to “Run All” when you first open a new R Notebook. This will
ensure that all your code chunks have their output below them (meaning you
don’t have to go through and click the Run button manually for each chunk,
one at a time) and the Global Environment will accurately reflect the variables
you are using.
You can “Run All” from time to time, but it’s easier just to “Run All” once at
the beginning, and then Run individual R code chunks manually as you create
them.
Now go back to the Environment tab and find the icon with the little broom
on it. Click it. You will get a popup warning you that you about to “remove
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all objects from the environment”. Click “Yes”. Now the Global Environment is
empty. Go back to the “Run” menu and select “Run All”. All the objects you
defined in the R Notebook file are back.
Clearing out your environment can be useful from time to time. Maybe you’ve
been working on a chapter for a while and you’ve tried a bunch of stuff that
didn’t work, or you went back and changed a bunch of code. Eventually, all
that junk accumulates in your Global Environment and it can mess up your R
Notebook. For example, let’s define a variable called my_variable.

my_variable <- 42

Then, let’s do some calculation with my_variable.

my_variable * 2

## [1] 84

Perhaps later you decide you don’t really need my_variable. Put a hashtag in
front of the code my_variable <- 42 to comment it out so that it will no longer
run, but don’t touch the next code chunk where you multiply it by 2. Now try
running the code chunk with my_variable * 2 again. Note that my_variable
is still sitting in your Global Environment, so you don’t get any error messages.
R can still see and access my_variable.
Now go to the “Run” menu and select “Restart R and Run All Chunks”.
This clears the Global Environment and runs all the R code starting from
the top of the R Notebook. This time you will get an error message: object
'my_variable' not found. You’ve tried to calculate with a variable called
my_variable that doesn’t exist anymore. (The line in which it was defined has
been commented out.)
It’s best to make sure all your code chunks will run when loaded from a clean
R session. The “Restart R and Run All Chunks” option is an easy way to both
clear your environment and re-run all code chunks. You can do this as often as
you want, but you will definitely want to do this one last time when you are
done. At the end of the chapter, when you are ready to prepare the
final draft, please select “Restart R and Run All Chunks”. Make sure
everything still works!
To get rid of the error above, uncomment the line my_variable <- 42 by re-
moving the hashtag you added earlier.

2.9 Inline R commands

You don’t need a standalone R code chunk to do computations. One neat feature
is the ability to use R to calculate things right in the middle of your text.
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Here’s an example. Suppose we wanted to compute the mean body mass (in
grams) for the penguins in the penguins data set. We could do this:

mean(penguins$body_mass_g, na.rm = TRUE)

## [1] 4201.754

(The na.rm = TRUE part is necessary because two of the penguins are missing
body mass data. More on missing data in future chapters.)
But we can also do this inline by using backticks and putting the letter r inside
the first backtick. Go to the HTML document to see how the following sentence
appears:
The mean body mass for penguins in the penguins data set is 4201.754386
grams.
You can (and should) check to make sure your inline R code is working by
checking the HTML output, but you don’t necessarily need to go to the HTML
file to find out. In RStudio, click so that the cursor is somewhere in the middle
of the inline code chunk in the paragraph above. Now type Ctrl-Enter or Cmd-
Enter (PC or Mac respectively). A little box should pop up that shows you the
answer!
Notice that in addition to the inline R command that calculated the mean, I
also enclosed penguins in backticks to make it stand out in the output. I’ll
continue to do that for all computer commands and R functions. But to be
clear, putting a word in backticks is just a formatting trick. If you want inline
R code, you also need the letter r followed by a space inside the backticks.

2.10 Copying and pasting

In future chapters, you will be shown how to run statistical analyses using R.
Each chapter will give extensive explanations of the statistical concepts and
demonstrations of the necessary R code. Afterwards, there will be one or more
exercises that ask you to apply your new-found knowledge to run similar analyses
on your own with different data.
The idea is that you should be able to copy and paste the R code from the
previously worked examples. But you must be thoughtful about how
you do this. The code cannot just be copied and pasted blindly. It must be
modified so that it applies to the exercises with new data. This requires that
you understand what the code is doing. You cannot effectively modify the code
if you don’t know which parts to modify.
There will also be exercises in which you are asked to provide your own ex-
planations and interpretations of your analyses. These should not be copied
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and pasted from any previous work. These exercises are designed to help you
understand the statistical concepts, so they must be in your own words, using
your own understanding.

In order to be successful in these chapters, you must do the following:

1. Read every part of the chapter carefully!

• It will be tempting to skim over the paragraphs quickly and just jump from
code chunk to code chunk. This will be highly detrimental to your ability
to gain the necessary understanding—not just to complete the chapter,
but to succeed in statistics overall.

2. Copy and paste thoughtfully!

• Not every piece of code from the early part of the chapter will necessarily
apply to the later exercises. And the code that does apply will need to be
modified (sometimes quite heavily) to be able to run new analyses. Your
job is to understand how the code works so that you can make changes to
it without breaking things. If you don’t understand a piece of code, don’t
copy and paste it until you’ve read and re-read the earlier exposition that
explains how the code works.

One final note about copying and pasting. Sometimes, people will try to copy
and paste code from the HTML output file. This is a bad idea. The HTML
document uses special characters to make the output look pretty, but these
characters don’t actually work as plain text in an R Notebook. The same
applies to things copied and pasted from a Word document or another website.
If you need to copy and paste code, be sure to find the plain text R Notebook
file (the one with the .Rmd extension here in RStudio) and copy and paste from
that.

2.11 Conclusion

That’s it! There wasn’t too much you were asked to do for this assignment that
will actually show up in the HTML output. (Make sure you did do the three
things that were asked of you however: one was adding your name and the date
to the YAML header, one was typing something in the blue answer box, and
the last was to make a section header appear properly.) As you gain confidence
and as we move into more serious stats material, you will be asked to do a lot
more.
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2.11.1 Preparing and submitting your assignment

If you look in your project folder, you should see three files:

intro_stats.Rproj
02-using_r_markdown.Rmd
02-using_r_markdown.nb.html

The first file (with extension .Rproj) you were instructed never to touch.

The next file (with extension .Rmd) is your R Notebook file. It’s the file you’re
looking at right now. It is really nothing more than a plain text file, although
when you open it in RStudio, some magic allows you to see the output from the
code chunks you run.

Finally, you have a file with extension .nb.html. That is the pretty output file
generated when you hit the “Preview” button. (If you happen to see other files
in your project folder, you should ignore those and not mess with them.) This
is the “final product” of your work.

There are several steps that you should follow at the end of each of every chapter.

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 3

Categorical data

2.0

Functions introduced in this chapter

glimpse, table, tabyl, adorn_pct_formatting, ggplot, geom_bar,
adorn_percentages, mutate, as_factor, labs, tibble, geom_col

3.1 Introduction

In this chapter, we’ll learn about categorical data and how to summarize it using
tables and graphs.

3.1.1 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following command
at the Console:

install.packages("janitor")

51



52 CHAPTER 3. CATEGORICAL DATA

3.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/03-categorical_data.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

3.1.3 Restart R and run all chunks

In RStudio, in the toolbar above this document, find the “Run” drop-down
menu and select “Restart R and Run All Chunks.”

This does two important things:

1. R will restart. This will clear out the Global Environment and provide a
fresh session for this new assignment. None of the clutter from previous
chapters will be there to mess up your work in this chapter.

2. All the code chunks in this document will run so that you can see the
output as you scroll past it. This saves you some effort in having to click
the little green “Run” button in each code chunk as you come across it.
(Also, if you forget to run one, that could cause errors later on, so this
way, all the variables you need will be in the Global Environment for when
they’re needed later.) You will still need to click the green arrow for new
code chunks that you create, of course.

At the end of the assignment, you will “Restart R and Run All Chunks” once
again to make sure that everything works smoothly and there are no lingering
errors.

3.1.4 Load packages

We load the tidyverse package since it also loads the ggplot2 package that
we’ll use throughout the course to make graphs. It also loads several other
packages, for example, one called dplyr to give us a command called mutate,
and another called forcats to give us as_factor. (These will all be explained
later.) The janitor package gives us the tabyl command for creating nice
tables. Finally, We load the palmerpenguins package to work with the penguin
data.
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library(tidyverse)
library(janitor)

##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test

library(palmerpenguins)

3.2 Categorical data

Data comes in different types depending on what is being measured. When peo-
ple think of “data”, they often imagine numerical data, consisting of numbers.
But there are other kinds of data as well.

In this chapter, we focus on categorical data that groups observations into cat-
egories.

For example, if we record the species of a penguin, that is not a number. It’s
a word that classifies that penguin into one of a finite number of types. When-
ever you see words in a data set, there’s a good chance that you’re looking at
categorical data.

Even “numbers” can sometimes represent categorical data. For example, sup-
pose in a survey there is a Yes/No question. Instead of seeing the words “Yes”
or “No”, though, you might see a data set with ones and zeros, where 1 = Yes
and 0 = No. The presence of numbers does not automatically make that data
numerical. In fact, the data is categorical. Yes and No are categories that sort
the survey respondents into two groups based on their responses to a certain
question.

What about ZIP codes? They are recorded as numbers, and unlike the Yes/No
example above, those numbers aren’t just substitutes for words. Nevertheless,
ZIP codes are categorical. They sort addresses into a finite number of groups
based on geographic proximity.

Another way to think of it is this: can the numerical values of ZIP codes be
treated as numbers in any meaningful way? Can you take a sum or an average
of ZIP codes? Sure, technically a computer can add up or average a set of ZIP
codes, but would the result be a meaningful number? Since the answer is “no”
we cannot think of ZIP codes as numbers, even though they are recorded that
way.
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Exercise 1 Think of another type of data that would be recorded using num-
bers but should be thought of as categorical data.

Please write up your answer here.

3.3 Factor variables

R uses the term “factor variable” to refer to a categorical variable. Look at the
structure of the penguins data below.

str(penguins)

## tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
## $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
## $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
## $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
## $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
## $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

The categorical variables species, island, and sex are coded correctly as factor
variables.

The tidyverse package offers a function called glimpse that effectively does
the same thing as str. We’ll use glimpse throughout the rest of the course.

glimpse(penguins)

## Rows: 344
## Columns: 8
## $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
## $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
## $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
## $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
## $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
## $ sex <fct> male, female, female, NA, female, male, female, male~
## $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~
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Exercise 2 Look at the output of str versus glimpse above. Write down any
advantages or disadvantages you see using one versus the other. (You may also
want to check the help file for the two commands to see if they offer any clues
as to why you might use one over the other.)
Please write up your answer here.

Your data set may already come with its variables coded correctly as factor
variables, but often they are not. As described above, numbers are often used
to represent categories, so R may think that those variables represent numerical
data. Later, we’ll see an example of this and learn how to handle categorical
variables that are not coded as factor variables in R.

3.4 Summarizing one categorical variable

If you need to summarize a single categorical variable, a frequency table usually
suffices. This is simply a table that counts up all the instances of each category.
The word “frequency” is synonymous here with the word “count”.
We can use the table command:

table(penguins$species)

##
## Adelie Chinstrap Gentoo
## 152 68 124

Recall that the dollar sign means to grab the variable species from the tibble
penguins.
You can also generate a relative frequency table which is a table that uses pro-
portions or percentages instead of counts.
NOTE: For purposes of this course, we’re going to be very careful about the
terms proportion and percentage. For us, a proportion will always be a number
between 0 and 1 whereas a percentage will be between 0 and 100. Calculating
a percentage is the same as multiplying a proportion by 100.
The table command stops being convenient if you want proportions instead
of counts. Instead, we will use the tabyl command from the janitor package
that was loaded near the top of the chapter. The syntax for this command is
a little different. The tibble goes first, followed by a comma, followed by the
variable you want to summarize:
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tabyl(penguins, species)

## species n percent
## Adelie 152 0.4418605
## Chinstrap 68 0.1976744
## Gentoo 124 0.3604651

Now you get both counts and proportions. Note that in the output above,
it’s a little misleading to call the last column “percent”. These are actually
proportions, and we would have to multiply by 100 to get percentages.
It’s usually nice to have the column totals. We can achieve that by using an
adorn function to get them as follows:

tabyl(penguins, species) %>%
adorn_totals()

## species n percent
## Adelie 152 0.4418605
## Chinstrap 68 0.1976744
## Gentoo 124 0.3604651
## Total 344 1.0000000

We’ll always include the totals at the bottom.
If you really want percentages, we can use a different adorn function:

tabyl(penguins, species) %>%
adorn_pct_formatting()

## species n percent
## Adelie 152 44.2%
## Chinstrap 68 19.8%
## Gentoo 124 36.0%

Again, we’ll also include adorn_totals so that we get the column totals.

tabyl(penguins, species) %>%
adorn_totals() %>%
adorn_pct_formatting()

## species n percent
## Adelie 152 44.2%
## Chinstrap 68 19.8%
## Gentoo 124 36.0%
## Total 344 100.0%
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The syntax above looks a little confusing with the unusual %>% symbols every-
where. You will learn more about that weird set of symbols in a later chapter.
For now, you can just copy and paste this code and make any necessary changes
to the tibble and/or variables names as needed.

Exercise 3(a) Use the tabyl command as above to create a frequency table
for the sex of the penguins. Include the column totals at the bottom. (You will
also get a relative frequency table for free.)

# Add code here to create a frequency table for sex

Exercise 3(b) In the table for sex that you just created, what does the row
labeled <NA> mean?

Please write up your answer here.

Exercise 3(c) Now create a relative frequency table for sex that reports per-
centages and not proportions (still including the column totals at the bottom).

# Add code here that reports percentages instead of proportions

Exercise 3(d) In the previous tables, what is the difference between percent
and valid_percent? Why are there two different sets of percentages being
computed?

Please write up your answer here.

3.5 Graphing one categorical variable

When asked, “What type of graph should I use when graphing a single cate-
gorical variable?” the simple answer is “None.” If you do need to summarize a
categorical variable, a frequency table usually suffices.

If you really, really want a graph, the standard type is a bar chart. But before
we can create one, we need to start learning about the very important tool we
will use throughout the course for graphing. It’s called ggplot and it’s part of
a package called ggplot2.1

We don’t have to load the ggplot2 package explicitly because it got loaded
alongside a number of other packages when we called library(tidyverse)
early on in the chapter.

1Why the “2”? It’s a long story. Google it if you’re interested in the history of the
development of the ggplot2 package.
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3.5.1 ggplot

The ggplot command is an all-purpose graphing utility. It uses a graphing
philosophy derived from a book called The Grammar of Graphics by Leland
Wilkinson. The basic idea is that each variable you want to plot should cor-
respond to some element or “aesthetic” component of the graph. The obvious
places for data to go are along the y-axis or x-axis, but other aesthetics are im-
portant too; graphs often use color, shape, or size to illustrate different aspects
of data. Once these aesthetics have been defined, we will add “layers” to the
graph. These are objects like dots, boxes, lines, or bars that dictate the type of
graph we want to see.
In an introductory course, we won’t get too fancy with these graphs. But be
aware that there’s a whole field of data visualization that studies clear and
interesting ways to understand data graphically.
It will be easier to explain the ggplot syntax in the context of specific graph
types, so let’s create a bar chart for species.

ggplot(penguins, aes(x = species)) +
geom_bar()
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We’ll walk through this syntax step by step.

• The first argument of the ggplot command is the name of the tibble, in
this case, penguins.
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• Next we define the aesthetics using aes and parentheses. Inside the paren-
theses, we assign any variables we want to plot to aesthetics of the graph.
For this analysis, we are only interested in the variable species and for
a bar chart, the categorical variable typically goes on the x-axis. That’s
why it says x = species inside the aes argument.

• Finally, ggplot needs to know what kind of graph we want. Graph types
are called “geoms” in the ggplot world, and geom_bar() tells ggplot to
add a “bar chart layer”. Adding a layer is accomplished by literally typing
a plus sign.

This can be modified somewhat to give proportions (relative frequencies) on
the y-axis instead of counts. Unfortunately, the ggplot syntax is not very
transparent here. My recommendation is to copy and paste the code below
if you need to make a relative frequency bar chart in the future, making the
necessary changes to the tibble and variable names, of course.

ggplot(penguins, aes(x = species, y = ..prop.., group = 1)) +
geom_bar()

## Warning: The dot-dot notation (`..prop..`) was deprecated in ggplot2 3.4.0.
## i Please use `after_stat(prop)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
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These bar charts are the graphical analogues of a frequency table and a relative
frequency table, respectively.

Exercise 4 In a sentence or two at most, describe the distribution of species
in this data set.

Please write up your answer here.

What about pie charts? Just. Don’t.

Seriously. Pie charts suck.2

3.6 Summarizing two categorical variables

A table summarizing two categorical variables is called a contingency table (or
pivot table, or cross-tabulation, or probably several other terms as well).

For example, we might pose the following question: is the distribution of sex
among penguins in our data more or less balanced across the three species?

When we work with two variables, typically we think of one variable as response
and the other as predictor. The response variable is usually the variable of main
interest. A predictor variable is another attribute that might predict or explain
more about the response variable.

For example, our question is concerned with the sex distribution of penguins.
We could create a relative frequency table of sex alone to see if male and female
penguins are balanced in the data. In fact, you did that very thing above
and saw that, indeed, there were roughly equal numbers of male and female
penguins. But is that still true when we divide up the data into the three
groups representing the separate species?

Two variables are called associated when there is a relationship between them.
For example, if sex and species were associated, then the distribution of sex
would change depending on the species. Maybe one species of penguin had more
females and another had fewer females. Our prediction of the sex distribution
would change based on the value of the predictor variable species.

On the other hand, two variables that are not associated are called independent.
Independent variables are not related. If the sex distribution were the same
across all species, then knowledge of the species would not change our predictions
about the sex of a penguin. It wouldn’t matter because there was no relationship
between sex and species.

2https://medium.com/the-mission/to-pie-charts-3b1f57bcb34a

https://medium.com/the-mission/to-pie-charts-3b1f57bcb34a
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Most research questions that involve two or more variables are fundamentally
questions of whether a response variable is associated with one or more predictor
variables, or whether they are independent.

Let’s check the contingency table. The tabyl command will place the first
variable listed across the rows and the second one listed down the columns.
Since we always include column totals, we want the predictor variable to be the
column variable so we can see how the predictor groups are distributed in the
data. Always list the response variable first.

tabyl(penguins, sex, species) %>%
adorn_totals()

## sex Adelie Chinstrap Gentoo
## female 73 34 58
## male 73 34 61
## <NA> 6 0 5
## Total 152 68 124

Each column is a group, and our question is whether the distribution of sexes
in each column is similar.

The last row of totals is called the marginal distribution (because it sits in the
“margin” of the contingency table). It is equivalent to a frequency table for
species.

3.6.0.0.1 Exercise 5 Counts can be misleading. For example, there are 73
female Adelie penguins, but only 34 female Chinstrap penguins. Does that mean
that Adelie penguins are more likely to be female than Chinstrap penguins?
Why or why not?

Please write up your answer here.

A more fair way to compare across columns is to create relative frequencies.
We can do this with a slightly different adorn command. The following code
says that we want to compute column proportions (yes, I know the command
is called adorn_percentages, but these are proportions):

tabyl(penguins, sex, species) %>%
adorn_totals() %>%
adorn_percentages("col")
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## sex Adelie Chinstrap Gentoo
## female 0.48026316 0.5 0.46774194
## male 0.48026316 0.5 0.49193548
## <NA> 0.03947368 0.0 0.04032258
## Total 1.00000000 1.0 1.00000000

If we actually want percentages, we need one more line of code. This command—
adorn_pct_formatting—is the same as we used before with frequency tables.

tabyl(penguins, sex, species) %>%
adorn_totals() %>%
adorn_percentages("col") %>%
adorn_pct_formatting()

## sex Adelie Chinstrap Gentoo
## female 48.0% 50.0% 46.8%
## male 48.0% 50.0% 49.2%
## <NA> 3.9% 0.0% 4.0%
## Total 100.0% 100.0% 100.0%

Now we can see that each column adds up to 100%. In other words, each species
is now on equal footing, and only the distribution of sexes within each group
matters.

3.6.0.0.2 Exercise 6(a) What percentage of Adelie penguins are male?
What percentage of Chinstrap penguins are male? What percentage of Gentoo
penguins are male?

Please write up your answer here.

3.6.0.0.3 Exercise 6(b) Does sex appear to be associated with species for
the penguins in this data set? Or are these variables independent?

Please write up your answer here.

The islands of Antarctica on which the penguins were observed and measured
are recorded in the variable called island. Is the distribution of the three
species of penguin the same (or similar) on the three islands?
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3.6.0.0.4 Exercise 7(a) Choosing which variables play the roles of response
and predictor can be tricky. For the question above, with species and island,
which is response and which is predictor?

One way to think about this is to ask the following two questions and see which
one is closer to the question asked:

• Given information about the species, are you interested in which island
the penguin lives on? If so, species is a predictor and island is response.
(You are using species to predict island.)

• Given information about the island, are you interested in the species of
the penguin? If so, island is a predictor and species is response. (You
are using island to predict species.)

Please write up your answer here.

3.6.0.0.5 Exercise 7(b) Create a contingency table with percentages. List
species first, followed by island. (Hey, that’s hint in case you need to go back
and change your answer to part (a).)

# Add code here to create a contingency table with percentages.

3.6.0.0.6 Exercise 7(c) Finally, comment on the association or indepen-
dence of the two variables.

Please write up your answer here.

3.7 Graphing two categorical variables

A somewhat effective way to display two categorical variables is with a side-by-
side bar chart. Here is the ggplot code for the relationship between sex and
species.

ggplot(penguins, aes(fill = sex, x = species)) +
geom_bar(position = "dodge")
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This is somewhat different from the first ggplot example you saw above, so
let’s take a moment to go through it.

• The first argument is the data frame penguins; no mystery there.
• The second aesthetic x = species also makes a lot of sense. As species

is our predictor variable—we’re using species to group the penguins, and
then within each species, we’re interested in the sex distribution—species
goes on the x-axis.

• However, sex does not go on the y-axis! (This is a very common mistake
for novices.) The y-axis of a bar chart is always a count or a propor-
tion/percentage, so no variable should ever go on the y-axis of a bar chart.
In that case, how does sex enter the picture? Through the use of color!
The aesthetic fill = sex says to use the sex variable to shade or “fill”
the bars with different colors. You’ll also notice that ggplot makes a leg-
end automatically with the colors so you can see which color corresponds
to which value (in this case, “female”, “male”, or “NA” for the missing
data).

Another unusual feature is the argument position = "dodge" in the geom_bar
layer. Let’s see what happens if we remove it.

ggplot(penguins, aes(fill = sex, x = species)) +
geom_bar()
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We get a stacked bar chart! This is another popular way of displaying two
categorical variables, but we don’t tend to prefer it. Notice how difficult it is to
compare the number of females across species; since there is no common baseline
for the red segments of each bar, it is harder to determine which ones are bigger
or smaller. (In this case, it’s fairly clear, but there are plenty of data sets for
which the counts might be a lot closer.)

So let’s agree to use side-by-side bar charts. There is still one aspect of the
side-by-side bar chart that is misleading, though. For example, the red bar for
Adelie penguins is bigger than the red bar for Gentoo penguins. Does this mean
Adelie penguins are more likely to be female?

This is the same issue we identified in an exercise above. To fix this prob-
lem, a better option here would be to use relative frequencies (i.e., propor-
tions/percentages within each group) instead of counts on the y-axis. This is
analogous to using proportions/percentages in a contingency table. Unfortu-
nately, it is rather difficult to do this with ggplot. A compromise is available:
by using position = fill, you can create a stacked bar chart that scales ev-
ery group to 100%. Making comparisons across groups can still be hard, as
explained above for any kind of stacked bar chart, but it works okay if there
are only two categories in the response variable (as is almost the case with sex
here, although the missing data distorts things a little at the bottom).

ggplot(penguins, aes(fill = sex, x = species)) +
geom_bar(position = "fill")
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This graph does correctly show that the sexes are pretty much equally balances
across all three species.

Exercise 8(a) Using species and island, create a side-by-side bar chart.
Be careful, though, to change the sample code above to make sure species is
now the response variable (using the fill aesthetic) and that island is the
explanatory variable (using x). (Hey, that’s another hint to go back and look
at the previous exercise and make sure you got part (a) right!)

# Add code here to make a side-by-side bar chart.

Exercise 8(b) Comment on the association or independence of the two vari-
ables.

Please write up your answer here.

3.8 Recoding factor variables

As mentioned earlier, there are situations where a categorical variable is not
recorded in R as a factor variable. Let’s look at the year variable:
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glimpse(penguins$year)

## int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

These appear as integers. Yes, years are whole numbers, but why might this
variable be treated as categorical data and not numerical data?

Exercise 9(a) Use the tabyl command to create a frequency table for year.

# Add code here to make a frequency table for year.

Exercise 9(b) Why is year better thought of as categorical data and not
numerical data (at least for this data set—we’re not claiming years should always
be treated as categorical)?

Please write up your answer here.

While the tabyl command seemed to work just fine with the year data in integer
format, there are other commands that will not work so well. For example,
ggplot often fails to do the right thing when a categorical variable is coded as
a number. Therefore, we need a way to change numerically coded variables to
factors.

The code below uses a command called mutate that takes an old variable and
creates a new variable. (You’ll learn more about this command in a later chap-
ter. For now, you can just copy and paste this code if you need it again.) The
name of the new variable can be anything we want; we’ll just call it year_fct.
Then the real work is being done by the as_factor command that concerts the
numeric year variable into a factor variable.

Observe the effect below:

penguins <- penguins %>%
mutate(year_fct = as_factor(year))

glimpse(penguins)

## Rows: 344
## Columns: 9
## $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
## $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
## $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
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## $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
## $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
## $ sex <fct> male, female, female, NA, female, male, female, male~
## $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~
## $ year_fct <fct> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

Exercise 10(a) Make a contingency table of the species measured in each
year using counts. Use the species variable first, followed by the new factor
variable year_fct. (Think about why that order makes sense. We will always
list the response variable first so that the categories of interest will
be the rows and the groups will be the columns.)

# Add code here to make a contingency table for species and year with counts.

Exercise 10(b) Make a contingency table of the species measured in each
year using column percentages (not proportions). (Again, be sure to use the
new factor variable year_fct, not the old variable year.)

# Add code here to make a contingency table for species and year with percentages.

Exercise 10(c) How similar or dissimilar are the distributions of species
across the three years of the study?

Please write up your answer here.

3.9 Publication-ready graphics

Let’s go back to the first relative frequency bar chart from this chapter.

ggplot(penguins, aes(x = species, y = ..prop.., group = 1)) +
geom_bar()
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The variable name species is already informative, but the y-axis is labeled with
“prop”. Also note that this graph could use a title. We can do all this with
labs (for labels). Observe:

ggplot(penguins, aes(x = species, y = ..prop.., group = 1)) +
geom_bar() +
labs(title = "Distribution of species",

y = "Proportion",
x = "Species")
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Exercise 11 Modify the following side-by-side bar chart by adding a title and
labels for both the fill variable and the x-axis variable. (Hint: you can use fill
= sex inside the labs command just like you used title, y, and x.)

# Modify the following side-by-side bar chart by adding a title and
# labels for both the x-axis and the fill variable.
ggplot(penguins, aes(fill = sex, x = species)) +

geom_bar(position = "dodge")
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3.10 Plotting summary data

Everything we did above was summarizing raw data; that is, the data consisted
of all the observations for each individual penguin. Often, though, when you
find data out in the wild, that data will be summarized into a table already and
you may not have access to the raw data.

For example, let’s suppose that you found some data online, but it looked like
this:

species count
Adelie 152
Chinstrap 68
Gentoo 124

This raises two questions:

1. How would you get this data into R?
2. How would you plot the data?

To answer the first question, we show you how to create your own tibble. Here
is the syntax:
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penguin_species_table <- tibble(
species = c("Adelie", "Chinstrap", "Gentoo"),
count = c(152, 68, 124)

)
penguin_species_table

## # A tibble: 3 x 2
## species count
## <chr> <dbl>
## 1 Adelie 152
## 2 Chinstrap 68
## 3 Gentoo 124

Basically, the tibble command creates a new tibble. Then each column of data
must be entered manually as a “vector” using the c to group all the data values
together for each column. Be careful about the placement of quotation marks,
commas, and parentheses.

Once we have our summary data, we want to make a bar chart. But this won’t
work:

ggplot(penguin_species_table, aes(x = species)) +
geom_bar()
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Exercise 12 Explain what went wrong with the previous command? Why
does ggplot think that each species has count 1?

Please write up your answer here.

Instead, we need to use geom_col. This works a lot like geom_bar except that
it also requires a y value in its aesthetics to force the command to look for the
counts in some other variable in the data.

ggplot(penguin_species_table, aes(x = species, y = count)) +
geom_col()
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Exercise 13(a) Use the tabyl command to create a frequency table for
island.

# Add code here to create a frequency table for island

Exercise 13(b) Use the tibble command to create a new tibble man-
ually that contains the frequency data for the island variable. It should
have two columns, one called island and the other called count. Name it
penguin_island_table.
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# Add code here to create a tibble with frequency data for island

Exercise 13(c) Use ggplot with geom_col to create a bar chart for island.

# Add code here to create a bar chart for island

3.11 Bonus section: Recovering raw data from
tables

Sometimes we come across summary data instead of raw data. We’ve learned
how to manually create tibbles with that summary data and use geom_col
instead of geom_bar to graph it, but sometimes it is also useful to recover what
the raw data would have been. Fortunately there are R tools to do exactly that.

We’ll continue with our example penguin_species_table, which we’ll reprint
here for reference:

penguin_species_table

## # A tibble: 3 x 2
## species count
## <chr> <dbl>
## 1 Adelie 152
## 2 Chinstrap 68
## 3 Gentoo 124

From this table, we know what the raw data for this variable should look like:
there should be 152 rows that say “Adelie,” 68 rows that say “Chinstrap,” and
124 rows that say “Gentoo.” It would be very annoying, though, to make that
whole tibble by hand. Fortunately, there are R tools that will create it for us.

The first thing we will need to do is turn our tibble into a tabyl. (I would like
to apologize for how ridiculous that sentence sounds.)

penguin_species_tabyl <- as_tabyl(penguin_species_table)
penguin_species_tabyl

## species count
## Adelie 152
## Chinstrap 68
## Gentoo 124
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The hero of the day is the function uncount from the tidyr package:

penguin_species_raw <- penguin_species_tabyl %>%
uncount(count)

penguin_species_raw

## # A tibble: 344 x 1
## species
## <chr>
## 1 Adelie
## 2 Adelie
## 3 Adelie
## 4 Adelie
## 5 Adelie
## 6 Adelie
## 7 Adelie
## 8 Adelie
## 9 Adelie
## 10 Adelie
## # i 334 more rows

Click through the rows of this table and you’ll see that it’s exactly what we
wanted: “Adelie” is repeated 152 times, “Chinstrap” is repeated 68 times, and
“Gentoo” is repeated 124 times. Neat!

3.11.1 Recovering raw data from a contingency table

This strategy also works, with some modifications, for recovering the raw data
presented in a contingency table. Previously, we saw the following contingency
table showing the counts of each species broken down by sex:

sex Adelie Chinstrap Gentoo
female 73 34 58
male 73 34 61

(Note: I’ve removed the unruly penguins who did not allow their sex to be
determined.)

Again, we can imagine what the raw data would look like: there would be 73
rows where the species variable would say “Adelie” and the sex variable would
say “female,” then 34 rows where the species variable would say “Chinstrap”
and the sex variable would say “female,” and so on.
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We can start by building a tibble with this information in the same way we built
the tibble of penguin species counts. Note that the species labels now become
the column headers.

penguin_species_sex_table <- tibble(
sex = c("female", "male"),
Adelie = c(73, 73),
Chinstrap = c(34, 34),
Gentoo = c(58, 61)

)
penguin_species_sex_table

## # A tibble: 2 x 4
## sex Adelie Chinstrap Gentoo
## <chr> <dbl> <dbl> <dbl>
## 1 female 73 34 58
## 2 male 73 34 61

Once again, we’ll want to turn this tibble into a tabyl:

penguin_species_sex_tabyl <- as_tabyl(penguin_species_sex_table)
penguin_species_sex_tabyl

## sex Adelie Chinstrap Gentoo
## female 73 34 58
## male 73 34 61

In order for the uncount function to work correctly, we need to have all the
counts in a single column, but since this is a contingency table, our counts are
spread out across several columns. To solve this problem, we’ll need to “pivot”
the columns, turning them into rows. The command is called pivot_longer.
(There is also a pivot_wider command that turns rows into columns, but we
won’t need that one.)

penguin_species_sex_tabyl %>%
pivot_longer(cols = c("Adelie", "Chinstrap", "Gentoo"))

## # A tibble: 6 x 3
## sex name value
## <chr> <chr> <dbl>
## 1 female Adelie 73
## 2 female Chinstrap 34
## 3 female Gentoo 58
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## 4 male Adelie 73
## 5 male Chinstrap 34
## 6 male Gentoo 61

If we want a little more control over the names of the newly created columnds,
we can add those as follows:

penguin_species_sex_tabyl %>%
pivot_longer(cols = c("Adelie", "Chinstrap", "Gentoo"),

names_to = "species",
values_to = "count")

## # A tibble: 6 x 3
## sex species count
## <chr> <chr> <dbl>
## 1 female Adelie 73
## 2 female Chinstrap 34
## 3 female Gentoo 58
## 4 male Adelie 73
## 5 male Chinstrap 34
## 6 male Gentoo 61

Now our data is in the form that uncount knows how to deal with. And indeed,
we can assemble all these steps together into a pipeline. First, we should build
the tibble. Then, we should turn the tibble into a tabyl (sorry), then pivot the
tabyl, and finally uncount to get back to the raw data. Finally, we should store
the result as a new tibble. Here are all the steps put together:

penguin_species_sex_table <- tibble(
sex = c("female", "male"),
Adelie = c(73, 73),
Chinstrap = c(34, 34),
Gentoo = c(58, 61)

)
penguin_species_sex_table %>%

as_tabyl() %>%
pivot_longer(cols = c("Adelie", "Chinstrap", "Gentoo"),

names_to = "species",
values_to = "count") %>%

uncount(count) -> penguin_species_sex_raw

penguin_species_sex_raw

## # A tibble: 333 x 2
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## sex species
## <chr> <chr>
## 1 female Adelie
## 2 female Adelie
## 3 female Adelie
## 4 female Adelie
## 5 female Adelie
## 6 female Adelie
## 7 female Adelie
## 8 female Adelie
## 9 female Adelie
## 10 female Adelie
## # i 323 more rows

Indeed, this new tibble looks just like how we wanted it to look.

3.12 Conclusion

You can summarize a single categorical variable using a frequency table. For
only one categorical variable, a graph is usually overkill, but if you really
want a graph, the bar chart is the best option. Both raw counts and pro-
portions/percentages can be useful.

We use contingency tables to summarize two categorical variables. Unless
groups are of equal size, raw counts can be incredibly misleading here. You
should include proportions/percentages to be able to compare the distributions
across groups. If the proportions/percentages are roughly the same, the vari-
ables are more likely to be independent, whereas if the proportions/percentages
are different, there may be an association between the variables. For graphing,
the best choice is usually a side-by-side bar chart. A stacked bar chart will also
work, especially if using relative frequencies on the y-axis, but it can be hard to
compare across groups when the response variable has three or more categories.

Sometimes we come across categorical data that is recorded using numbers.
Many R commands will not work properly if they expect factors and receive
numbers, so we use the mutate command to create a new variable along with
as_factor to convert the numbers to categories.

Sometimes we come across summary data instead of raw data. We can then
manually create tibbles with that summary data and use geom_col instead of
geom_bar to graph it.

3.12.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
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2. Deal with any code errors that crop up. Repeat steps 1—2 until there are
no more code errors.

3. Spell check your document by clicking the icon with “ABC” and a check
mark.

4. Hit the “Preview” button one last time to generate the final draft of the
.nb.html file.

5. Proofread the HTML file carefully. If there are errors, go back and fix
them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 4

Numerical data

2.0

Functions introduced in this chapter

mean, sd, var, median, sort, IQR, quantile, summary, min, max, geom_histogram,
geom_point, geom_boxplot, facet_grid

4.1 Introduction

In this chapter, we’ll learn about numerical data and how to summarize it
through summary statistics and graphs.

4.1.1 Install new packages

There are no new packages used in this chapter.

4.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/04-numerical_data.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

81
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4.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

4.1.4 Load packages

We load the tidyverse package to get ggplot2 and the palmerpenguins pack-
age to work with the penguin data.

library(tidyverse)
library(palmerpenguins)

4.2 A note about mathematical notation

From time to time, we will use mathematical notation that can’t be typed
directly on the keyboard. For example, let’s suppose we want to typeset the
quadratic formula, which involves a complicated fraction as well as a square
root symbol.
When such notation appears, it will be surrounded by double dollar signs as
follows:

𝑥 = −𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎

The R Notebook will interpret this special mathematical notation and render
it on the screen as well as in the HTML document.1 If the nicely formatted
formula does not appear on your screen, place your cursor anywhere inside the
math formula and hit Ctrl-Enter or Cmd-Enter (PC or Mac respectively).
Sometimes, we want such math to appear inline. We can do this with single
dollar signs. For example, the distance formula is 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2,
a fact you may have learned a long time ago.
This will not render visually in the R Notebook, but it will show up in the HTML
file. If you want to check that it worked properly without having to preview
the HTML, you can either hover your cursor over the math formula and wait
a second, or you can place your cursor anywhere inside the math formula and
hit Ctrl-Enter or Cmd-Enter (PC or Mac respectively) to see a pop-up window
previewing the mathematical content properly formatted.
You will be shown examples of any mathematical notation you need to use in
any given chapter, so feel free to copy/paste/modify any math notation you
need.

1This notation is part of a mathematical document preparation system called LaTeX,
pronounced “Lay-tek” (not like the rubbery substance).
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4.3 Statistics

The word “statistics” has several meanings. On one hand, it’s an entire field of
study, as in the subject of this course. More specifically, though, a “statistic”
is any kind of numerical summary of data. While there are many ways to
summarize data, they mostly fall into two main flavors: measures of center and
measures of spread. Measures of center try to estimate some kind of average,
middle, or common value in data. Measures of spread try to estimate something
like the width, range, variability, or uncertainty of data.

There are two pairs of measurements that we will learn about in this chapter:
the mean/standard deviation, and the median/IQR.

4.3.1 Mean and standard deviation

The first pair of the summary statistics we’ll discuss consists of the mean and
the standard deviation.

The mean of a variable 𝑦—denoted ̄𝑦 and pronounced “y bar”—is calculated
by summing all the values of the variable, and dividing by the total number of
observations. In formula form, this is

̄𝑦 = ∑𝑦
𝑛 .

This is a measure of center since it estimates the “middle” of a set of numbers.
It is calculated in R using the mean command.

Throughout this chapter, we will be using the penguins data set. (If you need a
reminder, look at the help file for penguins using one of the methods discussed
in Chapter 2.)

If we want to calculate the mean body mass of our penguins (in grams), we type
the following:

mean(penguins$body_mass_g)

## [1] NA

Unfortunately, this didn’t give us an answer. As you may recall from previous
chapters, this is because we are missing several values of body mass in this data.
We need an extra piece of code to tell R to ignore that missing data and give
us the mean of the valid data.
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mean(penguins$body_mass_g, na.rm = TRUE)

## [1] 4201.754

(The term na.rm stands for “NA remove”.)

We never leave such numbers without interpretation. In a full, contextually
meaningful sentence, we might say, “The mean body mass of this group of
penguins is approximately 4200 grams.”

Notice that we mentioned the penguins, placing this number in context, and
we mentioned the units of measurement, grams. (Otherwise, what would this
number mean? 4200 pounds? Okay, probably not, but you should always
mention the units of measurement.) Also notice that we rounded the final
value. A gram is a very small unit of measurement, so there is no need to report
this value to many decimal places.

If we use inline code, we can say, “The mean body mass of this group of penguins
is 4201.754386 grams.” There are ways of rounding this number as well, but it’s
a bit of a hassle to do so in inline code.

The corresponding measure of spread is the standard deviation. Usually this is
called 𝑠 and is calculated using a much more complicated formula:

𝑠 = √∑(𝑦 − ̄𝑦)2
𝑛 − 1 .

This is a measure of spread because the (𝑦− ̄𝑦) term measures the how far away
each data point is from the mean.

In R, this is calculated with the sd command. Again, we’ll need to add na.rm
= TRUE.

sd(penguins$body_mass_g, na.rm = TRUE)

## [1] 801.9545

“The standard deviation of this group of penguins is about 801 grams.”

Or using inline code:

“The standard deviation of this group of penguins is 801.9545357 grams.”

The mean and the standard deviation should always be reported together. One
without the other is incomplete and potentially misleading.

Another related measurement is the variance, but this is nothing more than the
standard deviation squared:
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𝑠2 = ∑(𝑦 − ̄𝑦)2
𝑛 − 1 .

(Compare this formula to the one for the standard deviation. Nothing has
changed except for the removal of the square root.) We rarely use the variance
in an introductory stats class because it’s not as interpretable as the standard
deviation. The main reason for this is units. If the data units are grams, then
both the mean and the standard deviation are also reported in grams. The
variance has units of “grams squared”, but what does that even mean? If you
need to calculate the variance in R, the command is var.

var(penguins$body_mass_g, na.rm = TRUE)

## [1] 643131.1

You can check and see that the number above really is just 801.9545357 squared.
Regarding the inline code in the previous sentence, remember, in the R Note-
book, you can click inside the inline code and hit Ctrl-Enter or Cmd-Enter. In
the HTML document, the number will be calculated and will magically appear.

4.3.2 Median and IQR

Another choice for measuring the center and spread of a data set is the median
and the IQR.

The median is just the middle value if the list of values is ordered. In R, it is
calculated using the median command.

median(penguins$body_mass_g, na.rm = TRUE)

## [1] 4050

The median body mass of these penguins is 4050 grams.

The median value depends on whether there are an even or odd number of data
points. If there are an odd number, there is a middle value in the list. Convince
yourself this is true; for example, look at the numbers 1 through 7.

1:7

## [1] 1 2 3 4 5 6 7
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The number 4 is in the middle of the list, with three numbers to either side.

However, if there are an even number of data points, there is no number right
in the middle:

1:8

## [1] 1 2 3 4 5 6 7 8

The “midpoint” of this list would lie between 4 and 5. If this is the case, we
calculate the median by taking the mean of the two numbers straddling the
middle. In the case of 1 though 8 above, the median would be 4.5.

Let’s print out the entire body_mass_g variable, all 342 valid values (not includ-
ing the missing values, of course). If we’re clever about it, we can see them in
order using the sort command.

sort(penguins$body_mass_g)

## [1] 2700 2850 2850 2900 2900 2900 2900 2925 2975 3000 3000 3050 3050 3050 3050
## [16] 3075 3100 3150 3150 3150 3150 3175 3175 3200 3200 3200 3200 3200 3250 3250
## [31] 3250 3250 3250 3275 3300 3300 3300 3300 3300 3300 3325 3325 3325 3325 3325
## [46] 3350 3350 3350 3350 3350 3400 3400 3400 3400 3400 3400 3400 3400 3425 3425
## [61] 3450 3450 3450 3450 3450 3450 3450 3450 3475 3475 3475 3500 3500 3500 3500
## [76] 3500 3500 3500 3525 3525 3550 3550 3550 3550 3550 3550 3550 3550 3550 3575
## [91] 3600 3600 3600 3600 3600 3600 3600 3625 3650 3650 3650 3650 3650 3650 3675
## [106] 3675 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3725 3725 3725
## [121] 3750 3750 3750 3750 3750 3775 3775 3775 3775 3800 3800 3800 3800 3800 3800
## [136] 3800 3800 3800 3800 3800 3800 3825 3850 3875 3900 3900 3900 3900 3900 3900
## [151] 3900 3900 3900 3900 3950 3950 3950 3950 3950 3950 3950 3950 3950 3950 3975
## [166] 4000 4000 4000 4000 4000 4050 4050 4050 4050 4050 4050 4075 4100 4100 4100
## [181] 4100 4100 4150 4150 4150 4150 4150 4150 4200 4200 4200 4200 4200 4250 4250
## [196] 4250 4250 4250 4275 4300 4300 4300 4300 4300 4300 4300 4300 4350 4350 4375
## [211] 4400 4400 4400 4400 4400 4400 4400 4400 4450 4450 4450 4450 4450 4475 4500
## [226] 4500 4500 4550 4550 4575 4600 4600 4600 4600 4600 4625 4625 4650 4650 4650
## [241] 4650 4650 4675 4700 4700 4700 4700 4700 4700 4725 4725 4725 4750 4750 4750
## [256] 4750 4750 4775 4800 4800 4800 4850 4850 4850 4850 4875 4875 4875 4900 4900
## [271] 4925 4925 4950 4950 4975 5000 5000 5000 5000 5000 5000 5050 5050 5050 5100
## [286] 5100 5100 5150 5150 5200 5200 5200 5200 5250 5250 5250 5300 5300 5300 5300
## [301] 5350 5350 5350 5400 5400 5400 5400 5400 5450 5500 5500 5500 5500 5500 5550
## [316] 5550 5550 5550 5550 5550 5600 5600 5650 5650 5650 5700 5700 5700 5700 5700
## [331] 5750 5800 5800 5850 5850 5850 5950 5950 6000 6000 6050 6300

Exercise 1 If there are 342 penguins in this data set with body mass data,
between which two values in the list above would the median lie? In other
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words, between what two positions in the list will be median be found? Verify
that the median you find from this list is the same as the one we calculated with
the median command above.

Please write up your answer here.

Calculating the interquartile range—or IQR—requires first the calculation of the
first and third quartiles, denoted Q1 and Q3. If the median is the 50% mark in
the sorted data, the first and third quartiles are the 25% and the 75% marks,
respectively. One way to compute these by hand is to calculate the median of
the lower and upper halves of the data separately. Then again, it’s hard to know
how to split the data set into halves if there are an odd number of observations.
There are many different methods for computing percentiles in general, but you
don’t need to worry too much about the particular implementation in R. One
you have Q1 and Q3, the IQR is just

𝐼𝑄𝑅 = 𝑄3 −𝑄1

In R, you can get the IQR by using—are you ready for this?—the IQR command.

IQR(penguins$body_mass_g, na.rm = TRUE)

## [1] 1200

The IQR for this group of penguins is 1200 grams.

The IQR is a measure of spread because the distance between Q1 and Q3 mea-
sures the span of the “middle 50%” of the data.

A general function for computing any percentile in R is the quantile function.
For example, since Q1 is the 25th percentile, you can compute it as follows:

Q1 <- quantile(penguins$body_mass_g, 0.25, na.rm = TRUE)
Q1

## 25%
## 3550

The 25% label is cute, but somewhat unnecessary, and it will mess up a later
command, so let’s get rid of it:
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Q1 <- unname(Q1)
Q1

## [1] 3550

Exercise 2(a) Now you compute Q3.

# Add code here to compute, store, and print out Q3

Exercise 2(b) Reassign Q3 using the unname command as we did above to
strip the unnecessary label.

# Add code here that uses the unname command

Exercise 2(c) Finally, check that the IQR calculated above matches the value
you get from subtracting Q3 minus Q1.

# Add code here to compute Q3 - Q1.

The median and the IQR should always be reported together.

Also, don’t mix and match. For example, it doesn’t really make sense to report
the mean and the IQR. Nor should you report the median and the standard de-
viation. They go together in pairs: either the mean and the standard deviation
together, or the median and the IQR together.

4.3.3 Robust statistics

Some statistics are more sensitive than others to features of the data. For
example, outliers are data points that are far away from the bulk of the data.
The mean and especially the standard deviation can change a lot when outliers
are present. Also, skewness in the data frequently pulls the mean too far in
the direction of the skew while simultaneously inflating the standard deviation.
(We’ll learn more about skewed data later in this chapter.)

On the other hand, the median and IQR are “robust”, meaning that they do
not change much (or at all) in the presence of outliers and they tend to be good
summaries even for skewed data.
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Exercise 3 Explain why the median and IQR are robust. In other words,
why does an outlier have little or no influence on the median and IQR?

Please write up your answer here.

4.3.4 Five-number summary

A five-number summary is the minimum, Q1, median, Q3, and maximum of a
set of numbers.

The summary command in R gives you the five-number summary, and throws in
the mean for good measure. (Note that it does not require na.rm = TRUE!)

summary(penguins$body_mass_g)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2700 3550 4050 4202 4750 6300 2

You can, of course, isolate the various pieces of this. You already know most
of the commands below. (These individual commands all do require na.rm =
TRUE.)

min(penguins$body_mass_g, na.rm = TRUE)

## [1] 2700

median(penguins$body_mass_g, na.rm = TRUE)

## [1] 4050

max(penguins$body_mass_g, na.rm = TRUE)

## [1] 6300

Remember the quantile function from earlier, where we computed Q1? We’re
going to use it in a new way. Instead of what we did earlier,

quantile(penguins$body_mass_g, 0.25, na.rm = TRUE),

what about this instead?
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quantile(penguins$body_mass_g, na.rm = TRUE)

## 0% 25% 50% 75% 100%
## 2700 3550 4050 4750 6300

Exercise 4 What is the difference between the way quantile was used in a
previous exercise versus the way it was used here? How did that change the
output?

Please write up your answer here.

Also, don’t forget about the trick for using R commands inline. If you need to
mention a statistic in the middle of a sentence, there is no need to break the
sentence and display a code chunk. Be sure you’re looking at the R notebook
file (not the HTML file) to note that the numbers in the next sentence are not
manually entered, but are calculated on the fly:

There are 344 penguins in this data set and their median body mass is 4050
grams.

Exercise 5 Type a full, contextually meaningful sentence using inline R code
(as above, but changing the commands) reporting the minimum and maximum
body mass (in grams) in our data set.

Please write up your answer here.

4.4 Graphing one numerical variable

From the penguins data, let’s consider again the body mass in grams. This is
clearly a numerical variable.

The single most useful display of a single numerical variable is a histogram.
Here is the ggplot command to do that:

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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4.4.1 The shape of data

The way histograms work is to create “bins”, which are ranges of numbers along
the x-axis. R goes through the data and counts how many observations fall into
each bin. In that way, a histogram is somewhat like a bar chart. However, a bar
chart uses bars to represent distinct, discrete categories, whereas a histogram
uses bars that are all next to each other to represent values along a continuous
numerical range. Histograms are meant to give you–at a quick glance–a sense
of the “shape” of the data.

What do we mean by “shape”? Generally, we look for three things:

1. Modes

• Modes are peaks in the data. These are places where data tends to cluster,
representing common values of the numerical variable. In the penguin
data, there appears to be a big mode between about 3500 and 4000 grams.
When data has one clear mode, we call the data unimodal. But data can
also be bimodal, or more generally, multimodal. This often happens when
the data contains multiple groups that are different from each other. In
this case, we know there are three species of penguin in the data, so if those
species are drastically different in their body mass, we might be looking
at multimodal data. We’ll explore this question more later in the chapter.
For now, it’s hard to say what’s going on because the above histogram has
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a lot of spiky bars popping up all over. It’s not completely obvious how
many modes there might be.

2. Symmetry

• If there is one mode, we can also ask if the data is spread evenly to the
left and right of that mode. If so, we call the data symmetric. No data is
perfectly symmetric, but we are looking for overall balance between the
areas to the left and right of the mode. When data is not symmetric, we
call is skewed. Assuming that there is one big mode around 3500 or 4000,
the body mass data above is skewed. There is clearly more data above
the mode than below the mode. The right side of the histogram stretches
out further to the right of the mode than to the left. Therefore, the body
mass data is right-skewed. There is a longer “tail” to the right. If it were
the opposite, it would be left-skewed. It is common for beginning students
to confuse these two terms. Be aware that we are not concerned about
where the mode is. We want to know which side has more data spread
into a longer tail. That is the direction of the skewness.

3. Outliers.

• Outliers are data points that are far from the bulk of the data. The body
mass data above appears to have no outliers. We are looking for a large
gap between the main “mass” of data and any lingering data points far
away from that mass. There is no such large gap in the histogram above.

Whenever you are asked about the “shape” of a numerical variable,
be sure to comment on (1) modes, (2) symmetry, and (3) outliers.
Generally, the default binning for ggplot histograms is not great. This is by
design. The creator of the gglot2 package, Hadley Wickham, said the following:

“In ggplot2, a very simple heuristic is used for the default number of
bins: it uses 30, regardless of the data. This is perverse, and ignores
all of the research on selecting good bin sizes automatically, but
sends a clear message to the user that he or she needs to think about,
and experiment with, the bin width. This message is reinforced with
a warning that reminds the user to manually adjust the bin width.”

Indeed, if you look at the output from the graphing command above, you can see
that ggplot informs you that you should pick a better value for the binwidth.
You can also see that the bins aren’t ideal. They are too narrow, which means
that arbitrary differences between bins show up as “random” spikes all over the
graph. These spikes can confuse the issue of how many modes appear in the
data.
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Instead, we should aim to use bins that show the overall shape of the data and
smooth it out a bit. Look back at the scale of the x-axis to assess how wide
each bar should be. There’s no one correct answer. In this case, the bins ought
to be a little wider. Since our x-axis goes from about 2500 to 6500, maybe we
should try a binwidth of 250. And if 250 doesn’t look good, nothing prevents
us from trying a different number.

It’s also easier to interpret the histogram when the bins’ edges line up with
numbers that are easy to see in the plot. Use boundary to determine where you
want the bin boundaries to fall. For example, if we set the boundary to 3500,
that means that one bar will start with its left edge at 3500. This is convenient
because there is a tick mark labeled there on the x-axis. The boundary number
is pretty arbitrary; once one boundary is set, it determines where all the other
bins will line up. With a binwidth of 250, we’d get the same graph if the
boundary were set to 3000 or 3250 or 5750, or even 0. Any other multiple of
250 would give the same graph.

We use binwidth and boundary inside the parentheses of the geom_histogram
to modify these parameters.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 250, boundary = 3500)

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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Even with the smoother look, it appears that there are multiple modes, maybe
three? Do these correspond to the three species of penguin? Stay tuned.

Exercise 6(a) Here is a histogram of the penguin bill lengths (measured in
millimeters):

ggplot(penguins, aes(x = bill_length_mm)) +
geom_histogram(binwidth = 6, boundary = 30)

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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Write a short paragraph describing the shape of the distribution of penguin
bill lengths, focusing on the three key shape features (modes, symmetry, and
outliers).

Please write up your answer here.

Exercise 6(b) The last question was a trick question!

Change the binwidth (no need to change the boundary) to something smaller
to see more clearly the bimodal nature of the distribution.
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# Add code here that changes the binwidth of the last histogram to see
# the bimodal nature of the distribution.

Exercise 7(a) Make a histogram of the variable flipper_length_mm. Start
with a histogram where you don’t modify the binwidth or boundary.

# Add code here to create a histogram of flipper length

Exercise 7(b) By examining the scale on the x-axis above, repeat the com-
mand, but this time change the binwidth and the boundary until you are satis-
fied that the bins are neither too wide nor too narrow.

# Add code here to modify the histogram of flipper length,
# adding binwidth and boundary

Exercise 7(c) Write a short paragraph describing the shape of the distribu-
tion of penguin flipper lengths, focusing on the three key shape features (modes,
symmetry, and outliers).

Please write up your answer here.

4.4.2 Less useful plot types

There are several other graph types that one might see for a single numerical
variable: e.g., dotplots, stem-and-leaf plots, boxplots, etc. I’m not a big fan of
dotplots or stem-and-leaf plots as they are just messier versions of histograms.
I do like boxplots, but they are typically less informative than histograms. Box-
plots are much better for comparing groups, and we’ll see them later in the
chapter.

4.5 Graphing two numerical variables

The proper graph for two numerical variables is a scatterplot. We graph the
response variable on the y-axis and the predictor variable on the x-axis.

Let’s consider a possible association between bill length and body mass. For
this question, there is not really a strong preference for which variable serves as
response and which variable servers as predictor. We’ll consider bill length as
the response variable and body mass as the predictor.

Since we are plotting two variables, we have two aesthetics, one on the y-axis
(the response variable) and one on the x-axis (the predictor variable). Since
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scatterplots use points to plot each data value, the correct layer to add is
geom_point().

ggplot(penguins, aes(y = bill_length_mm, x = body_mass_g)) +
geom_point()

## Warning: Removed 2 rows containing missing values (`geom_point()`).
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We are looking for evidence of a relationship between the two variables. This
will manifest as a pattern in the data. We are interested in answering the
following questions:

1. Linearity

• Is the association linear? In other words, do the data points lie roughly
in a straight line pattern? The scatterplot above is a bit “cloudy” but
generally moves from lower left to upper right in a straight (not curved
pattern). It’s not a completely random scatter of dots.

2. Direction

• If the pattern is linear, it is a positive relationship or a negative one?
Positive means that the line moves from lower left to upper right. Negative
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means it moves from upper left to lower right. If you recall the direction
of slopes from high school algebra class, a positive association corresponds
to a line with a positive slope, and similarly for a negative association. In
the data above, lower values of body mass correspond to lower bill lengths,
and higher values of body mass correspond to higher bill lengths. So this
is a positive association.

3. Strength

• If there is a pattern, how tight is the pattern? Do the data points stay
close to a straight line, or are they pretty spread out and only generally
moving in one direction. A strong relationship is one that is tightly packed
around a line or curve. The relationship above is not strong. We might
use terms like “weak”, “moderately weak”, or “moderate”, but definitely
not strong.

4. Outliers

• Are there outliers? These will be points that are isolated and relatively
far from the bulk of the data. There are a few points above that are
borderline, but none is a particularly strong outlier, especially give how
spread out the rest of the data is.

Exercise 8 Here is a scatterplot of

ggplot(penguins, aes(y = flipper_length_mm, x = body_mass_g)) +
geom_point()

## Warning: Removed 2 rows containing missing values (`geom_point()`).
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Write a short paragraph describing the association of penguin flipper lengths
and body mass, focusing on the four key features (linearity, direction, strength,
and outliers).

Please write up your answer here.

4.6 Graphing grouped numerical data

Suppose you want to analyze one numerical variable and one categorical variable.
Usually, the idea here is that the categorical variable divides up the data into
groups and you are interested in understanding the numerical variable for each
group separately. Another way to say this is that your numerical variable is
response and your categorical variable is predictor. (It is also possible for a
categorical variable to be response and a numerical variable to be predictor.
This is common in so-called “classification” problems. We will not cover this
possibility in this course, but it is covered in more advanced courses.)

This turns out to be exactly what we need in the penguins data. Throughout
the above exercises, there was a concern that the penguin measurements are
fundamentally different among three different species of penguin.

Graphically, there are two good options here. The first is a side-by-side boxplot.

ggplot(penguins, aes(y = body_mass_g, x = species)) +
geom_boxplot()
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## Warning: Removed 2 rows containing non-finite values (`stat_boxplot()`).
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Notice the placement of the variables. The y-axis is body_mass_g, the numerical
variable. The x-axis variable is species; the groups are placed along the x-axis.
This is consistent with other graph types that place the response variable on
the y-axis and the predictor variable on the x-axis.

The other possible graph is a stacked histogram. This uses a feature called
“faceting” that creates a different plot for each group. The syntax is a little
unusual.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram() +
facet_grid(species ~ .)

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).



100 CHAPTER 4. NUMERICAL DATA
A

delie
C

hinstrap
G

entoo

2500 3500 4500 5500 6500

0

5

10

15

0

5

10

15

0

5

10

15

body_mass_g

co
un

t

The argument species ~ . in the facet_grid function means, “Put each
species on a different row.” We’ll explore this notation a little later.

As always, the default bins suck, so let’s change them.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 250, boundary = 3500) +
facet_grid(species ~ .)

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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Consider the following subtle change in notation:

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 250, boundary = 3500) +
facet_grid(. ~ species)

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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Exercise 9(a) Explain why that last graph (which might be called a side-
by-side histogram) is less effective than the earlier stacked histogram. (Hint:
what stays lined up when the histograms are stacked vertically rather than
horizontally?)

Please write up your answer here.

Exercise 9(b) Can you figure out what’s going on with the weird syntax of
species ~ . vs . ~ species? Explain it in your own words.

Please write up your answer here.

The other thing that kind of sucks is the fact that the y-axis is showing counts.
That makes it harder to see the distribution of body mass among Chinstrap
penguins, for example, as there are fewer of them in the data set. It would be
nice to scale these using percentages.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(aes(y = ..density..),

binwidth = 250, boundary = 3500) +
facet_grid(species ~ .)
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## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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Due to some technical issues in ggplot2, these are not strictly proportions. (If
you were to add up the heights of all the bars, they would not add up to 100%.)
Nevertheless, the graph is still useful because it does scale the groups to put
them on equal footing. In other words, it treats each group as if they all had
the same sample size.

Exercise 10 Choose a numerical variable that’s not body mass and a cat-
egorical variable that’s not species from the penguins data set. Make both
a side-by-side boxplot and a stacked histogram. Discuss the resulting graphs.
Comment on the association (or independence) of the two variables. If there
is an association, be sure to focus on the four key features (linearity, direction,
strength, and outliers).

# Add code here to create a side-by-side boxplot.

# Add code here to create a stacked histogram.

Please write up your answer here.
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4.7 Publication-ready graphics

The great thing about ggplot2 graphics is that they are already quite pretty.
To take them from exploratory data analysis to the next level, there are a few
things we can do to tidy them up.

Let’s go back to the first histogram from this chapter.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 250, boundary = 3500)

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).

0

10

20

30

40

3000 4000 5000 6000
body_mass_g

co
un

t

The variable names of this data set are already pretty informative, but we can
do a little better with labs (for labels). Observe:

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 250, boundary = 3500) +
labs(title = "Distribution of body mass for adult foraging penguins near

Palmer Station, Antarctica",
x = "Body mass (in grams)",
y = "Count")

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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You can also see that we took the opportunity to mention the units of measure-
ment (grams) for our variable in the x-axis label. This is good practice.

A quick note about formatting in R code chunks. Notice that I put different
parts of the last ggplot command on their own separate lines. The command
would still work if I did this:

ggplot(penguins, aes(x = body_mass_g)) + geom_histogram(binwidth = 250, boundary = 3500) + labs(title = "Distribution of body mass for adult foraging penguins near Palmer Station, Antarctica", x = "Body mass (in grams)", y = "Count")

## Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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But it’s much harder to read. If you find that your code is “wrapping” to the
next line, find some spots like commas or plus signs to break the code. Be sure
to break the line after the comma or plus sign.

Exercise 11 Modify the following scatterplot by adding a title and labels for
both the y-axis and x-axis.

# Modify the following scatterplot by adding a title and
# labels for both the y-axis and x-axis.
ggplot(penguins, aes(y = bill_length_mm, x = bill_depth_mm)) +

geom_point()

## Warning: Removed 2 rows containing missing values (`geom_point()`).
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Exercise 12 The previous scatterplot looked a little funny due to some odd
groupings that we suspect (as usual) might be due to multiple species being
measures. Add a new aesthetic (so, inside the parentheses following aes) to the
following code to assign color = species. Comment on what you see.

# Modify the code below to add color = species
ggplot(penguins, aes(y = bill_length_mm, x = bill_depth_mm)) +

geom_point()

## Warning: Removed 2 rows containing missing values (`geom_point()`).
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Please write up your answer here.

Every part of the graph can be customized, from the color scheme to the tick
marks on the axes, to the major and minor grid lines that appear on the back-
ground. We won’t go into all that, but you can look at the ggplot2 documenta-
tion online and search Google for examples if you want to dig in and figure out
how to do some of that stuff. However, the default options are often (but not
always) the best, so be careful that your messing around doesn’t inadvertently
make the graph less clear or less appealing.

4.8 Conclusion

Summary statistics are simple numbers that describe and summarize data sets.
Measures of center tell us where the “middle” of our numerical data lies, and
measures of spread tell us how spread out our numerical data is. These measures
should always be reported in pairs, for example the mean/standard deviation,
or the median/IQR.
The ggplot2 package with its ggplot command is a very versatile tool for cre-
ating nice graphs relatively easily. For a single numerical variable, the standard
graph type is a histogram. For two numerical variables, use a scatterplot. For a
numerical response with a categorical predictor, use either a side-by-side boxplot
or a stacked histogram.

http://ggplot2.tidyverse.org/
http://ggplot2.tidyverse.org/
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4.8.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 5

Manipulating data

2.0

Functions introduced in this chapter

read_csv, select, rename, rm, filter, slice, arrange, mutate, all.equal,
ifelse, transmute, summarise, group_by, %>%, count

5.1 Introduction

This tutorial will import some data from the web and then explore it using
the amazing dplyr package, a package which is quickly becoming the de facto
standard among R users for manipulating data. It’s part of the tidyverse that
we’ve already used in several chapters.

5.1.1 Install new packages

There are no new packages used in this chapter.

5.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/05-manipulating_data.Rmd

111
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Once the file is downloaded, move it to your project folder in RStudio and open
it there.

5.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

5.1.4 Load packages

We load the tidyverse package as usual, but this time it is to give us access
to the dplyr package, which is loaded alongside our other tidyverse packages
like ggplot2. The tidyverse also has a package called readr that will allow
us to import data from an external source (in this case, a web site).

library(tidyverse)

5.2 Importing CSV data

For most of the chapters, we use data sets that are either included in base R or
included in a package that can be loaded into R. But it is useful to see how to
get a data set from outside the R ecosystem. This depends a lot on the format
of the data file, but a common format is a “comma-separated values” file, or
CSV file. If you have a data set that is not formatted as a CSV file, it is usually
pretty easy to open it in something like Google Spreadsheets or Microsoft Excel
and then re-save it as a CSV file.

The file we’ll import is a random sample from all the commercial domestic flights
that departed from Houston, Texas, in 2011.

We use the read_csv command to import a CSV file. In this case, we’re grab-
bing the file from a web page where the file is hosted. If you have a file on your
computer, you can also put the file into your project directory and import it
from there. Put the URL (for a web page) or the filename (for a file in your
project directory) in quotes inside the read_csvcommand. We also need to
assign the output to a tibble, so we’ve called it hf for “Houston flights”.

hf <- read_csv("https://vectorposse.github.io/intro_stats/data/hf.csv")

## Rows: 22758 Columns: 21
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (5): UniqueCarrier, TailNum, Origin, Dest, CancellationCode
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## dbl (16): Year, Month, DayofMonth, DayOfWeek, DepTime, ArrTime, FlightNum, A...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

hf

## # A tibble: 22,758 x 21
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 12 3 1419 1515 AA 428
## 2 2011 1 17 1 1530 1634 AA 428
## 3 2011 1 24 1 1356 1513 AA 428
## 4 2011 1 9 7 714 829 AA 460
## 5 2011 1 18 2 721 827 AA 460
## 6 2011 1 22 6 717 829 AA 460
## 7 2011 1 11 2 1953 2051 AA 533
## 8 2011 1 14 5 2119 2229 AA 533
## 9 2011 1 26 3 2009 2103 AA 533
## 10 2011 1 14 5 1629 1734 AA 1121
## # i 22,748 more rows
## # i 13 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>

glimpse(hf)

## Rows: 22,758
## Columns: 21
## $ Year <dbl> 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011~
## $ Month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ DayofMonth <dbl> 12, 17, 24, 9, 18, 22, 11, 14, 26, 14, 18, 20, 3, 12~
## $ DayOfWeek <dbl> 3, 1, 1, 7, 2, 6, 2, 5, 3, 5, 2, 4, 1, 3, 6, 4, 1, 3~
## $ DepTime <dbl> 1419, 1530, 1356, 714, 721, 717, 1953, 2119, 2009, 1~
## $ ArrTime <dbl> 1515, 1634, 1513, 829, 827, 829, 2051, 2229, 2103, 1~
## $ UniqueCarrier <chr> "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA"~
## $ FlightNum <dbl> 428, 428, 428, 460, 460, 460, 533, 533, 533, 1121, 1~
## $ TailNum <chr> "N577AA", "N518AA", "N531AA", "N586AA", "N558AA", "N~
## $ ActualElapsedTime <dbl> 56, 64, 77, 75, 66, 72, 58, 70, 54, 65, 135, 144, 64~
## $ AirTime <dbl> 41, 48, 43, 51, 46, 47, 44, 45, 39, 47, 114, 111, 46~
## $ ArrDelay <dbl> 5, 84, 3, -6, -8, -6, -29, 69, -17, -11, 39, -1, -2,~
## $ DepDelay <dbl> 19, 90, -4, -6, 1, -3, -12, 74, 4, -1, 44, -5, -1, 1~
## $ Origin <chr> "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "IA~
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## $ Dest <chr> "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "DF~
## $ Distance <dbl> 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 96~
## $ TaxiIn <dbl> 4, 8, 6, 11, 7, 18, 3, 5, 9, 8, 7, 20, 5, 8, 8, 7, 4~
## $ TaxiOut <dbl> 11, 8, 28, 13, 13, 7, 11, 20, 6, 10, 14, 13, 13, 10,~
## $ Cancelled <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ CancellationCode <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
## $ Diverted <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~

The one disadvantage of a file imported from the internet or your computer is
that it does not come with a help file. (Only packages in R have help files.)
Hopefully you have access to some kind of information about the data you’re
importing. In this case, we get lucky because the full Houston flights data set
happens to be available in a package called hflights.

Exercise 1 Go to the help tab in RStudio and search for hflights. Of the
several options that appear, click the one from the hflights package (listed as
hflights::hflights). Review the help file so you know what all the variables
mean. Report below how many cases are in the original hflights data. What
fraction of the original data has been sampled in the CSV file we imported
above?

Please write up your answer here.

5.3 Introduction to dplyr

The dplyr package (pronounced “dee-ply-er”) contains tools for manipulating
the rows and columns of tibbles. The key to using dplyr is to familiarize yourself
with the “key verbs”:

• select (and rename)
• filter (and slice)
• arrange
• mutate (and transmute)
• summarise (with group_by)

We’ll consider these one by one. We won’t have time to cover every aspect of
these functions. More information appears in the help files, as well as this very
helpful “cheat sheet”: https://raw.githubusercontent.com/rstudio/cheatsheets/
main/data-transformation.pdf

https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-transformation.pdf
https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-transformation.pdf


5.4. SELECT 115

5.4 select

The select verb is very easy. It just selects some subset of variables (the
columns of your data set).

The select command from the dplyr package illustrates one of the common
issues R users face. Because the word “select” is pretty common, and selecting
things is a common task, there are multiple packages that have a function called
select. Depending on the order in which packages were loaded, R might get
confused as to which version of select you want and try to apply the wrong
one. One way to get the correct version is to specify the package in the syntax.
Instead of typing select, we can type dplyr::select to ensure we get the
version from the dplyr package. We’ll do this in all future uses of the select
function. (The other functions in this chapter don’t cause us trouble because
we don’t use any other packages whose functions conflict like this.)

Suppose all we wanted to see was the carrier, origin, and destination. We would
type

hf_select <- dplyr::select(hf, UniqueCarrier, Origin, Dest)
hf_select

## # A tibble: 22,758 x 3
## UniqueCarrier Origin Dest
## <chr> <chr> <chr>
## 1 AA IAH DFW
## 2 AA IAH DFW
## 3 AA IAH DFW
## 4 AA IAH DFW
## 5 AA IAH DFW
## 6 AA IAH DFW
## 7 AA IAH DFW
## 8 AA IAH DFW
## 9 AA IAH DFW
## 10 AA IAH DFW
## # i 22,748 more rows

A brief but important aside here: there is nothing special about the variable
name hf_select. I could have typed

beef_gravy <- dplyr::select(hf, UniqueCarrier, Origin, Dest)

and it would work just as well. Generally speaking, though, you want to give
variables a name that reflects the intent of your analysis.

Also, it is important to assign the result to a new variable. If I had
typed
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hf <- dplyr::select(hf, UniqueCarrier, Origin, Dest)

this would have overwritten the original tibble hf with this new version with
only three variables. I want to preserve hf because I want to do other things
with the entire data set later. The take-home message here is this: Major
modifications to your data should generally be given a new variable
name. There are caveats here, though. Every time you create a new variable,
you also fill up more memory with your creation. If you check your Global
Environment, you’ll see that both hf and hf_select are sitting in there. We’ll
have more to say about this in a moment.

Okay, back to the select function. The first argument of select is the tibble.
After that, just list all the names of the variables you want to select.

If you don’t like the names of the variables, you can change them as part of the
select process.

hf_select <- dplyr::select(hf,
carrier = UniqueCarrier,
origin = Origin,
dest = Dest)

hf_select

## # A tibble: 22,758 x 3
## carrier origin dest
## <chr> <chr> <chr>
## 1 AA IAH DFW
## 2 AA IAH DFW
## 3 AA IAH DFW
## 4 AA IAH DFW
## 5 AA IAH DFW
## 6 AA IAH DFW
## 7 AA IAH DFW
## 8 AA IAH DFW
## 9 AA IAH DFW
## 10 AA IAH DFW
## # i 22,748 more rows

(Note here that I am overwriting hf_select which had been defined slightly
differently before. However, these two versions of hf_select are basically the
same object, so no need to keep two copies here.)

There are a few notational shortcuts. For example, see what the following do.

hf_select2 <- dplyr::select(hf, DayOfWeek:UniqueCarrier)
hf_select2
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## # A tibble: 22,758 x 4
## DayOfWeek DepTime ArrTime UniqueCarrier
## <dbl> <dbl> <dbl> <chr>
## 1 3 1419 1515 AA
## 2 1 1530 1634 AA
## 3 1 1356 1513 AA
## 4 7 714 829 AA
## 5 2 721 827 AA
## 6 6 717 829 AA
## 7 2 1953 2051 AA
## 8 5 2119 2229 AA
## 9 3 2009 2103 AA
## 10 5 1629 1734 AA
## # i 22,748 more rows

hf_select3 <- dplyr::select(hf, starts_with("Taxi"))
hf_select3

## # A tibble: 22,758 x 2
## TaxiIn TaxiOut
## <dbl> <dbl>
## 1 4 11
## 2 8 8
## 3 6 28
## 4 11 13
## 5 7 13
## 6 18 7
## 7 3 11
## 8 5 20
## 9 9 6
## 10 8 10
## # i 22,748 more rows

Exercise 2 What is contained in the new tibbles hf_select2 and
hf_select3? In other words, what does the colon (:) appear to do and
what does starts_with appear to do in the select function?
Please write up your answer here.

The cheat sheet shows a lot more of these “helper functions” if you’re interested.
The other command that’s related to select is rename. The only difference
is that select will throw away any columns you don’t select (which is what
you want and expect, typically), whereas rename will keep all the columns, but
rename those you designate.
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Exercise 3 Putting a minus sign in front of a variable name in the select
command will remove the variable. Create a tibble called hf_select4 that
removes Year, DayofMonth, DayOfWeek, FlightNum, and Diverted. (Be careful
with the unusual—and inconsistent!—capitalization in those variable names.)
In the second part of the code chunk below, type hf_select4 so that the tibble
prints to the screen (just like in all the above examples).

# Add code here to define hf_select4.
# Add code here to print hf_select4.

5.5 The rm command

Recall that earlier we mentioned the pros and cons of creating a new tibble
every time we make a change. On one hand, making a new tibble instead of
overwriting the original one will keep the original one available so that we can
run different commands on it. On the other hand, making a new tibble does
eat up a lot of memory.

One way to get rid of an object once we are done with it is the rm command,
where rm is short for “remove”. When you run the code chunk below, you’ll
see that all the tibbles we created with select will disappear from your Global
Environment.

rm(hf_select, hf_select2, hf_select3)

If you need one these tibbles back later, you can always go back and re-run the
code chunk that defined it.

We’ll use rm at the end of some of the following sections so that we don’t use
up too much memory.

Exercise 4 Remove hf_select4 (that you created in Exercise 3) from the
Global Environment.

# Add code here to remove hf_select4.

5.6 filter

The filter verb works a lot like select, but for rows instead of columns.

For example, let’s say we only want to see Delta flights. We use filter:
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hf_filter <- filter(hf, UniqueCarrier == "DL")
hf_filter

## # A tibble: 265 x 21
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 4 2 1834 2134 DL 54
## 2 2011 1 5 3 1606 1903 DL 8
## 3 2011 1 5 3 543 834 DL 1248
## 4 2011 1 7 5 1603 1902 DL 8
## 5 2011 1 7 5 1245 1539 DL 1204
## 6 2011 1 7 5 933 1225 DL 1590
## 7 2011 1 8 6 921 1210 DL 1590
## 8 2011 1 12 3 NA NA DL 1590
## 9 2011 1 13 4 928 1224 DL 1590
## 10 2011 1 13 4 656 947 DL 1900
## # i 255 more rows
## # i 13 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>

In the printout of the tibble above, if you can’t see the UniqueCarrier column,
click the black arrow on the right to scroll through the columns until you can
see it. You can click “Next” at the bottom to scroll through the rows.

Exercise 5 How many rows did we get in the hf_filter tibble? What do
you notice about the UniqueCarrier of all those rows?

Please write up your answer here.

Just like select, the first argument of filter is the name of the tibble. Follow-
ing that, you must specify some condition. Only rows meeting that condition
will be included in the output.

One thing that is unusual here is the double equal sign (UniqueCarrier ==
"DL"). This won’t be a mystery to people with programming experience, but it
tends to be a sticking point for the rest of us. A single equals sign represents
assignment. If I type x = 3, what I mean is, “Take the letter x and assign it
the value 3.” In R, we would also write x <- 3 to mean the same thing. The
first line of the code chunk below assigns x to be 3. Therefore, the following line
that just says x creates the output “3”.
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x = 3
x

## [1] 3

On the other hand, x == 3 means something completely different. This is a
logical statement that is either true or false. Either x is 3, in which case we get
TRUE or x is not 3, and we get FALSE.

x == 3

## [1] TRUE

(It’s true because we just assigned x to be 3 in the previous code chunk!)

In the above filter command, we are saying, “Give me the rows where the
value of UniqueCarrier is "DL", or, in other words, where the statement
UniqueCarrier == "DL" is true.

As another example, suppose we wanted to find out all flights that leave before
6:00 a.m.

hf_filter2 <- filter(hf, DepTime < 600)
hf_filter2

## # A tibble: 230 x 21
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 20 4 556 912 AA 1994
## 2 2011 1 21 5 555 822 CO 446
## 3 2011 1 18 2 555 831 CO 446
## 4 2011 1 16 7 556 722 CO 199
## 5 2011 1 5 3 558 1009 CO 89
## 6 2011 1 1 6 558 1006 CO 89
## 7 2011 1 5 3 543 834 DL 1248
## 8 2011 1 3 1 555 749 US 270
## 9 2011 1 6 4 556 801 US 270
## 10 2011 1 13 4 552 713 US 270
## # i 220 more rows
## # i 13 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>
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Exercise 6 Look at the help file for hflights again. Why do we have to use
the number 600 in the command above? (Read the description of the DepTime
variable.)

Please write up your answer here.

If we need two or more conditions, we use & for “and” and | for “or”. The
following will give us only the Delta flights that departed before 6:00 a.m.

hf_filter3 <- filter(hf, UniqueCarrier == "DL" & DepTime < 600)
hf_filter3

## # A tibble: 30 x 21
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 5 3 543 834 DL 1248
## 2 2011 1 16 7 542 834 DL 1248
## 3 2011 1 19 3 538 844 DL 1248
## 4 2011 1 22 6 540 850 DL 1248
## 5 2011 1 26 3 540 851 DL 1248
## 6 2011 2 12 6 538 823 DL 1248
## 7 2011 2 15 2 539 840 DL 1248
## 8 2011 2 16 3 540 829 DL 1248
## 9 2011 2 21 1 552 856 DL 1248
## 10 2011 3 2 3 557 902 DL 2375
## # i 20 more rows
## # i 13 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>

Again, check the cheat sheet for more complicated condition-checking if needed.

Exercise 7(a) The symbol != means “not equal to” in R. Use the filter
command to create a tibble called hf_filter4 that finds all flights except those
flying into Salt Lake City (“SLC”). As before, print the output to the screen.

# Add code here to define hf_filter4.
# Add code here to print hf_filter4.
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Exercise 7(b) Based on the output of the previous part, how many flights
were there flying into SLC? (In other words, how many rows were removed from
the original hf tibble to produce hf_filter4?)

Please write up your answer here.

Exercise 8 Use the rm command to remove all the extra tibbles you created
in this section with filter.

# Add code here to remove all filtered tibbles.

The slice command is related, but fairly useless in practice. It will allow you
to extract rows by position. So slice(hf, 1:10) will give you the first 10 rows.
As a general rule, the information available in a tibble should never depend on
the order in which the rows appear. Therefore, no function you run should make
any assumptions about the ordering of your data. The only reason one might
want to think about the order of data is for convenience in presenting that data
visually for someone to inspect. And that brings us to…

5.7 arrange

This just re-orders the rows, sorting on the values of one or more specified
columns. As I mentioned before, in most data analyses you work with summaries
of the data that do not depend on the order of the rows, so this is not quite as
interesting as some of the other verbs. In fact, since the re-ordering is usually
for the visual benefit of the reader, there is often no need to store the output in
a new variable. We’ll just print the output to the screen.

arrange(hf, ActualElapsedTime)

## # A tibble: 22,758 x 21
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 10 5 3 1656 1731 WN 2493
## 2 2011 4 13 3 1207 1243 WN 2025
## 3 2011 7 19 2 1043 1119 CO 1583
## 4 2011 2 22 2 1426 1503 WN 1773
## 5 2011 3 19 6 1629 1706 WN 3805
## 6 2011 5 31 2 1937 2014 WN 819
## 7 2011 7 16 6 1632 1709 WN 912
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## 8 2011 8 22 1 1708 1745 WN 1754
## 9 2011 9 30 5 1955 2032 WN 1959
## 10 2011 9 1 4 1735 1812 WN 1754
## # i 22,748 more rows
## # i 13 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>

Scroll over to the ActualElapsedTime variable in the output above (using the
black right arrow) to see that these are now sorted in ascending order.

Exercise 9 How long is the shortest actual elapsed time? Why is this flight
so short? (Hint: look at the destination.) Which airline flies that route? You
may have to use your best friend Google to look up airport and airline codes.

Please write up your answer here.

If you want descending order, do this:

arrange(hf, desc(ActualElapsedTime))

## # A tibble: 22,758 x 21
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 2 4 5 941 1428 CO 1
## 2 2011 11 8 2 937 1417 CO 1
## 3 2011 11 11 5 930 1408 CO 1
## 4 2011 12 30 5 936 1413 CO 1
## 5 2011 12 8 4 935 1410 CO 1
## 6 2011 10 17 1 938 1311 CO 1
## 7 2011 6 27 1 936 1308 CO 1
## 8 2011 3 24 4 926 1256 CO 1
## 9 2011 12 27 2 935 1405 CO 1
## 10 2011 3 9 3 933 1402 CO 1
## # i 22,748 more rows
## # i 13 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>
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Exercise 10 How long is the longest actual elapsed time? Why is this flight
so long? Which airline flies that route? Again, you may have to use your best
friend Google to look up airport and airline codes.

Please write up your answer here.

Exercise 11(a) You can sort by multiple columns. The first column listed
will be the first in the sort order, and then within each level of that first variable,
the next column will be sorted, etc. Print a tibble that sorts first by destination
(Dest) and then by arrival time (ArrTime), both in the default ascending order.

# Add code here to sort hf first by Dest and then by ArrTime.

Exercise 11(b) Based on the output of the previous part, what is the first
airport code alphabetically and to what city does it correspond? (Use Google if
you need to link the airport code to a city name.) At what time did the earliest
flight to that city arrive?

Please write up your answer here.

5.8 mutate

Frequently, we want to create new variables that combine information from one
or more existing variables. We use mutate for this. For example, suppose we
wanted to find the total time of the flight. We might do this by adding up the
minutes from several variables: TaxiOut, AirTime, and TaxiIn, and assigning
that sum to a new variable called total. Scroll all the way to the right in the
output below (using the black right arrow) to see the new total variable.

hf_mutate <- mutate(hf, total = TaxiOut + AirTime + TaxiIn)
hf_mutate

## # A tibble: 22,758 x 22
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 12 3 1419 1515 AA 428
## 2 2011 1 17 1 1530 1634 AA 428
## 3 2011 1 24 1 1356 1513 AA 428
## 4 2011 1 9 7 714 829 AA 460
## 5 2011 1 18 2 721 827 AA 460
## 6 2011 1 22 6 717 829 AA 460
## 7 2011 1 11 2 1953 2051 AA 533
## 8 2011 1 14 5 2119 2229 AA 533
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## 9 2011 1 26 3 2009 2103 AA 533
## 10 2011 1 14 5 1629 1734 AA 1121
## # i 22,748 more rows
## # i 14 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>, total <dbl>

As it turns out, that was wasted effort because that variable already exists in
ActualElapsedTime. The all.equal command below checks that both speci-
fied columns contain the exact same values.

all.equal(hf_mutate$total, hf$ActualElapsedTime)

## [1] TRUE

Perhaps we want a variable that just classifies a flight as arriving late or not.
Scroll all the way to the right in the output below to see the new late variable.

hf_mutate2 <- mutate(hf, late = (ArrDelay > 0))
hf_mutate2

## # A tibble: 22,758 x 22
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 12 3 1419 1515 AA 428
## 2 2011 1 17 1 1530 1634 AA 428
## 3 2011 1 24 1 1356 1513 AA 428
## 4 2011 1 9 7 714 829 AA 460
## 5 2011 1 18 2 721 827 AA 460
## 6 2011 1 22 6 717 829 AA 460
## 7 2011 1 11 2 1953 2051 AA 533
## 8 2011 1 14 5 2119 2229 AA 533
## 9 2011 1 26 3 2009 2103 AA 533
## 10 2011 1 14 5 1629 1734 AA 1121
## # i 22,748 more rows
## # i 14 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>, late <lgl>

This one is a little tricky. Keep in mind that ArrDelay > 0 is a logical condi-
tion that is either true or false, so that truth value is what is recorded in the
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late variable. If the arrival delay is a positive number of minutes, the flight is
considered “late”, and if the arrival delay is zero or negative, it’s not late.
If we would rather see more descriptive words than TRUE or FALSE, we have to
do something even more tricky. Look at the late variable in the output below.

hf_mutate3 <- mutate(hf,
late = as_factor(ifelse(ArrDelay > 0,

"Late", "On time")))
hf_mutate3

## # A tibble: 22,758 x 22
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 12 3 1419 1515 AA 428
## 2 2011 1 17 1 1530 1634 AA 428
## 3 2011 1 24 1 1356 1513 AA 428
## 4 2011 1 9 7 714 829 AA 460
## 5 2011 1 18 2 721 827 AA 460
## 6 2011 1 22 6 717 829 AA 460
## 7 2011 1 11 2 1953 2051 AA 533
## 8 2011 1 14 5 2119 2229 AA 533
## 9 2011 1 26 3 2009 2103 AA 533
## 10 2011 1 14 5 1629 1734 AA 1121
## # i 22,748 more rows
## # i 14 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>, late <fct>

The as_factor command tells R that late should be a categorical variable.
Without it, the variable would be a “character” variable, meaning a list of
character strings. It won’t matter for us here, but in any future analysis, you
want categorical data to be treated as such by R.
The main focus here is on the ifelse construction. The ifelse function takes
a condition as its first argument. If the condition is true, it returns the value in
the second slot, and if it’s false (the “else” part of if/else), it returns the value
in the third slot. In other words, if ArrDelay > 0, this means the flight is late,
so the new late variable should say “Late”; whereas, if ArrDelay is not greater
than zero (so either zero or possibly negative if the flight arrived early), then
the new variable should say “On Time”.
Having said that, I would generally recommend that you leave these kinds of
variables as logical types. It’s much easier to summarize such variables in R,
namely because R treats TRUE as 1 and FALSE as 0, allowing us to do things like
this:
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mean(hf_mutate2$late, na.rm = TRUE)

## [1] 0.4761522

This gives us the proportion of late flights.

Note that we needed na.rm as you’ve seen in previous chapter. For example,
look at the 93rd row of the tibble:

slice(hf_mutate2, 93)

## # A tibble: 1 x 22
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 2011 1 27 4 NA NA CO 258
## # i 14 more variables: TailNum <chr>, ActualElapsedTime <dbl>, AirTime <dbl>,
## # ArrDelay <dbl>, DepDelay <dbl>, Origin <chr>, Dest <chr>, Distance <dbl>,
## # TaxiIn <dbl>, TaxiOut <dbl>, Cancelled <dbl>, CancellationCode <chr>,
## # Diverted <dbl>, late <lgl>

Notice that all the times are missing. There are a bunch of rows like this. Since
there is not always an arrival delay listed, the ArrDelay variable doesn’t always
have a value, and if ArrDelay is NA, the late variable will be too. So if we try
to calculate the mean with just the mean command, this happens:

mean(hf_mutate2$late)

## [1] NA

Exercise 12 Why does taking the mean of a bunch of zeros and ones give us
the proportion of ones? (Think about the formula for the mean. What happens
when we take the sum of all the zeros and ones, and what happens when we
divide by the total?)

Please write up your answer here.

Exercise 13 Create a new tibble called hf_mutate4 that uses the mutate
command to create a new variable called dist_k which measures the flight
distance in kilometers instead of miles. (Hint: to get from miles to kilometers,
multiply the distance by 1.60934.) Print the output to the screen.



128 CHAPTER 5. MANIPULATING DATA

# Add code here to define hf_mutate4.
# Add code here to print hf_mutate4.

A related verb is transmute. The only difference between mutate and
transmute is that mutate creates the new column(s) and keeps all the old
ones too, whereas transmute will throw away all the columns except the newly
created ones. This is not something that you generally want to do, but there
are exceptions. For example, if I was preparing a report and I needed only to
talk about flights being late or not, it would do no harm (and would save some
memory) to throw away everything except the late variable.
Before moving on to the next section, we’ll clean up the extra tibbles lying
around. You’ll need to manually click the run button in the next code chunk
since you have defined hf_mutate4.

rm(hf_mutate, hf_mutate2, hf_mutate3, hf_mutate4)

## Warning in rm(hf_mutate, hf_mutate2, hf_mutate3, hf_mutate4): object
## 'hf_mutate4' not found

5.9 summarise (with group_by)

First, before you mention that summarise is spelled wrong…well, the author of
the dplyr package is named Hadley Wickham (same author as the ggplot2
package) and he is from New Zealand. So that’s the way he spells it. He was
nice enough to include the summarize function as an alias if you need to use it
’cause this is ’Murica!
The summarise function, by itself, is kind of boring, and doesn’t do anything
that couldn’t be done more easily with base R functions.

summarise(hf, mean(Distance))

## # A tibble: 1 x 1
## `mean(Distance)`
## <dbl>
## 1 791.

mean(hf$Distance)

## [1] 790.5861
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Where summarise shines is in combination with group_by. For example, let’s
suppose that we want to see average flight distances, but broken down by airline.
We can do the following:

hf_summ_grouped <- group_by(hf, UniqueCarrier)
hf_summ <- summarise(hf_summ_grouped, mean(Distance))
hf_summ

## # A tibble: 15 x 2
## UniqueCarrier `mean(Distance)`
## <chr> <dbl>
## 1 AA 470.
## 2 AS 1874
## 3 B6 1428
## 4 CO 1097.
## 5 DL 723.
## 6 EV 788.
## 7 F9 883
## 8 FL 686.
## 9 MQ 701.
## 10 OO 823.
## 11 UA 1204.
## 12 US 982.
## 13 WN 613.
## 14 XE 590.
## 15 YV 982.

5.9.1 Piping

This is a good spot to introduce a time-saving and helpful device called “piping”,
denoted by the symbol %>%. We’ve seen this weird combination of symbols in
past chapters, but we haven’t really explained what they do.
Piping always looks more complicated than it really is. The technical definition
is that
x %>% f(y)

is equivalent to
f(x, y).
As a simple example, we could add two numbers like this:

sum(2, 3)

## [1] 5



130 CHAPTER 5. MANIPULATING DATA

Or using the pipe, we could do it like this:

2 %>% sum(3)

## [1] 5

All this is really saying is that the pipe takes the thing on its left, and plugs it
into the first slot of the function on its right. So why do we care?

Let’s revisit the combination group_by/summarise example above. There are
two ways to do this without pipes, and both are a little ugly. One way is above,
where you have to keep reassigning the output to new variables (in the case
above, to hf_summ_grouped and then hf_summ). The other way is to nest the
functions:

summarise(group_by(hf, UniqueCarrier), mean(Distance))

## # A tibble: 15 x 2
## UniqueCarrier `mean(Distance)`
## <chr> <dbl>
## 1 AA 470.
## 2 AS 1874
## 3 B6 1428
## 4 CO 1097.
## 5 DL 723.
## 6 EV 788.
## 7 F9 883
## 8 FL 686.
## 9 MQ 701.
## 10 OO 823.
## 11 UA 1204.
## 12 US 982.
## 13 WN 613.
## 14 XE 590.
## 15 YV 982.

This requires a lot of brain power to parse. In part, this is because the function
is inside-out: first you group hf by UniqueCarrier, and then the result of that
is summarized. Here’s how the pipe fixes it:

hf %>%
group_by(UniqueCarrier) %>%
summarise(mean(Distance))



5.9. SUMMARISE (WITH GROUP_BY) 131

## # A tibble: 15 x 2
## UniqueCarrier `mean(Distance)`
## <chr> <dbl>
## 1 AA 470.
## 2 AS 1874
## 3 B6 1428
## 4 CO 1097.
## 5 DL 723.
## 6 EV 788.
## 7 F9 883
## 8 FL 686.
## 9 MQ 701.
## 10 OO 823.
## 11 UA 1204.
## 12 US 982.
## 13 WN 613.
## 14 XE 590.
## 15 YV 982.

Look at the group_by line. The group_by function should take two arguments,
the tibble, and then the grouping variable. It appears to have only one argu-
ment. But look at the previous line. The pipe says to insert whatever is on its
left (hf) into the first slot of the function on its right (group_by). So the net
effect is still to evaluate the function group_by(hf, UniqueCarrier).

Now look at the summarise line. Again, summarise is a function of two inputs,
but all we see is the part that finds the mean. The pipe at the end of the
previous line tells the summarise function to insert the stuff already computed
(the grouped tibble returned by group_by(hf, UniqueCarrier)) into the first
slot of the summarise function.

Piping takes a little getting used to, but once you’re good at it, you’ll never go
back. It’s just makes more sense semantically. When I read the above set of
commands, I see a set of instructions in chronological order:

• Start with the tibble hf.
• Next, group by the carrier.
• Next, summarize each group using the mean distance.

Now we can assign the result of all that to the new variable hf_summ:

hf_summ <- hf %>%
group_by(UniqueCarrier) %>%
summarise(mean(Distance))

hf_summ
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## # A tibble: 15 x 2
## UniqueCarrier `mean(Distance)`
## <chr> <dbl>
## 1 AA 470.
## 2 AS 1874
## 3 B6 1428
## 4 CO 1097.
## 5 DL 723.
## 6 EV 788.
## 7 F9 883
## 8 FL 686.
## 9 MQ 701.
## 10 OO 823.
## 11 UA 1204.
## 12 US 982.
## 13 WN 613.
## 14 XE 590.
## 15 YV 982.

Some people even take this one step further. The result of all the above is
assigned to a new variable hf_summ that currently appears as the first command
(hf_summ <- ...) But you could write this as

hf %>%
group_by(UniqueCarrier) %>%
summarise(mean(Distance)) -> hf_summ

Now it says the following:

• Start with the tibble hf.
• Next, group by the carrier.
• Next, summarize each group using the mean distance.
• Finally, assign the result to a new variable called hf_summ.

In other words, the arrow operator for assignment works both directions!

Let’s try some counting. This one is common enough that dplyr doesn’t even
make us use group_by and summarise. We can just use the command count.
What if we wanted to know how many flights correspond to each carrier?

hf_summ2 <- hf %>%
count(UniqueCarrier)

hf_summ2
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## # A tibble: 15 x 2
## UniqueCarrier n
## <chr> <int>
## 1 AA 325
## 2 AS 37
## 3 B6 70
## 4 CO 7004
## 5 DL 265
## 6 EV 221
## 7 F9 84
## 8 FL 214
## 9 MQ 465
## 10 OO 1607
## 11 UA 208
## 12 US 409
## 13 WN 4535
## 14 XE 7306
## 15 YV 8

Also note that we can give summary columns a new name if we wish. In hf_summ,
we didn’t give the new column an explicit name, so it showed up in our tibble
as a column called mean(Distance). If we want to change it, we can do this:

hf_summ <- hf %>%
group_by(UniqueCarrier) %>%
summarise(mean_dist = mean(Distance))

hf_summ

## # A tibble: 15 x 2
## UniqueCarrier mean_dist
## <chr> <dbl>
## 1 AA 470.
## 2 AS 1874
## 3 B6 1428
## 4 CO 1097.
## 5 DL 723.
## 6 EV 788.
## 7 F9 883
## 8 FL 686.
## 9 MQ 701.
## 10 OO 823.
## 11 UA 1204.
## 12 US 982.
## 13 WN 613.
## 14 XE 590.
## 15 YV 982.
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Look at the earlier version of hf_summ and compare it to the one above. Make
sure you see that the name of the second column changed.
The new count column of hf_summ2 is just called n. That’s okay, but if we insist
on giving it a more user-friendly name, we can do so as follows:

hf_summ2 <- hf %>%
count(UniqueCarrier, name = "total_count")

hf_summ2

## # A tibble: 15 x 2
## UniqueCarrier total_count
## <chr> <int>
## 1 AA 325
## 2 AS 37
## 3 B6 70
## 4 CO 7004
## 5 DL 265
## 6 EV 221
## 7 F9 84
## 8 FL 214
## 9 MQ 465
## 10 OO 1607
## 11 UA 208
## 12 US 409
## 13 WN 4535
## 14 XE 7306
## 15 YV 8

This is a little different because it requires us to use a name argument and put
the new name in quotes.

Exercise 14(a) Create a tibble called hf_summ3 that lists the total count of
flights for each day of the week. Be sure to use the pipe as above. Print the
output to the screen. (You don’t need to give the count column a new name.)

# Add code here to define hf_summ3.
# Add code here to print hf_summ3.

Exercise 14(b) According to the output in the previous part, what day of
the week had the fewest flights? (Assume 1 = Monday.)
Please write up your answer here.
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The tibbles created in this section are all just a few rows each. They don’t take
up much memory, so we don’t really need to remove them. You can if you want,
but it’s not necessary.

5.10 Putting it all together

Often we need more than one of these verbs. In many data analyses, we need
to do a sequence of operations to get at the answer we seek. This is most easily
accomplished using a more complicated sequence of pipes.

Here’s a example of multi-step piping. Let’s say that we only care about Delta
flights, and even then, we only want to know about the month of the flight and
the departure delay. From there, we wish to group by month so we can find the
maximum departure delay by month. Here is a solution, piping hot and ready
to go. [groan]

hf_grand_finale <- hf %>%
filter(UniqueCarrier == "DL") %>%
dplyr::select(Month, DepDelay) %>%
group_by(Month) %>%
summarise(max_delay = max(DepDelay, na.rm = TRUE))

hf_grand_finale

## # A tibble: 12 x 2
## Month max_delay
## <dbl> <dbl>
## 1 1 26
## 2 2 460
## 3 3 202
## 4 4 23
## 5 5 127
## 6 6 184
## 7 7 360
## 8 8 48
## 9 9 292
## 10 10 90
## 11 11 10
## 12 12 14

Go through each line of code carefully and translate it into English:

• We define a variable called hf_grand_finale that starts with the original
hf data.

• We filter this data so that only Delta flights will be analyzed.
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• We select the variables Month and DepDelay, throwing away all
other variables that are not of interest to us. (Don’t forget to use the
dplyr::select syntax to make sure we get the right function!)

• We group_by month so that the results will be displayed by month.
• We summarise each month by listing the maximum value of DepDelay

that appears within each month.
• We print the result to the screen.

Notice in the summarise line, we again took advantage of dplyr’s ability to
rename any variable along the way, assigning our computation to the new vari-
able max_delay. Also note the need for na.rm = TRUE so that the max command
ignores any missing values.

A minor simplification results from the realization that summarise must throw
away any variables it doesn’t need. (Think about why for a second: what
would summarise do with, say, ArrTime if we’ve only asked it to calculate the
maximum value of DepDelay for each month?) So you could write this instead,
removing the select clause:

hf_grand_finale <- hf %>%
filter(UniqueCarrier == "DL") %>%
group_by(Month) %>%
summarise(max_delay = max(DepDelay, na.rm = TRUE))

hf_grand_finale

## # A tibble: 12 x 2
## Month max_delay
## <dbl> <dbl>
## 1 1 26
## 2 2 460
## 3 3 202
## 4 4 23
## 5 5 127
## 6 6 184
## 7 7 360
## 8 8 48
## 9 9 292
## 10 10 90
## 11 11 10
## 12 12 14

Check that you get the same result. With massive data sets, it’s possible that
the selection and sequence of these verbs matter, but you don’t see an appre-
ciable difference here, even with 22758 rows. (There are ways of benchmarking
performance in R, but that is a more advanced topic.)
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Exercise 15 Summarize in your own words what information is contained
in the hf_grand_finale tibble. In other words, what are the numbers in the
max_delay column telling us? Be specific!
Please write up your answer here.
The remaining exercises are probably the most challenging you’ve seen so far in
the course. Take each slowly. Read the instructions carefully. Go back through
the chapter and identify which “verb” needs to be used for each part of the task.
Examine the sample code in those sections carefully to make sure you get the
syntax right. Create a sequence of “pipes” to do each task, one-by-one. Copy
and paste pieces of code from earlier and make minor changes to adapt the code
to the given task.

Exercise 16 Create a tibble that counts the flights to LAX grouped by day
of the week. (Hint: you need to filter to get flights to LAX. Then you’ll need
to count using DayOfWeek as a grouping variable. Because you’re using count,
you don’t need group_by or summarise.) Print the output to the screen.

# Add code here to count the flights to LAX
# grouped by day of the week.
# Print the output to the screen.

Exercise 17 Create a tibble that finds the median distance flight for each
airline. Sort the resulting tibble from highest distance to lowest. (Hint: You’ll
need to group_by carrier and summarise using the median function. Finally,
you’ll need to arrange the result according to the median distance variable that
you just created.) Print the output to the screen.

# Add code here to find the median distance by airline.
# Print the output to the screen.

5.11 Conclusion

Raw data often doesn’t come in the right form for us to run our analyses. The
dplyr verbs are powerful tools for manipulating tibbles until they are in the
right form.

5.11.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
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3. Spell check your document by clicking the icon with “ABC” and a check
mark.

4. Hit the “Preview” button one last time to generate the final draft of the
.nb.html file.

5. Proofread the HTML file carefully. If there are errors, go back and fix
them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 6

Correlation

2.0

Functions introduced in this chapter

cor

6.1 Introduction

In this chapter, we will learn about the concept of correlation, which is a way
of measuring a linear relationship between two numerical variables.

6.1.1 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following command
at the Console:

install.packages("faraway")

139
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6.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/06-correlation.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

6.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

6.1.4 Load packages

We load the now-standard tidyverse package. We also include the faraway
package to access data about Chicago in the 1970s.

library(tidyverse)
library(faraway)

## Warning: package 'faraway' was built under R version 4.3.1

6.2 Redlining in Chicago

The data set we will use throughout this chapter is from Chicago in the 1970s
studying the practice of “redlining”.

Exercise 1 Do an internet search for “redlining”.

Consult at least two or three sources. Then, in your own words (not copied
and pasted from any of the websites you consulted), explain what “redlining”
means.

Please write up your answer here.

The chredlin data set appears in the faraway package accompanying a book
by Julian Faraway (Practical Regression and Anova using R, 2002.) Faraway
explains:



6.2. REDLINING IN CHICAGO 141

“In a study of insurance availability in Chicago, the U.S. Commission
on Civil Rights attempted to examine charges by several community
organizations that insurance companies were redlining their neigh-
borhoods, i.e. canceling policies or refusing to insure or renew. First
the Illinois Department of Insurance provided the number of cancel-
lations, non-renewals, new policies, and renewals of homeowners and
residential fire insurance policies by ZIP code for the months of De-
cember 1977 through February 1978. The companies that provided
this information account for more than 70% of the homeowners in-
surance policies written in the City of Chicago. The department
also supplied the number of FAIR plan policies written an renewed
in Chicago by zip code for the months of December 1977 through
May 1978. Since most FAIR plan policyholders secure such cov-
erage only after they have been rejected by the voluntary market,
rather than as a result of a preference for that type of insurance, the
distribution of FAIR plan policies is another measure of insurance
availability in the voluntary market.”

In other words, the degree to which residents obtained FAIR policies can be
seen as an indirect measure of redlining. This participation in an “involuntary”
market is thought to be largely driven by rejection of coverage under more
traditional insurance plans.

6.2.1 Exploratory data analysis

Before we learn about correlation, let’s get to know our data a little better.

Type ?chredlin at the Console to read the help file. While it’s not very in-
formative about how the data was collected, it does have crucial information
about the way the data is structured.

Here is the data set:

chredlin

## race fire theft age involact income side
## 60626 10.0 6.2 29 60.4 0.0 11.744 n
## 60640 22.2 9.5 44 76.5 0.1 9.323 n
## 60613 19.6 10.5 36 73.5 1.2 9.948 n
## 60657 17.3 7.7 37 66.9 0.5 10.656 n
## 60614 24.5 8.6 53 81.4 0.7 9.730 n
## 60610 54.0 34.1 68 52.6 0.3 8.231 n
## 60611 4.9 11.0 75 42.6 0.0 21.480 n
## 60625 7.1 6.9 18 78.5 0.0 11.104 n
## 60618 5.3 7.3 31 90.1 0.4 10.694 n
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## 60647 21.5 15.1 25 89.8 1.1 9.631 n
## 60622 43.1 29.1 34 82.7 1.9 7.995 n
## 60631 1.1 2.2 14 40.2 0.0 13.722 n
## 60646 1.0 5.7 11 27.9 0.0 16.250 n
## 60656 1.7 2.0 11 7.7 0.0 13.686 n
## 60630 1.6 2.5 22 63.8 0.0 12.405 n
## 60634 1.5 3.0 17 51.2 0.0 12.198 n
## 60641 1.8 5.4 27 85.1 0.0 11.600 n
## 60635 1.0 2.2 9 44.4 0.0 12.765 n
## 60639 2.5 7.2 29 84.2 0.2 11.084 n
## 60651 13.4 15.1 30 89.8 0.8 10.510 n
## 60644 59.8 16.5 40 72.7 0.8 9.784 n
## 60624 94.4 18.4 32 72.9 1.8 7.342 n
## 60612 86.2 36.2 41 63.1 1.8 6.565 n
## 60607 50.2 39.7 147 83.0 0.9 7.459 n
## 60623 74.2 18.5 22 78.3 1.9 8.014 s
## 60608 55.5 23.3 29 79.0 1.5 8.177 s
## 60616 62.3 12.2 46 48.0 0.6 8.212 s
## 60632 4.4 5.6 23 71.5 0.3 11.230 s
## 60609 46.2 21.8 4 73.1 1.3 8.330 s
## 60653 99.7 21.6 31 65.0 0.9 5.583 s
## 60615 73.5 9.0 39 75.4 0.4 8.564 s
## 60638 10.7 3.6 15 20.8 0.0 12.102 s
## 60629 1.5 5.0 32 61.8 0.0 11.876 s
## 60636 48.8 28.6 27 78.1 1.4 9.742 s
## 60621 98.9 17.4 32 68.6 2.2 7.520 s
## 60637 90.6 11.3 34 73.4 0.8 7.388 s
## 60652 1.4 3.4 17 2.0 0.0 13.842 s
## 60620 71.2 11.9 46 57.0 0.9 11.040 s
## 60619 94.1 10.5 42 55.9 0.9 10.332 s
## 60649 66.1 10.7 43 67.5 0.4 10.908 s
## 60617 36.4 10.8 34 58.0 0.9 11.156 s
## 60655 1.0 4.8 19 15.2 0.0 13.323 s
## 60643 42.5 10.4 25 40.8 0.5 12.960 s
## 60628 35.1 15.6 28 57.8 1.0 11.260 s
## 60627 47.4 7.0 3 11.4 0.2 10.080 s
## 60633 34.0 7.1 23 49.2 0.3 11.428 s
## 60645 3.1 4.9 27 46.6 0.0 13.731 n

Exercise 2 What do each of the rows of this data set represent? You’ll need
to refer to the help file. (They are not individual people.)

Please write up your answer here.
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Exercise 3 The race variable is numeric. Why? What do these numbers
represent? (Again, refer to the help file.)

Please write up your answer here.

The glimpse command gives a concise overview of all the variables present.

glimpse(chredlin)

## Rows: 47
## Columns: 7
## $ race <dbl> 10.0, 22.2, 19.6, 17.3, 24.5, 54.0, 4.9, 7.1, 5.3, 21.5, 43.1~
## $ fire <dbl> 6.2, 9.5, 10.5, 7.7, 8.6, 34.1, 11.0, 6.9, 7.3, 15.1, 29.1, 2~
## $ theft <dbl> 29, 44, 36, 37, 53, 68, 75, 18, 31, 25, 34, 14, 11, 11, 22, 1~
## $ age <dbl> 60.4, 76.5, 73.5, 66.9, 81.4, 52.6, 42.6, 78.5, 90.1, 89.8, 8~
## $ involact <dbl> 0.0, 0.1, 1.2, 0.5, 0.7, 0.3, 0.0, 0.0, 0.4, 1.1, 1.9, 0.0, 0~
## $ income <dbl> 11.744, 9.323, 9.948, 10.656, 9.730, 8.231, 21.480, 11.104, 1~
## $ side <fct> n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n~

Exercise 4(a) Which variable listed above represents participation in the
FAIR plan? How is it measured? (Again, refer to the help file.)

Please write up your answer here.

Exercise 4(b) Why is it important to analyze the number of plans per 100
housing units as opposed to the total number of plans across each ZIP code?
(Hint: what happens if some ZIP codes are larger than others?)

Please write up your answer here.

We are interested in the association between race and involact. If redlining
plays a role in driving people toward FAIR plan policies, we would expect there
to be a relationship between the racial composition of a ZIP code and the number
of FAIR plan policies obtained in that ZIP code.

Exercise 5(a) Since race is a numerical variable, what type of graph or chart
is appropriate for visualizing it? (You may need to refer back to the “Numerical
data” chapter.)

Please write up your answer here.
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Exercise 5(b) Using ggplot code, create the type of graph you identified
above. (Again, refer back to the “Numerical data” chapter for sample code if
you’ve forgotten.) After creating the initial plot, be sure to go back and set the
binwidth and boundary to sensible values.

# Add code here to create a plot of race

Exercise 5(c) Describe the shape of the race variable using the three key
shape descriptors (modes, symmetry, and outliers).

Please write up your answer here.

Exercise 5(d) Create the same kind of graph as above, but for involact.
(Again, go back and set the binwidth and boundary to sensible values.)

# Add code here to create a plot of race

Exercise 5(e) Describe the shape of the involact variable using the three
key shape descriptors (modes, symmetry, and outliers).

Please write up your answer here.

Exercise 5(f) Since both race and involact are numerical variables, what
type of graph or chart is appropriate for visualizing the relationship between
them?

Please write up your answer here.

Exercise 5(g) For our research question, is race functioning as a predictor
variable or as the response variable? What about involact? Why? Explain
why it makes more sense to think of one of them as the predictor and the other
as the response.

Please write up your answer here.

Exercise 5(h) Using ggplot code, create the type of graph you identified
above. Be sure to put involact on the y-axis and race‘ on the x-axis.

# Add code here to create a plot of involact against race
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6.3 Correlation

The word correlation describes a linear relationship between two numerical vari-
ables. As long as certain conditions are met, we can calculate a statistic called
the correlation coefficient, often denoted with a lowercase r.

There are several different ways to compute a statistic that measures correlation.
The most common way, and the way we will learn in this chapter, is often
attributed to an English mathematician named Karl Pearson. According to his
Wikipedia page,

“Pearson was also a proponent of social Darwinism, eugenics and
scientific racism.”

Exercise 6 Do an internet search for each of the following terms:

• Social Darwinism
• Eugenics
• Scientific racism

Consult at least two or three sources for each term. Then, in your own words
(not copied and pasted from any of the websites you consulted), explain what
these terms mean.

Please write up your answer here.

While Pearson is often credited with its discovery, the so-called “Pearson cor-
relation coefficient” was first developed by a French scientist, Auguste Bravais.
Due to the misattribution of discovery, along with the desire to disassociate
the useful tool of correlation from its problematic applications to racism and
eugenics, we will just refer to it as the correlation coefficient (without a name
attached).

The correlation coefficient, r, has some important properties.

• The correlation coefficient is a number between -1 and 1.
• A value close to 0 indicates little or no correlation.
• A value close to 1 indicates strong positive correlation.
• A value close to -1 indicates strong negative correlation.

In between 0 and 1 (or -1), we often use words like weak, moderately weak,
moderate, and moderately strong. There are no exact cutoffs for when such

https://en.wikipedia.org/wiki/Karl_Pearson
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words apply. You must learn from experience how to judge scatterplots and r
values to make such determinations.

A correlation is positive when low values of one variable are associated with low
values of the other value. Similarly, high values of one variable are associated
with high values of the other. For example, exercise is positively correlated with
burning calories. Low exercise levels will burn a few calories; high exercise levels
burn more calories, on average.

A correlation is negative when low values of one variable are associated with
high values of the other value, and vice versa. For example, tooth brushing
is negatively correlated with cavities. Less tooth brushing may result in more
cavities; more tooth brushing is associated with fewer calories, on average.

6.4 Conditions for correlation

Two variables are considered “associated” any time there is any type of relation-
ship between them (i.e., they are not independent). However, in statistics, we
reserve the word “correlation” for situations meeting more stringent conditions:

1. The two variables must be numerical.1
2. There is a somewhat linear relationship between the variables, as shown

in a scatterplot.
3. There are no serious outliers.

For condition (2) above, keep in mind that real data in scatterplots very rarely
lines up in a perfect straight line. Instead, you will see a “cloud” of dots. All
we want to know is whether that cloud of dots mostly moves from one corner
of the scatterplot to the other. Violations of this condition will usually be for
one of two reasons:

• The dots are scattered completely randomly with no discernible pattern.
• The dots have a pattern or shape to them, but that shape is curved and

not linear.

Exercise 7 Check the three conditions for the relationship between involact
and race. For conditions (2) and (3), you’ll need to check the scatterplot you
created above. (You did create a scatterplot for one of the exercises above,
right?)

Please write up your answer here.
1There are other ways of measuring association for variables that are not numerical, but

these aren’t covered in this course.
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1.
2.
3.

6.5 Calculating correlation

Since the conditions are met, We calculate the correlation coefficient using the
cor command.

cor(chredlin$race, chredlin$involact)

## [1] 0.713754

The order of the variables doesn’t matter; correlation is symmetric, so the r
value is the same independent of the choice of response and predictor variables.

Since the correlation between involact and race is a positive number and
slightly closer to 1 than 0, we might call this a “moderate” positive correlation.
You can tell from the scatterplot above that the relationship is not a strong
relationship. The words you choose should match the graphs you create and
the statistics you calculate.

Exercise 8(a) Create a scatterplot of income against race. (Put income on
the y-axis and race on the x-axis.)

# Add code here to create a scatterplot of income against race

Exercise 8(b) Check the three conditions for the relationship between income
and race. Which condition is pretty seriously violated here?

Please write up your answer here.

1.
2.
3.

Exercise 9(a) Create a scatterplot of theft against fire. (Put theft on
the y-axis and fire on the x-axis.)

# Add code here to create a scatterplot of theft against fire
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Exercise 9(b) Check the three conditions for the relationship between theft
and fire. Which condition is pretty seriously violated here?

1.
2.
3.

Please write up your answer here.

Exercise 9(c) Even though the conditions are not met, what if you calculated
the correlation coefficient anyway? Try it.

# Add code here to calculate the correlation coefficient between theft and fire

Exercise 9(d) Suppose you hadn’t looked at the scatterplot and you only
saw the correlation coefficient you calculated in the previous part. What would
your conclusion be about the relationship between theft and fire. Why would
that conclusion be misleading?

Please write up your answer here.

The lesson learned here is that you should never try to interpret a correlation
coefficient without looking at a plot of the data to assure that the conditions
are met and that the result is a sensible thing to interpret.

6.6 Correlation is not causation

When two variables are correlated—indeed, associated in any way, not just in
a linear relationship—that means that there is a relationship between them.
However, that does not mean that one variable causes the other variable.

For example, we discovered above that there was a moderate correlation between
the racial composition of a ZIP code and the new FAIR policies created in those
ZIP codes. However, being part of a racial minority does not cause someone to
seek out alternative forms of insurance, at least not directly. In this case, the
racial composition of certain neighborhoods, though racist policies, affected the
availability of certain forms of insurance for residents in those neighborhoods.
And that, in turn, caused residents to seek other forms of insurance.

In the Chicago example, there is still likely a causal connection between one
variable (race) and the other (involact), but it was indirect. In other cases,
there is no causal connection at all. Here are a few of my favorite examples.
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Exercise 10 Ice cream sales are positively correlated with drowning deaths.
Does eating ice cream cause you to drown? (Perhaps the myth about swimming
within one hour of eating is really true!) Does drowning deaths cause ice cream
sales to rise? (Perhaps people are so sad about all the drownings that they have
to go out for ice cream to cheer themselves up?)
See if you can figure out the real reason why ice cream sales are positively
correlated with drowning deaths.
Please write up your answer here.

In the Chicago example, the causal effect was indirect. In the example from
the exercise above, there is no causation whatsoever between the two variables.
Instead, the causal effect was generated by a third factor that caused both ice
cream sales to go up, and also happened to cause drowning deaths to go up. (Or,
equivalently stated, it caused ice cream sales to be low during certain times of
the year and also caused the drowning deaths to be low as well.) Such a factor
is called a lurking variable. When a correlation between two variables exists
due solely to the intervention of a lurking variable, that correlation is called
a spurious correlation. The correlation is real; a scatterplot of ice cream sales
and drowning deaths would show a positive relationship. But the reasons for
that correlation to exist have nothing to do with any kind of direct causal link
between the two.
Here’s another one:

Exercise 11 Most studies involving children create a number of weird corre-
lations. For example, the height of children is very strongly correlated to pretty
much everything you can measure about scholastic aptitude. For example, vo-
cabulary count (the number of words children can use fluently in a sentence) is
strongly correlated to height. Are tall people just smarter than short people?
The answer is, of course, no. The correlation is spurious. So what’s the lurking
variable?
Please write up your answer here.

6.7 Observational studies versus experiments

So when is a statistical finding (like correlation, for example) evidence of a
causal relationship? Before we can answer that question, we need a few more
definitions.
A lot of data comes from “observational studies” where we simply observe or
measure things as they are “in the wild,” so to speak. We don’t interfere in any
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way. We just write down what we see. Polls are usually observational in that we
ask people questions and record their responses. We do not try to manipulate
their responses in any way. We just ask the questions and observe the answers.
Field studies are often observational. We go out in nature and write stuff down
as we observe it.

Another way to gather data is an experiment. In an experiment, we introduce
a manipulation or treatment to try to ascertain its effect. For example. if we’re
testing a new drug, we will likely give the drug to one group of patients and a
placebo to the other.

Exercise 12 Here’s another internet rabbit hole for you. First, look up the
definition of placebo. You do not need to write up your own version of that
definition here; just familiarize yourself with the term if you’re not already
familiar with it. Next, find some websites about the placebo effect and read
those.

Given what you have learned about the placebo effect, why is it important to
have a placebo group in a drug trial? Why not just give one set of patients the
drug and compare them to another group that takes no pill at all?

Please write up your answer here.

The goal of the experiment is to learn whether the treatment (in this exam-
ple, the drug) is effective when compared to the control (in this example, the
placebo).

Note that the word “effective” implies a causal claim. We want to know if the
drug causes patients to get better.

Unlike an observational study, in which the relationship between variables can
be caused by a lurking variable, in an experiment, we purposefully manipulate
one of the variables and try to control all others. For example, we manipulate
the drug variable (we purposefully give some people the drug and others the
placebo). But we control the amount of the drug given and the schedule on
which patients are required to take the pills.

There are lots of things we cannot control. For example, it would be very
difficult to control the diet of every person in the experiment. Could diet play
a role in whether a patient gets better? Sure, so how do we know diet is not a
lurking variable? In the context of an experiment, lurking variables are often
called “confounders” or “confounding variables”. (The two terms are basically
synonymous.)

One way to mitigate the effect of confounders that we cannot directly control is
to randomize the patients into the treatment and control groups. With random
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selection, there will likely be people who have relatively healthy diets in both
the control and treatment groups. If the drugs work, in theory they should still
work better for the treatment group than for those taking the placebo. And
likewise, patients with less healthy diets will generally be mixed up in both
groups, and the drug should also work better for them.
The mantra of experimental design is, “Control as much as you can. Randomize
to take care of the rest.”
There are lots of aspects of experimental design that we will not go into here
(for example, blinding and blocking). But we will continue to mention the
differences between observational studies and experiments in future chapters as
we exercise caution in making causal claims.

6.8 Prediction versus explanation

Even when claims are not causal, we can use associations (and correlations more
specifically) for purposes of prediction.

Exercise 13 If I tell you that ice cream sales are high right now, can you
make a reasonable prediction about the relative number of drowning deaths
this month (high or low)? Why or why not?
Please write up your answer here.

So even when there is no direct causal link between two variables, if they are
positively correlated, then large values of one variable are associated with large
values of the other variable. So if I tell you one value is large, it is reasonable
to predict that the other value will be large as well.
We use the language “predictor” variable and “response” variable to reinforce
this idea.
In a properly designed and controlled experiment, we can use different language.
In this case, we can explain the outcome using the treatment variable. If we’ve
controlled for everything else, the only possible explanation for a difference
between the treatment and control groups must be the treatment variable. If
the patients get better on the drug (more so than those on the placebo) and
we’ve controlled for every other possible confounding variable, the only possible
explanation is that the drug works. The drug “explains” the difference in the
response variable.
Be careful, as sometimes statisticians use the term “explanatory variable” to
mean any kind of variable that predicts or explains. In this course, we will try
to use the term “predictor variable” exclusively.
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6.9 Conclusion

If we have two numerical variables that have a linear association between them
(also assuming there are no serious outliers), we can compute the correlation
coefficient that measures the strength and direction of that linear association.

Keep in mind that in an observational study, this correlation is a measure of
association, but it does not signify that one variable causes the other. It’s
possible that one variable causes the other, but it’s also possible that a third
“lurking” variable is responsible for the association. Either way, the fact that
a relationship exists means it is possible to use values of one variable to make
reasonable predictions about the values of the other variable.

In a properly designed experiment, the manipulation of one variable while con-
trolling for others (and randomizing to take care of other confounders) ensures
that there is a causal link between the treatment variable and the response of
interest. In this case, the treatment can “explain” the response, not just predict
it.

6.9.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 7

Regression

2.0

Functions introduced in this chapter

geom_smooth, lm, tidy, augment, glance

7.1 Introduction

In this chapter we will learn how to run a regression analysis. Regression pro-
vides a model for the linear relationship between two numerical variables.

7.1.1 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following command
at the Console:

install.packages("broom")

153
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7.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/07-regression.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

7.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

7.1.4 Load packages

We load the tidyverse package. The faraway package will give access
to the Chicago redlining data introduced in the previous chapter and the
palmerpenguins package gives us the penguins data. Finally, the broom
package will provide tools for cleaning up the output of the regression analysis
we perform.

library(tidyverse)
library(faraway)
library(palmerpenguins)
library(broom)

## Warning: package 'broom' was built under R version 4.3.1

7.2 Regression

When we have a linear relationship between two numerical variables, we learned
in the last chapter that we can compute the correlation coefficient. One serious
limitation of the correlation coefficient is that it is only a single number, and
therefore, it doesn’t provide a whole lot of information about the nature of the
linear relationship itself. It only gives clues as to the strength and direction of
the association.

It will be helpful to model this linear relationship with an actual straight line.
Such a line is called a regression line. It is also known as a best-fit line or
least-squares line for reasons that we will get to later in the chapter.
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The mathematics involved in figuring out what this line should be is more com-
plicated than we cover in this book. Fortunately, R will do all the complicated
calculations for us and we’ll focus on understanding what they mean.

Recall the chredlin data set from the last chapter investigating the practice
of redlining in Chicago in the 1970s. Let’s review the scatterplot of involact,
the number of FAIR policies per 100 housing units, against race, the racial
composition of each ZIP code as a percentage of minority residents. (Recall
that each row of the data represents an entire ZIP code.)

ggplot(chredlin, aes(y = involact, x = race)) +
geom_point()
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Exercise 1 Does the Chicago redlining data come from an observational study
or an experiment? How do you know?

Please write up your answer here.

If certain conditions are met, we can graph a regression line; just add a
geom_smooth layer to the scatterplot:
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ggplot(chredlin, aes(y = involact, x = race)) +
geom_point() +
geom_smooth(method = lm, se = FALSE)

## `geom_smooth()` using formula = 'y ~ x'

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100
race

in
vo

la
ct

The method = lm argument is telling ggplot to use a “linear model”. The se
= FALSE argument tells ggplot to draw just the line and nothing else. (What
else might it try to draw? You are encouraged to go back to the code above and
take out se = FALSE to see for yourself. However, we are not yet in a position
to be able to explain the gray band that appears. We will return to this mystery
in a future chapter.)

Of all possible lines, the blue line comes the closest to each point in the scat-
terplot. If we wiggled the line a little bit, it might get closer to a few points,
but the net effect would be to make it further from other points. This is the
mathematically optimal line of best fit.

7.3 Models

We used the word “model” when referring to the regression line above. What
does that word mean in this context?
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A model is something that represents something else, often on a smaller scale
or in simplified form. A model is often an idealized form of something that may
be quite messy or complex in reality. In statistics, a model is a representation
of the way data is generated. For example, we may believe that as minority
representation increases in a neighborhood, that neighborhood is more likely
to be subject to racially discriminatory practices. We may even posit that the
relationship is linear; i.e., for every percentage point increase in racial minori-
ties, we expect some kind of proportional increase in racial discrimination, as
measured in this case by FAIR policies. We say that this is our hypothesis
about the data-generating process: we suspect that the data we see results from
a sociological process that uses the minority representation of a neighborhood
to generate data about FAIR policies.

The assumption of a linear relationship between these two quantities is just
that—an assumption. It is not necessarily “true”, whatever “true” might mean
in this kind of question. It is a convenient device that makes a simplifying
assumption in order to allow us to do something meaningful in a statistical
analysis. If such a model—despite its simplifying caricature—helps us make
meaningful predictions to study something important like racial discrimination,
then the model is useful.

The first thing we acknowledge when working with a model is that the model
does not generate the data in a rigid, deterministic way. If you look at the scat-
terplot above, even assuming the blue line represents a “correct” data-generating
process, the data points don’t fall on the blue line. The blue line gives us only
a sense of where the data might be, but there is additional space between the
line and the points. These spaces are often referred to as errors. In statistics,
the word “error” does not mean the same thing as “mistake”. Error is just the
difference between an idealized model prediction and the real location of data.
In the context of linear regression, we will use the term residual instead. After
the model is done making a prediction, the residuals are “left over” to account
for the different between the model and the actual data.

The most important thing to remember about models is that they aren’t real.
They are idealizations and simplifications. The degree to which we can trust
models, then, comes down to certain assumptions we make about the data-
generating process. These assumptions cannot be completely verified—after all,
we will never know the exact data-generating process. But there are certain
conditions we can check to know if the assumptions we make are reasonable.

Exercise 2 Do an internet search for the phrase “statistical model” and/or
“statistical modeling”. Read at least two or three sources. List below one
important aspect of statistical modeling you find in your search that wasn’t
mentioned in the paragraphs above. (Some of the sources you find may be
a little technical. You should, for now, skip over the technical explanations.
Try to find several sources that address the issue in non-technical ways. The
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additional information you mention below should be something non-technical
that you understand.)

Please write up your answer here.

7.4 Checking conditions

We need to be careful here. Although we graphed the blue regression line
above, we have not checked any conditions. Therefore, it is inappropriate to
fit a regression line at this point. Once the line is seen, it cannot easily be
“unseen”, and it’s crucial that you don’t trick your eyes into believing there is
a linear relationship before checking the conditions that justify that belief.

The regression line we saw above makes no sense unless we know that regression
is appropriate. The conditions for running a regression analysis include all the
conditions you checked for a correlation analysis in the last chapter:

1. The two variables must be numerical.
2. There is a somewhat linear relationship between the variables, as shown

in a scatterplot.
3. There are no serious outliers.

Exercise 3 Check these three conditions for the regression between involact
and race (using the scatterplot above for conditions (2) and (3).)

1.
2.
3.

However, there is an additional condition to check to ensure that our regression
model is appropriate. It concerns the residuals, but as we haven’t computed
anything yet, we have nothing to analyze. We’ll return to this condition later.

7.5 Calculating the regression line

What is the equation of the regression line? In your algebra class you learned
that a line takes the form 𝑦 = 𝑚𝑥 + 𝑏 where 𝑚 is the slope and 𝑏 is the y-
intercept. Statisticians write the equation in a slightly different form:
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̂𝑦 = 𝑏0 + 𝑏1𝑥

The intercept is 𝑏0 and the slope is 𝑏1. We use ̂𝑦 (pronounced “y hat”) instead
of 𝑦 because when we plug in values of 𝑥, we do not get back the exact values
of 𝑦 from the data. The line, after all, does not actually pass through most (if
any) actual data points. Instead, this equation gives us “predicted” values of 𝑦
that lie on the regression line. These predicted 𝑦 values are called ̂𝑦.

To run a regression analysis and calculate the values of the intercept and slope,
we use the lm command in R. (Again, lm stands for “linear model”.) This
command requires us to specify a “formula” that tells R the relationship we
want to model. It uses special syntax in a very specific order:

• The response variable,
• a “tilde” ~ (this key is usually in the upper-left corner of your keyboard,

above the backtick),
• the predictor variable.

After a comma, we then specify the data set in which those variables live using
data =. Here’s the whole command:

lm(involact ~ race, data = chredlin)

##
## Call:
## lm(formula = involact ~ race, data = chredlin)
##
## Coefficients:
## (Intercept) race
## 0.12922 0.01388

The response variable always goes before the tilde and the predictor
variable always goes after.

Let’s store that result for future use. The convention we’ll use in this book is
to name things using the variables involved. For example,

involact_race_lm <- lm(involact ~ race, data = chredlin)
involact_race_lm

##
## Call:
## lm(formula = involact ~ race, data = chredlin)
##
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## Coefficients:
## (Intercept) race
## 0.12922 0.01388

The variable involact_race_lm now contains all the information we need about
the linear regression model.

7.6 Interpreting the coefficients

Look at the output of the lm command above.

The intercept is 0.12922 and the slope is 0.01388. The number 0.12922 is labeled
with (Intercept), so that’s pretty obvious. But how do we know the number
0.01388 corresponds to the slope? Process of elimination, I suppose. But there’s
another good reason too. The equation of the regression line can be written

̂𝑦 = 0.12922 + 0.01388𝑥

When we report the equation of the regression line, we typically use words
instead of ̂𝑦 and 𝑥 to make the equation more interpretable in the context of
the problem. For example, for this data, we would write the equation as

̂𝑖𝑛𝑣𝑜𝑙𝑎𝑐𝑡 = 0.12922 + 0.01388𝑟𝑎𝑐𝑒

The slope is the coefficient of race, or the number attached to race. (The
intercept is not attached to anything; it’s just a constant term out front there.)

The slope 𝑏1 is always interpretable. This model predicts that one unit of
increase in the x-direction corresponds to a change of 0.01388 units in the y-
direction. Let’s phrase it this way:

The model predicts that an increase of one percentage point in the
composition of racial minorities corresponds to an increase of 0.01388
new FAIR policies per 100 housing units.

The intercept 𝑏0 is a different story. There is always a literal interpretation:

The model predicts that a ZIP code with 0% racial minorites will
generate 0.12922 new FAIR policies.

In some cases (rarely), that interpretation might make sense. In most cases,
though, it is physically impossible for the predictor variable to take a value of 0,
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or the value 0 is way outside the range of the data. Whenever we use a model
to make a prediction outside of reasonable values, we call that extrapolation.

For the Chicago data, we likely don’t have a case of extrapolation. While it is
not literally true that any ZIP code has 0% racial minorities, we can see in the
scatterplot that there are values very close to zero.

Exercise 4 Use the arrange command from dplyr to sort the chredlin data
frame by race (using the default ascending order). What is the value of race
for the three ZIP codes with the smallest percentage of minority residents?

# Add code here to sort by race

Please write up your answer here.

Again, even though there are no ZIP codes with 0% racial minorities, there are
a bunch that are close to zero, so the literal interpretation of the intercept is
also likely a sensible one in this case.

Exercise 5 Let’s think through something else the intercept might be telling
us in this case. The presumption is that FAIR policies are obtained mostly by
folks who can’t get insurance policies in other ways. Some of that is driven by
racial discrimination, but maybe not all of it. What does the intercept have to
say about the number of FAIR policies that are obtained not due to denial of
coverage from racial discrimination?

Please write up your answer here.

7.7 Rescaling to make interpretations more
meaningful

Let’s revisit the interpretation of the slope:

The model predicts that an increase of one percentage point in the
composition of racial minorities corresponds to an increase of 0.01388
new FAIR policies per 100 housing units.

This is a perfectly correct statement, but one percentage point change is not
very much. It’s hard to think about comparing two neighborhoods that differ
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by only one percent. This scale also makes the predicted change in the response
variable hard to interpret. How many policies is 0.01388 per 100 housing units?

One way to make these kinds of statements more interpretable is to change
the scale. What if we increase 10 percentage points instead of only 1 percent-
age point? In other words, what if we move 10 times as far along the x-axis.
The response variable will also have to move 10 times as far. This is the new
statement:

The model predicts that an increase of 10 percentage points in the
composition of racial minorities corresponds to an increase of 0.1388
new FAIR policies per 100 housing units.

In this case, the decimal 0.1388 is maybe still not completely clear, but at
least an increase of 10 percentage points is a meaningful difference between
neighborhoods.

Exercise 6 Since the last number is a per capita type measure, we can also
rescale it. If the model predicts an increase in 0.1388 new FAIR policies per 100
households (corresponding to 10 percentage points increase in racial minorities),
how many FAIR policies would that be in 1000 households?

Please write up your answer here.

7.8 The tidy command

Recall the output of the lm command:

involact_race_lm

##
## Call:
## lm(formula = involact ~ race, data = chredlin)
##
## Coefficients:
## (Intercept) race
## 0.12922 0.01388

(We did not have to run lm again. We had this output stored in the variable
involact_race_lm.)

That summary is fine, but what if we needed to reference the slope and intercept
using inline code? Or what if we wanted to grab those numbers and use them
in further calculations?
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The problem is that the results of lm just print the output in an unstructured
way. If we want structured input, we can use the tidy command from the broom
package. This will take the results of lm and organize the output into a tibble.

tidy(involact_race_lm)

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.129 0.0966 1.34 0.188
## 2 race 0.0139 0.00203 6.84 0.0000000178

Let’s store that tibble so we can refer to it in the future.

involact_race_tidy <- tidy(involact_race_lm)
involact_race_tidy

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.129 0.0966 1.34 0.188
## 2 race 0.0139 0.00203 6.84 0.0000000178

The intercept is stored in the estimate column, in the first row. The slope
is stored in the same column, but in the second row. (There is a lot more
information here to the right of the estimate column, but we will not know
what these numbers mean until later in the course.)

We can grab the estimate column with the dollar sign as we’ve seen before:

involact_race_tidy$estimate

## [1] 0.12921803 0.01388235

This is a “vector” of two values, the intercept and the slope, respectively.

What if we want only one value at a time? We can grab individual elements of
a vector using square brackets as follows:

involact_race_tidy$estimate[1]

## [1] 0.129218
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involact_race_tidy$estimate[2]

## [1] 0.01388235

Here is the interpretation of the slope again, but this time, we’ll use inline code:

The model predicts that an increase of 1 percentage points in
the composition of racial minorities corresponds to an increase of
0.0138824 new FAIR policies per 100 housing units.

Click somewhere inside the backticks on the line above and hit Ctrl-Enter or
Cmd-Enter (PC or Mac respectively). You should see the number 0.01388235
pop up. If you Preview the HTML version of the document, you will also see
the number there (not the code).

What if we want to apply re-scaling to make this number more interpretable?
The stuff inside the inline code chunk is just R code, so we can do any kind of
calculation with it we want.

The model predicts that an increase of 10 percentage points in
the composition of racial minorities corresponds to an increase of
0.1388235 new FAIR policies per 100 housing units.

Now the number will be 0.1388235, ten times as large.

Exercise 7 Copy and paste the interpretation of the intercept from earlier, but
replace the number 0.12922 with an inline code chunk that grabs that number
from the estimate column of the involact_race_tidy tibble. (Remember that
the intercept is the first element of that vector, not the second element like the
slope.)

Please write up your answer here.

7.9 Residuals

Earlier, we promised to revisit the topic of residuals. Residuals are measured
as the vertical distances from each data point to the regression line. We can
see that visually below. (Don’t worry about the complexity of the ggplot code
used to create this picture. You will not need to create a plot like this on your
own, so just focus on the graph that is created below.)
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ggplot(chredlin, aes(y = involact, x = race)) +
geom_segment(x = 35.1, xend = 35.1,

y = 0.6164886, yend = 0.6164886 + 0.38351139,
color = "red", size = 2) +

geom_segment(x = 66.1, xend = 66.1,
y = 1.0468415, yend = 1.0468415 - 0.64684154,
color = "red", size = 2) +

geom_point() +
geom_smooth(method = lm, se = FALSE)

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

## `geom_smooth()` using formula = 'y ~ x'
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The graph above shows the regression line and two of the residuals as red line
segments. (There is a residual for all 47 ZIP codes; only two are shown in this
graph.) The one on the left corresponds to ZIP code with 35% racial minority.
The regression line predicts that, if the model were true, such a ZIP code would
have a value of involact of about 0.6. But the actual data for that ZIP code
has an involact value of 1. The residual is the difference, about 0.4. In other
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words, the true data point is 0.4 units higher than the model prediction. This
represents a positive residual; the actual data is 0.4 units above the line. Data
points that lie below the regression line have negative residuals.

Exercise 8 Look at the residual on the right. This corresponds to a ZIP
code with about 66% racial minorities. First, estimate the value of involact
that the model predicts for this ZIP code. (This is the y-value of the point
on the regression line.) Next, report the actual involact value for this ZIP
code. Finally, subtract these two numbers to get an approximate value for the
residual. Should this residual be a positive number or a negative number?

You can just estimate with your eyeballs for now. You don’t need to be super
precise.

Please write up your answer here.

More formally, let’s call the residual 𝑒. This is standard notation, as “e” stands
for “error”. Again, though, it’s not an error in the sense of a mistake. It’s an
error in the sense that the model is not perfectly accurate, so it doesn’t predict
the data points exactly. The degree to which the prediction misses is the “error”
or “residual”. It is given by the following formula:

𝑒 = 𝑦 − ̂𝑦

Exercise 9 There are two symbols on the right-hand side of the equation
above, 𝑦 and ̂𝑦. Which one is the actual data value and which one is the
predicted value (the one on the line)?

Please write up your answer here.

The residuals are used to determine the regression line. The correct regression
line will be the one that results in the smallest residuals overall. How do we
measure the overall set of residuals? We can’t just calculate the average residual.
Because the regression line should go through the middle of the data, the positive
residuals will cancel out the negative residuals and the mean residual will just
be zero. That’s not very useful.

Instead, what we do is square the residuals. That makes all of them positive.
Then we add together all the squared residuals and that sum is the thing we
try to minimize. Well, we don’t do that manually because it’s hard, so we let
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the computer do that for us. Because the regression line minimizes the sum of
the squared residuals, the regression line is often called the least-squares line.

Recall earlier when we mentioned that there was one additional condition to
check in order for linear regression to make sense. This condition is that there
should not be any kind of pattern in the residuals.

We know that some of the points are going to lie above the line (positive residu-
als) and some of the points will lie below the line (negative residuals). What we
need is for the spread of the residuals to be pretty balanced across the length of
the regression line and for the residuals not to form any kind of curved pattern.

To check this condition, we’ll need to calculate the residuals first. To do so,
we introduce a new function from the broom package. Whereas tidy serves up
information about the intercept and the slope of the regression line, augment
gives us extra information for each data point.

involact_race_aug <- augment(involact_race_lm)
involact_race_aug

## # A tibble: 47 x 9
## .rownames involact race .fitted .resid .hat .sigma .cooksd .std.resid
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 60626 0 10 0.268 -0.268 0.0341 0.452 0.00651 -0.608
## 2 60640 0.1 22.2 0.437 -0.337 0.0246 0.451 0.00731 -0.761
## 3 60613 1.2 19.6 0.401 0.799 0.0261 0.437 0.0436 1.80
## 4 60657 0.5 17.3 0.369 0.131 0.0277 0.453 0.00124 0.295
## 5 60614 0.7 24.5 0.469 0.231 0.0235 0.453 0.00326 0.520
## 6 60610 0.3 54 0.879 -0.579 0.0287 0.445 0.0253 -1.31
## 7 60611 0 4.9 0.197 -0.197 0.0398 0.453 0.00417 -0.448
## 8 60625 0 7.1 0.228 -0.228 0.0372 0.453 0.00517 -0.517
## 9 60618 0.4 5.3 0.203 0.197 0.0393 0.453 0.00411 0.448
## 10 60647 1.1 21.5 0.428 0.672 0.0250 0.442 0.0295 1.52
## # i 37 more rows

The first three columns consist of the row names (the ZIP codes) followed by
the actual data values we started with for involact and race. But now we’ve
“augmented” the original data with some new stuff too. (We won’t learn about
anything past the fifth column in this course, though.)

The fourth column—called .fitted—is ̂𝑦, or the point on the line that cor-
responds to the given 𝑥 value. Let’s check and make sure this is working as
advertised.

The regression equation from above is

̂𝑖𝑛𝑣𝑜𝑙𝑎𝑐𝑡 = 0.12922 + 0.01388𝑟𝑎𝑐𝑒
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Take, for example, the first row in the tibble above, the one corresponding to
ZIP code 60626. The value of race is 10.0. Plug that value into the equation
above:

̂𝑖𝑛𝑣𝑜𝑙𝑎𝑐𝑡 = 0.12922 + 0.01388(10.0) = 0.268

The model predicts that a ZIP code with 10% racial minorities will have about
0.268 new FAIR policies per 100 housing units. The corresponding number in
the .fitted column is 0.2680416, so that’s correct.

Now skip over to the fifth column of the augment output, the one that says
.resid. If this is the residual 𝑒, then it should be 𝑦 − ̂𝑦. Since 𝑦 is the actual
value of involact and ̂𝑦 is the value predicted by the model, we should get for
the first row of output

𝑒 = 𝑦 − ̂𝑦 = 0.0 − 0.268 = −0.268

Yup, it works!

To check for patterns in the residuals, we’ll create a residual plot. A residual
plot graphs the residuals above each value along the x-axis. (In the command
below, we also add a blue horizontal reference line so that it is clear which points
have positive or negative residuals.)

ggplot(involact_race_aug, aes(y = .resid, x = race)) +
geom_point() +
geom_hline(yintercept = 0, color = "blue")
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Pay close attention to the ggplot code. Notice that the tibble in the first slot
is not chredlin as it was before. The residuals we need to plot are not stored
in the raw chredlin data. We had to calculate the residuals using the augment
command, and those residuals are then stored in a different place that we named
involact_race_aug. In the latter tibble, the residuals themselves are stored in
a variable called .resid. (Don’t forget the dot in .resid.)

We are looking for systematic patterns in the residuals. A good residual plot
should look like the most boring plot you’ve ever seen.

For the most part, the residual plot above looks pretty good. The one exception
is the clustering near the left edge of the graph.

Exercise 10 Refer back and forth between the original scatterplot created
earlier (with the regression line) and the residual plot above. Can you explain
why there is a line of data points with negative residuals along the left edge of
the residual plot?

Please write up your answer here.

Residual patterns that are problematic often involve curved data (where the
dots follow a curve around the horizontal reference line instead of spreading
evenly around it) and heteroscedasticity, which is a fanning out pattern from
left to right.
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Other than the weird cluster of points at the left, the rest of the residual plot
looks pretty good. Ignoring those ZIP codes with 0 FAIR policies, the rest of
the residuals stretch, on average, about the same height above and below the
line across the whole width of the plot. There is only one slightly large residual
at about the 40% mark, but it’s not extreme, and it doesn’t look like a severe
outlier in the original scatterplot.

What does a bad residual plot look like? The code below will run an ill-advised
regression analysis on fire, the number of fires (per 100 housing units), against
age, the percent of housing units built before 1939. The residual plot appears
below.

fire_age_lm <- lm(fire ~ age, data = chredlin)
fire_age_aug <- augment(fire_age_lm)
ggplot(fire_age_aug, aes(y = .resid, x = age)) +

geom_point() +
geom_hline(yintercept = 0, color = "blue")
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Exercise 11 Using the vocabulary established above, explain why the residual
plot above is bad.

Please write up your answer here.
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Of course, we should never even get as far as running a regression analysis and
making a residual plot if we perform exploratory data analysis as we’re supposed
to.

Exercise 12(a) If you were truly interested in investigating an association
between the fire risk and the age of buildings in a ZIP code, the first thing you
would do is create a scatterplot. Go ahead and do that below. Use fire as the
response variable and age as the predictor.

# Add code here to create a scatterplot of fire against age

Exercise 12(b) From the scatterplot above, explain why you wouldn’t even
get as far as running a regression analysis. (Think of the conditions.)
Please write up your answer here.

To review, the conditions for a regression analysis are as follows (including the
newest fourth condition):

1. The two variables must be numerical.
2. There is a somewhat linear relationship between the variables, as shown

in a scatterplot.
3. There are no serious outliers.
4. There is no pattern in the residuals.

7.10 𝑅2

We’ve seen that the correlation coefficient r is of limited utility. In addition
to being only a single statistic to summarize a linear association, the number
doesn’t have any kind of intrinsic meaning. It can only be judged by how close
it is to 0 or 1 (or -1) in conjunction with a scatterplot to give you a sense of the
strength of the correlation. In particular, some people try to interpret r
as some kind of percentage, but it’s not.
On the other hand, when we square the correlation coefficient, we do get an
interpretable number. For some reason, instead of writing 𝑟2, statisticians write
𝑅2, with a capital R. (I can’t find the historical reason why this is so.) In
any event, 𝑅2 can be interpreted as a percentage! It represents the percent of
variation in the y variable that can be explained by variation in the x variable.
Here we introduce the last of the broom functions: glance. Whereas tidy
reports the intercept and slope, and augment reports values associated to each
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data point separately, the glance function gathers up summaries for the entire
model. (Do not confuse glance with glimpse. The latter is a nicer version of
str that just summarizes the variables in a tibble.)

involact_race_glance <- glance(involact_race_lm)
involact_race_glance

## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.509 0.499 0.449 46.7 0.0000000178 1 -28.0 62.0 67.6
## # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

A more advanced statistics course might discuss the other model summaries
present in the glance output. The 𝑅2 value is stored in the r.squared (inex-
plicably, now written with a lowercase r). Its value is 0.51. We will word it this
way:

51% of the variability in FAIR policies can be accounted for by
variability in racial composition.

Another way to think about this is to imagine all the factors that might go
into the number of FAIR policies obtained in a ZIP code. That number varies
across ZIP codes, with some ZIP codes having essentially 0 FAIR policies per
100 housing units, and others having quite a bit more, up to 2 or more per 100
housing units. What accounts for this discrepancy among ZIP codes? Is it the
varying racial composition of those neighborhoods? To some degree, yes. We
have seen that more racially diverse neighborhoods, on average, require more
FAIR policies. But is race the only factor? Probably not. Income, for example,
might play a role. People in low income neighborhoods may not be able to
acquire traditional insurance due to its cost or their poor credit, etc. That also
accounts for some of the variability among ZIP codes. Are there likely even
more factors? Most assuredly. In fact, if 51% of the variability in FAIR policies
can be accounted for by variability in racial composition. then 49% must be
accounted for by other variables. These other variables may or may not be
collected in our data, and we will never be able to determine all the factors that
go into varying FAIR policy numbers.

𝑅2 is a measure of the fit of the model. High values of 𝑅2 mean that the line
predicts the data values closely, whereas lower values of 𝑅2 mean that there is
still a lot of variability left in the residuals (again, due to other factors that are
not measured in the model).
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Exercise 13 Calculate the correlation coefficient r between involact and
race using the cor command. (You might have to look back at the last chapter
to remember the syntax.) Store that value as r.

In a separate code chunk, square that value using the command r^2. Verify that
the square of the correlation coefficient is the same as the 𝑅2 value reported in
the glance output above.

# Add code here to calculate the correlation coefficient

# Add code here to square the correlation coefficient

7.11 Multiple predictors

The discussion of 𝑅2 above highlights the fact that a single predictor will rarely
account for all or even most of the variability in a response variable. Is there a
way to take other predictors into account?

The answer is yes, and the statistical technique involved is called multiple regres-
sion. Multiple regression is a deep subject, worthy of entire courses. Suffice it
to say here that more advanced stats courses go into the ways in which multiple
predictors can be included in a regression.

One easy thing we can do is incorporate a categorical variable into a graph and
see if that categorical variable might play a role in the regression analysis. For
example, there is a variance called side in chredlin that indicates whether the
ZIP code is on the north side (n) or south side(s) of Chicago. As described in
an earlier chapter, we can use color to distinguish between the ZIP codes.

ggplot(chredlin, aes(y = involact, x = race, color = side)) +
geom_point()
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Exercise 14 Do neighborhoods with higher percent racial minorities tend to
be on the north or south side of Chicago?

Please write up your answer here.

Does this affect the regression? We haven’t checked the conditions carefully
for this new question, so we will exercise caution in coming to any definitive
conclusions. But visually, there does appear to be a difference in the models
generated for ZIP codes on the north versus south sides:

ggplot(chredlin, aes(y = involact, x = race, color = side)) +
geom_point() +
geom_smooth(method = lm, se = FALSE)

## `geom_smooth()` using formula = 'y ~ x'
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Exercise 15 Although the slopes appear to be different, this is quite mis-
leading. Focus on just the red dots. Which regression condition appears to be
violated if we only consider the north side regression? How does that violation
appear to affect the slope of the regression line?

Please write up your answer here.

7.12 Your turn

Let’s revisit the penguins data. Imagine that it was much easier to measure
body mass than it was to measure flipper length. (I’m not a penguin expert,
so I don’t know if that’s true, but it seems plausible. Weighing a penguin
can be done without human contact, for example.) Can we accurately predict
flipper length from body mass? (This means that flipper_length_mm should
be the response variable on the y-axis and body_mass_g should be the predictor
variable on the x-axis.)

Exercise 16(a) Create a scatterplot of the data. Do not include a regression
line yet. (In other words, there should be no geom_smooth in this plot.)

# Add code here to create a scatterplot of the data
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Exercise 16(b) Use the scatterplot above to check the first three conditions
of regression.

1.
2.
3.

Exercise 16(c) As we’re reasonably satisfied that the first three conditions
are met and regression is worth pursuing, run the lm command to perform the
regression analysis. Assign the output to the name fl_bm_lm. Be sure to type
the variable name fl_bm_lm on its own line so that the output is printed in this
file.

Then use tidy, augment, and glance respectively on the output. Assign the
output to the names fl_bm_tidy, fl_bm_aug, and fl_bm_glance. Again, in
each code chunk, type the output variable name on its own line to ensure that
it prints in this file.

# Add code here to generate and print regression output with lm

# Add code here to "tidy" and print the output from lm

# Add code here to "augment" and print the output from lm

# Add code here to "glance" at and print the output from lm

Exercise 16(d) Use the augment output from above to create a residual plot
with a blue horizontal reference line.

# Add code here to create a residual plot

Exercise 16(e) Use the residual plot to check the fourth regression condition.

Please write up your answer here.

Exercise 16(f) With all the conditions met, plot the regression line on top
of the scatterplot of the data. (Use geom_smooth with method = lm and se =
FALSE as in the examples earlier.)

# Add code here to plot the regression line on the scatterplot
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Exercise 16(g) Using the values of the intercept and slope from the tidy
output, write the regression equation mathematically (enclosing your answer in
double dollar signs as above), using contextually meaningful variable names.

𝑤𝑟𝑖𝑡𝑒 −𝑚𝑎𝑡ℎ − ℎ𝑒𝑟𝑒

Exercise 16(h) Interpret the slope in a full, contextually meaningful sen-
tence.

Please write up your answer here.

Exercise 16(i) Give a literal interpretation of the intercept. Then comment
on the appropriateness of that interpretation. (In other words, does the intercept
make sense, or is it a case of extrapolation?)

Please write up your answer here.

Exercise 16(j) Use the equation of the regression line to predict the flipper
length of a penguin with body mass 4200 grams. Show your work. Then put
that prediction into a full, contextually meaningful sentence.

Please write up your answer here.

Exercise 16(k) Using the value of 𝑅2 from the glance output for the model
of flipper length by body mass, write a full, contextually meaningful sentence
interpreting that value.

Please write up your answer here.

Exercise 16(l) Add color = species to the aes portion of the ggplot com-
mand to look at the regression lines for the three different species separately.
Comment on the slopes of those three regression lines.

# Add code here to plot regressions by species

Please write up your answer here.

7.13 Conclusion

Going beyond mere correlation, a regression analysis allows us to specify a linear
model in the form of an equation. Assuming the conditions are met, this allows
us to say more about the association. For example, the slope predicts how
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the response changes when comparing two values of the predictor. In fact, we
can use the regression line to make a prediction for any reasonable value of the
predictor (being careful not to extrapolate). Because regression is only a model,
these predictions will not be exactly correct. Real data comes with residuals,
meaning deviations from the idealized predictions of the model. But if those
residuals are relatively small then the 𝑅2 value will be large and the model does
a good job making reasonably accurate predictions.

7.13.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 8

Introduction to
randomization, Part 1

2.0

Functions introduced in this chapter

set.seed, rflip, do

8.1 Introduction

In this module, we’ll learn about randomization and simulation. When we
want to understand how sampling works, it’s helpful to simulate the process of
drawing samples repeatedly from a population. In the days before computing,
this was very difficult to do. Now, a few simple lines of computer code can
generate thousands (even millions) of random samples, often in a matter of
seconds or less.

8.1.1 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following command
at the Console:

179
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install.packages("mosaic")

8.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/08-intro_to_randomization_1.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

8.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

8.1.4 Load packages

We load the tidyverse package. The mosaic package contains some tools for
making it easier to learn about randomization and simulation.

library(tidyverse)
library(mosaic)

## Warning: package 'mosaic' was built under R version 4.3.1

## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2

##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.

##
## Attaching package: 'mosaic'

## The following object is masked from 'package:Matrix':
##
## mean
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## The following objects are masked from 'package:faraway':
##
## ilogit, logit

## The following objects are masked from 'package:dplyr':
##
## count, do, tally

## The following object is masked from 'package:purrr':
##
## cross

## The following object is masked from 'package:ggplot2':
##
## stat

## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var

## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum

8.2 Sample and population

The goal of the next few chapters is to help you think about the process of
sampling from a population. What do these terms mean?
A population is a group of objects we would like to study. If that sounds vague,
that’s because it is. A population can be a group of any size and of any type
of thing in which we’re interested. Often, populations refer to groups of people.
For example, in an election, the population of interest is all voters. But if
you’re a biologist, you might study populations of other kinds of organisms. If
you’re an engineer, you might study populations of bolts on bridges. If you’re
in finance, you might study populations of loans.
Populations are usually inaccessible in their entirety. It is impossible to survey
every voter in any reasonably sized election, for example. Therefore, to study
them, we have to collect a sample. A sample is a subset of the population.
We might conduct a poll of 2000 voters to try to learn about voting intentions
for the entire population. Of course, for that to work, the sample has to be
representative of its population. We’ll have more to say about that in the
future.
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8.3 Flipping a coin

Before we talk about how samples are obtained from populations in the real
world, we’re going to perform some simulations.
One of the simplest acts to simulate is flipping a coin. We could get an actual
coin and physically flip it over and over again, but that is time-consuming and
annoying. It is much easier to flip a “virtual” coin inside the computer. One
way to accomplish this in R is to use the rflip command from the mosaic
package. To make sure we’re flipping a fair coin, we’ll say that we want a 50%
chance of heads by including the parameter prob = 0.5.
One more bit of technical detail. Since there will be some randomness involved
here, we will need to include an R command to ensure that we all get the same
results every time this code runs. This is called “setting the seed”. Don’t worry
too much about what this is doing under the hood. The basic idea is that
two people who start with the same seed will generate the same sequence of
“random” numbers.
The seed 1234 in the chunk below is totally arbitrary. It could have been any
number at all. (And, in fact, we’ll use different numbers just for fun.) If you
change the seed, you will get different output, so we all need to use the same
seed. But the actual common value we all use for the seed is irrelevant.
Here is one coin flip with a 50% chance of coming up heads:

set.seed(1234)
rflip(1, prob = 0.5)

##
## Flipping 1 coin [ Prob(Heads) = 0.5 ] ...
##
## T
##
## Number of Heads: 0 [Proportion Heads: 0]

Here are ten coin flips, each with a 50% chance of coming up heads:

set.seed(1234)
rflip(10, prob = 0.5)

##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## T H H H H H T T H H
##
## Number of Heads: 7 [Proportion Heads: 0.7]
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Just to confirm that this is a random process, let’s flip ten coins again (but
without setting the seed again):

rflip(10, prob = 0.5)

##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## H H T H T H T T T T
##
## Number of Heads: 4 [Proportion Heads: 0.4]

If we return to the previous seed of 1234, we should obtain the same ten coin
flips we did at first:

set.seed(1234)
rflip(10, prob = 0.5)

##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## T H H H H H T T H H
##
## Number of Heads: 7 [Proportion Heads: 0.7]

And just to see the effect of setting a different seed:

set.seed(9999)
rflip(10, prob = 0.5)

##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## H H H T H H T H H H
##
## Number of Heads: 8 [Proportion Heads: 0.8]

Exercise 1 In ten coin flips, how many would you generally expect to come
up heads? Is that the actual number of heads you saw in the simulations above?
Why aren’t the simulations coming up with the expected number of heads each
time?

Please write up your answer here.
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8.4 Multiple simulations

Suppose now that you are not the only person flipping coins. Suppose a bunch
of people in a room are all flipping coins. We’ll start with ten coin flips per
person, a task that could be reasonably done even without a computer.

You might observe three heads in ten flips. Fine, but what about everyone else
in the room? What numbers of heads will they see?

The do command from mosaic is a way of doing something multiple times.
Imagine there are twenty people in the room, each flipping a coin ten times,
each time with a 50% probability of coming up heads. Observe:

set.seed(12345)
do(20) * rflip(10, prob = 0.5)

## n heads tails prop
## 1 10 2 8 0.2
## 2 10 5 5 0.5
## 3 10 5 5 0.5
## 4 10 4 6 0.4
## 5 10 4 6 0.4
## 6 10 7 3 0.7
## 7 10 6 4 0.6
## 8 10 5 5 0.5
## 9 10 7 3 0.7
## 10 10 7 3 0.7
## 11 10 6 4 0.6
## 12 10 7 3 0.7
## 13 10 7 3 0.7
## 14 10 6 4 0.6
## 15 10 7 3 0.7
## 16 10 6 4 0.6
## 17 10 7 3 0.7
## 18 10 3 7 0.3
## 19 10 4 6 0.4
## 20 10 7 3 0.7

The syntax could not be any simpler: do(20) * means, literally, “do twenty
times.” In other words, this command is telling R to repeat an action twenty
times, where the action is flipping a single coin ten times.

You’ll notice that in place of a list of outcomes (H or T) of all the individual
flips, we have instead a summary of the number of heads and tails each person
sees. Each row represents a person, and the columns give information about
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each person’s flips. (There are n = 10 flips for each person, but then the num-
ber of heads/tails—and the corresponding “proportion” of heads—changes from
person to person.)

Looking at the above rows and columns, we see that the output of our little
coin-flipping experiment is actually stored in a data frame! Let’s give it a name
and work with it.

set.seed(12345)
coin_flips_20_10 <- do(20) * rflip(10, prob = 0.5)
coin_flips_20_10

## n heads tails prop
## 1 10 2 8 0.2
## 2 10 5 5 0.5
## 3 10 5 5 0.5
## 4 10 4 6 0.4
## 5 10 4 6 0.4
## 6 10 7 3 0.7
## 7 10 6 4 0.6
## 8 10 5 5 0.5
## 9 10 7 3 0.7
## 10 10 7 3 0.7
## 11 10 6 4 0.6
## 12 10 7 3 0.7
## 13 10 7 3 0.7
## 14 10 6 4 0.6
## 15 10 7 3 0.7
## 16 10 6 4 0.6
## 17 10 7 3 0.7
## 18 10 3 7 0.3
## 19 10 4 6 0.4
## 20 10 7 3 0.7

It is significant that we can store our outcomes this way. Because we have a
data frame, we can apply all our data analysis tools (graphs, charts, tables,
summary statistics, etc.) to the “data” generated from our set of simulations.

For example, what is the mean number of heads these twenty people observed?

mean(coin_flips_20_10$heads)

## [1] 5.6
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Exercise 2 The data frame coin_flips_20_10 contains four variables:
n, heads, tails, and prop. In the code chunk above, we calculated
mean(coin_flips_20_10$heads) which gave us the mean count of heads for
all people flipping coins. Instead of calculating the mean count of heads, change
the variable from heads to prop to calculate the mean proportion of heads.
Then explain why your answer makes sense in light of the mean count of heads
calculated above.

# Add code here to calculate the mean proportion of heads.

Please write up your answer here.

Let’s look at a histogram of the number of heads we see in the simulated flips.
(The fancy stuff in scale_x_continuous is just making sure that the x-axis
goes from 0 to 10 and that the tick marks appear on each whole number.)

ggplot(coin_flips_20_10, aes(x = heads)) +
geom_histogram(binwidth = 0.5) +
scale_x_continuous(limits = c(-1, 11), breaks = seq(0, 10, 1))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Let’s do the same thing, but now let’s consider the proportion of heads.
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ggplot(coin_flips_20_10, aes(x = prop)) +
geom_histogram(binwidth = 0.05) +
scale_x_continuous(limits = c(-0.1, 1.1), breaks = seq(0, 1, 0.1))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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8.5 Bigger and better!

With only twenty people, it was possible that, for example, nobody would get
all heads or all tails. Indeed, in coin_flips_20_10 there were no people who
got all heads or all tails. Also, there were more people with six and seven heads
than with five heads, even though we “expected” the average to be five heads.
There is nothing particularly significant about that; it happened by pure chance
alone. Another run through the above commands would generate a somewhat
different outcome. That’s what happens when things are random.

Instead, let’s imagine that we recruited way more people to flip coins with us.
Let’s try it again with 2000 people:

set.seed(1234)
coin_flips_2000_10 <- do(2000) * rflip(10, prob = 0.5)
coin_flips_2000_10
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## n heads tails prop
## 1 10 4 6 0.4
## 2 10 4 6 0.4
## 3 10 4 6 0.4
## 4 10 6 4 0.6
## 5 10 5 5 0.5
## 6 10 4 6 0.4
## 7 10 4 6 0.4
## 8 10 4 6 0.4
## 9 10 3 7 0.3
## 10 10 1 9 0.1
## 11 10 5 5 0.5
## 12 10 5 5 0.5
## 13 10 7 3 0.7
## 14 10 7 3 0.7
## 15 10 5 5 0.5
## 16 10 3 7 0.3
## 17 10 5 5 0.5
## 18 10 5 5 0.5
## 19 10 9 1 0.9
## 20 10 6 4 0.6
## 21 10 7 3 0.7
## 22 10 2 8 0.2
## 23 10 6 4 0.6
## 24 10 6 4 0.6
## 25 10 5 5 0.5
## 26 10 4 6 0.4
## 27 10 5 5 0.5
## 28 10 5 5 0.5
## 29 10 6 4 0.6
## 30 10 6 4 0.6
## 31 10 3 7 0.3
## 32 10 3 7 0.3
## 33 10 4 6 0.4
## 34 10 5 5 0.5
## 35 10 7 3 0.7
## 36 10 6 4 0.6
## 37 10 4 6 0.4
## 38 10 3 7 0.3
## 39 10 7 3 0.7
## 40 10 6 4 0.6
## 41 10 6 4 0.6
## 42 10 3 7 0.3
## 43 10 7 3 0.7
## 44 10 9 1 0.9
## 45 10 7 3 0.7
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## 46 10 5 5 0.5
## 47 10 4 6 0.4
## 48 10 6 4 0.6
## 49 10 7 3 0.7
## 50 10 8 2 0.8
## 51 10 6 4 0.6
## 52 10 5 5 0.5
## 53 10 7 3 0.7
## 54 10 7 3 0.7
## 55 10 5 5 0.5
## 56 10 6 4 0.6
## 57 10 5 5 0.5
## 58 10 5 5 0.5
## 59 10 7 3 0.7
## 60 10 3 7 0.3
## 61 10 4 6 0.4
## 62 10 6 4 0.6
## 63 10 6 4 0.6
## 64 10 6 4 0.6
## 65 10 5 5 0.5
## 66 10 6 4 0.6
## 67 10 5 5 0.5
## 68 10 4 6 0.4
## 69 10 4 6 0.4
## 70 10 4 6 0.4
## 71 10 4 6 0.4
## 72 10 4 6 0.4
## 73 10 7 3 0.7
## 74 10 3 7 0.3
## 75 10 7 3 0.7
## 76 10 6 4 0.6
## 77 10 6 4 0.6
## 78 10 4 6 0.4
## 79 10 7 3 0.7
## 80 10 4 6 0.4
## 81 10 4 6 0.4
## 82 10 1 9 0.1
## 83 10 7 3 0.7
## 84 10 7 3 0.7
## 85 10 7 3 0.7
## 86 10 3 7 0.3
## 87 10 6 4 0.6
## 88 10 4 6 0.4
## 89 10 7 3 0.7
## 90 10 4 6 0.4
## 91 10 3 7 0.3
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## 92 10 4 6 0.4
## 93 10 5 5 0.5
## 94 10 6 4 0.6
## 95 10 6 4 0.6
## 96 10 4 6 0.4
## 97 10 7 3 0.7
## 98 10 5 5 0.5
## 99 10 5 5 0.5
## 100 10 4 6 0.4
## 101 10 6 4 0.6
## 102 10 3 7 0.3
## 103 10 5 5 0.5
## 104 10 6 4 0.6
## 105 10 5 5 0.5
## 106 10 6 4 0.6
## 107 10 2 8 0.2
## 108 10 4 6 0.4
## 109 10 4 6 0.4
## 110 10 2 8 0.2
## 111 10 5 5 0.5
## 112 10 4 6 0.4
## 113 10 5 5 0.5
## 114 10 4 6 0.4
## 115 10 1 9 0.1
## 116 10 5 5 0.5
## 117 10 2 8 0.2
## 118 10 8 2 0.8
## 119 10 4 6 0.4
## 120 10 7 3 0.7
## 121 10 5 5 0.5
## 122 10 7 3 0.7
## 123 10 5 5 0.5
## 124 10 6 4 0.6
## 125 10 4 6 0.4
## 126 10 6 4 0.6
## 127 10 8 2 0.8
## 128 10 2 8 0.2
## 129 10 6 4 0.6
## 130 10 4 6 0.4
## 131 10 6 4 0.6
## 132 10 3 7 0.3
## 133 10 3 7 0.3
## 134 10 5 5 0.5
## 135 10 6 4 0.6
## 136 10 3 7 0.3
## 137 10 7 3 0.7
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## 138 10 6 4 0.6
## 139 10 5 5 0.5
## 140 10 5 5 0.5
## 141 10 4 6 0.4
## 142 10 7 3 0.7
## 143 10 3 7 0.3
## 144 10 4 6 0.4
## 145 10 4 6 0.4
## 146 10 6 4 0.6
## 147 10 6 4 0.6
## 148 10 6 4 0.6
## 149 10 7 3 0.7
## 150 10 8 2 0.8
## 151 10 3 7 0.3
## 152 10 3 7 0.3
## 153 10 4 6 0.4
## 154 10 4 6 0.4
## 155 10 3 7 0.3
## 156 10 2 8 0.2
## 157 10 3 7 0.3
## 158 10 7 3 0.7
## 159 10 5 5 0.5
## 160 10 3 7 0.3
## 161 10 4 6 0.4
## 162 10 6 4 0.6
## 163 10 4 6 0.4
## 164 10 5 5 0.5
## 165 10 4 6 0.4
## 166 10 4 6 0.4
## 167 10 3 7 0.3
## 168 10 4 6 0.4
## 169 10 4 6 0.4
## 170 10 4 6 0.4
## 171 10 4 6 0.4
## 172 10 4 6 0.4
## 173 10 7 3 0.7
## 174 10 3 7 0.3
## 175 10 8 2 0.8
## 176 10 5 5 0.5
## 177 10 8 2 0.8
## 178 10 4 6 0.4
## 179 10 5 5 0.5
## 180 10 3 7 0.3
## 181 10 7 3 0.7
## 182 10 5 5 0.5
## 183 10 4 6 0.4
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## 184 10 3 7 0.3
## 185 10 6 4 0.6
## 186 10 6 4 0.6
## 187 10 7 3 0.7
## 188 10 3 7 0.3
## 189 10 5 5 0.5
## 190 10 7 3 0.7
## 191 10 4 6 0.4
## 192 10 6 4 0.6
## 193 10 4 6 0.4
## 194 10 5 5 0.5
## 195 10 5 5 0.5
## 196 10 8 2 0.8
## 197 10 9 1 0.9
## 198 10 5 5 0.5
## 199 10 7 3 0.7
## 200 10 5 5 0.5
## 201 10 4 6 0.4
## 202 10 5 5 0.5
## 203 10 3 7 0.3
## 204 10 5 5 0.5
## 205 10 6 4 0.6
## 206 10 3 7 0.3
## 207 10 4 6 0.4
## 208 10 3 7 0.3
## 209 10 4 6 0.4
## 210 10 9 1 0.9
## 211 10 4 6 0.4
## 212 10 5 5 0.5
## 213 10 6 4 0.6
## 214 10 3 7 0.3
## 215 10 5 5 0.5
## 216 10 7 3 0.7
## 217 10 4 6 0.4
## 218 10 6 4 0.6
## 219 10 4 6 0.4
## 220 10 4 6 0.4
## 221 10 4 6 0.4
## 222 10 4 6 0.4
## 223 10 10 0 1.0
## 224 10 4 6 0.4
## 225 10 3 7 0.3
## 226 10 8 2 0.8
## 227 10 7 3 0.7
## 228 10 6 4 0.6
## 229 10 6 4 0.6
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## 230 10 4 6 0.4
## 231 10 6 4 0.6
## 232 10 4 6 0.4
## 233 10 6 4 0.6
## 234 10 3 7 0.3
## 235 10 4 6 0.4
## 236 10 4 6 0.4
## 237 10 5 5 0.5
## 238 10 3 7 0.3
## 239 10 4 6 0.4
## 240 10 7 3 0.7
## 241 10 8 2 0.8
## 242 10 6 4 0.6
## 243 10 6 4 0.6
## 244 10 7 3 0.7
## 245 10 6 4 0.6
## 246 10 6 4 0.6
## 247 10 8 2 0.8
## 248 10 4 6 0.4
## 249 10 4 6 0.4
## 250 10 4 6 0.4
## 251 10 4 6 0.4
## 252 10 5 5 0.5
## 253 10 5 5 0.5
## 254 10 3 7 0.3
## 255 10 4 6 0.4
## 256 10 5 5 0.5
## 257 10 6 4 0.6
## 258 10 6 4 0.6
## 259 10 6 4 0.6
## 260 10 8 2 0.8
## 261 10 5 5 0.5
## 262 10 5 5 0.5
## 263 10 1 9 0.1
## 264 10 6 4 0.6
## 265 10 3 7 0.3
## 266 10 4 6 0.4
## 267 10 6 4 0.6
## 268 10 7 3 0.7
## 269 10 7 3 0.7
## 270 10 5 5 0.5
## 271 10 5 5 0.5
## 272 10 5 5 0.5
## 273 10 5 5 0.5
## 274 10 6 4 0.6
## 275 10 5 5 0.5
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## 276 10 6 4 0.6
## 277 10 6 4 0.6
## 278 10 5 5 0.5
## 279 10 5 5 0.5
## 280 10 5 5 0.5
## 281 10 10 0 1.0
## 282 10 5 5 0.5
## 283 10 7 3 0.7
## 284 10 4 6 0.4
## 285 10 5 5 0.5
## 286 10 6 4 0.6
## 287 10 6 4 0.6
## 288 10 3 7 0.3
## 289 10 6 4 0.6
## 290 10 5 5 0.5
## 291 10 7 3 0.7
## 292 10 4 6 0.4
## 293 10 4 6 0.4
## 294 10 3 7 0.3
## 295 10 8 2 0.8
## 296 10 2 8 0.2
## 297 10 5 5 0.5
## 298 10 4 6 0.4
## 299 10 7 3 0.7
## 300 10 3 7 0.3
## 301 10 3 7 0.3
## 302 10 6 4 0.6
## 303 10 6 4 0.6
## 304 10 6 4 0.6
## 305 10 4 6 0.4
## 306 10 5 5 0.5
## 307 10 4 6 0.4
## 308 10 5 5 0.5
## 309 10 3 7 0.3
## 310 10 6 4 0.6
## 311 10 6 4 0.6
## 312 10 5 5 0.5
## 313 10 4 6 0.4
## 314 10 3 7 0.3
## 315 10 5 5 0.5
## 316 10 3 7 0.3
## 317 10 4 6 0.4
## 318 10 6 4 0.6
## 319 10 4 6 0.4
## 320 10 2 8 0.2
## 321 10 5 5 0.5
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## 322 10 6 4 0.6
## 323 10 4 6 0.4
## 324 10 6 4 0.6
## 325 10 4 6 0.4
## 326 10 4 6 0.4
## 327 10 6 4 0.6
## 328 10 5 5 0.5
## 329 10 7 3 0.7
## 330 10 4 6 0.4
## 331 10 3 7 0.3
## 332 10 4 6 0.4
## 333 10 5 5 0.5
## 334 10 5 5 0.5
## 335 10 6 4 0.6
## 336 10 4 6 0.4
## 337 10 3 7 0.3
## 338 10 6 4 0.6
## 339 10 4 6 0.4
## 340 10 2 8 0.2
## 341 10 7 3 0.7
## 342 10 3 7 0.3
## 343 10 6 4 0.6
## 344 10 4 6 0.4
## 345 10 0 10 0.0
## 346 10 3 7 0.3
## 347 10 6 4 0.6
## 348 10 5 5 0.5
## 349 10 7 3 0.7
## 350 10 3 7 0.3
## 351 10 6 4 0.6
## 352 10 7 3 0.7
## 353 10 6 4 0.6
## 354 10 8 2 0.8
## 355 10 6 4 0.6
## 356 10 4 6 0.4
## 357 10 8 2 0.8
## 358 10 2 8 0.2
## 359 10 4 6 0.4
## 360 10 6 4 0.6
## 361 10 2 8 0.2
## 362 10 4 6 0.4
## 363 10 5 5 0.5
## 364 10 4 6 0.4
## 365 10 7 3 0.7
## 366 10 6 4 0.6
## 367 10 6 4 0.6
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## 368 10 2 8 0.2
## 369 10 4 6 0.4
## 370 10 6 4 0.6
## 371 10 2 8 0.2
## 372 10 4 6 0.4
## 373 10 2 8 0.2
## 374 10 4 6 0.4
## 375 10 8 2 0.8
## 376 10 6 4 0.6
## 377 10 6 4 0.6
## 378 10 6 4 0.6
## 379 10 6 4 0.6
## 380 10 6 4 0.6
## 381 10 6 4 0.6
## 382 10 8 2 0.8
## 383 10 4 6 0.4
## 384 10 6 4 0.6
## 385 10 4 6 0.4
## 386 10 3 7 0.3
## 387 10 6 4 0.6
## 388 10 4 6 0.4
## 389 10 6 4 0.6
## 390 10 5 5 0.5
## 391 10 4 6 0.4
## 392 10 6 4 0.6
## 393 10 6 4 0.6
## 394 10 5 5 0.5
## 395 10 4 6 0.4
## 396 10 6 4 0.6
## 397 10 4 6 0.4
## 398 10 7 3 0.7
## 399 10 4 6 0.4
## 400 10 6 4 0.6
## 401 10 3 7 0.3
## 402 10 6 4 0.6
## 403 10 7 3 0.7
## 404 10 4 6 0.4
## 405 10 6 4 0.6
## 406 10 3 7 0.3
## 407 10 7 3 0.7
## 408 10 8 2 0.8
## 409 10 4 6 0.4
## 410 10 6 4 0.6
## 411 10 4 6 0.4
## 412 10 3 7 0.3
## 413 10 4 6 0.4
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## 414 10 7 3 0.7
## 415 10 3 7 0.3
## 416 10 5 5 0.5
## 417 10 5 5 0.5
## 418 10 7 3 0.7
## 419 10 6 4 0.6
## 420 10 5 5 0.5
## 421 10 6 4 0.6
## 422 10 3 7 0.3
## 423 10 5 5 0.5
## 424 10 4 6 0.4
## 425 10 5 5 0.5
## 426 10 5 5 0.5
## 427 10 3 7 0.3
## 428 10 6 4 0.6
## 429 10 4 6 0.4
## 430 10 6 4 0.6
## 431 10 7 3 0.7
## 432 10 7 3 0.7
## 433 10 5 5 0.5
## 434 10 4 6 0.4
## 435 10 4 6 0.4
## 436 10 3 7 0.3
## 437 10 4 6 0.4
## 438 10 5 5 0.5
## 439 10 7 3 0.7
## 440 10 5 5 0.5
## 441 10 5 5 0.5
## 442 10 7 3 0.7
## 443 10 8 2 0.8
## 444 10 6 4 0.6
## 445 10 5 5 0.5
## 446 10 4 6 0.4
## 447 10 3 7 0.3
## 448 10 5 5 0.5
## 449 10 6 4 0.6
## 450 10 7 3 0.7
## 451 10 9 1 0.9
## 452 10 5 5 0.5
## 453 10 5 5 0.5
## 454 10 3 7 0.3
## 455 10 5 5 0.5
## 456 10 5 5 0.5
## 457 10 5 5 0.5
## 458 10 3 7 0.3
## 459 10 3 7 0.3
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## 460 10 5 5 0.5
## 461 10 4 6 0.4
## 462 10 7 3 0.7
## 463 10 7 3 0.7
## 464 10 3 7 0.3
## 465 10 4 6 0.4
## 466 10 5 5 0.5
## 467 10 5 5 0.5
## 468 10 3 7 0.3
## 469 10 8 2 0.8
## 470 10 5 5 0.5
## 471 10 6 4 0.6
## 472 10 5 5 0.5
## 473 10 7 3 0.7
## 474 10 4 6 0.4
## 475 10 4 6 0.4
## 476 10 5 5 0.5
## 477 10 2 8 0.2
## 478 10 6 4 0.6
## 479 10 6 4 0.6
## 480 10 2 8 0.2
## 481 10 6 4 0.6
## 482 10 5 5 0.5
## 483 10 5 5 0.5
## 484 10 6 4 0.6
## 485 10 4 6 0.4
## 486 10 5 5 0.5
## 487 10 6 4 0.6
## 488 10 3 7 0.3
## 489 10 3 7 0.3
## 490 10 6 4 0.6
## 491 10 4 6 0.4
## 492 10 7 3 0.7
## 493 10 4 6 0.4
## 494 10 6 4 0.6
## 495 10 4 6 0.4
## 496 10 8 2 0.8
## 497 10 5 5 0.5
## 498 10 6 4 0.6
## 499 10 6 4 0.6
## 500 10 4 6 0.4
## 501 10 4 6 0.4
## 502 10 5 5 0.5
## 503 10 3 7 0.3
## 504 10 3 7 0.3
## 505 10 6 4 0.6
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## 506 10 5 5 0.5
## 507 10 6 4 0.6
## 508 10 5 5 0.5
## 509 10 5 5 0.5
## 510 10 6 4 0.6
## 511 10 5 5 0.5
## 512 10 4 6 0.4
## 513 10 6 4 0.6
## 514 10 5 5 0.5
## 515 10 5 5 0.5
## 516 10 9 1 0.9
## 517 10 4 6 0.4
## 518 10 2 8 0.2
## 519 10 3 7 0.3
## 520 10 4 6 0.4
## 521 10 2 8 0.2
## 522 10 6 4 0.6
## 523 10 6 4 0.6
## 524 10 7 3 0.7
## 525 10 5 5 0.5
## 526 10 7 3 0.7
## 527 10 7 3 0.7
## 528 10 2 8 0.2
## 529 10 4 6 0.4
## 530 10 8 2 0.8
## 531 10 5 5 0.5
## 532 10 6 4 0.6
## 533 10 8 2 0.8
## 534 10 3 7 0.3
## 535 10 4 6 0.4
## 536 10 6 4 0.6
## 537 10 8 2 0.8
## 538 10 4 6 0.4
## 539 10 4 6 0.4
## 540 10 6 4 0.6
## 541 10 5 5 0.5
## 542 10 4 6 0.4
## 543 10 5 5 0.5
## 544 10 5 5 0.5
## 545 10 3 7 0.3
## 546 10 4 6 0.4
## 547 10 6 4 0.6
## 548 10 4 6 0.4
## 549 10 6 4 0.6
## 550 10 4 6 0.4
## 551 10 6 4 0.6
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## 552 10 3 7 0.3
## 553 10 5 5 0.5
## 554 10 6 4 0.6
## 555 10 5 5 0.5
## 556 10 8 2 0.8
## 557 10 2 8 0.2
## 558 10 5 5 0.5
## 559 10 4 6 0.4
## 560 10 5 5 0.5
## 561 10 4 6 0.4
## 562 10 6 4 0.6
## 563 10 6 4 0.6
## 564 10 4 6 0.4
## 565 10 2 8 0.2
## 566 10 3 7 0.3
## 567 10 6 4 0.6
## 568 10 3 7 0.3
## 569 10 5 5 0.5
## 570 10 7 3 0.7
## 571 10 8 2 0.8
## 572 10 6 4 0.6
## 573 10 4 6 0.4
## 574 10 6 4 0.6
## 575 10 3 7 0.3
## 576 10 4 6 0.4
## 577 10 5 5 0.5
## 578 10 7 3 0.7
## 579 10 4 6 0.4
## 580 10 4 6 0.4
## 581 10 2 8 0.2
## 582 10 6 4 0.6
## 583 10 5 5 0.5
## 584 10 5 5 0.5
## 585 10 5 5 0.5
## 586 10 6 4 0.6
## 587 10 6 4 0.6
## 588 10 8 2 0.8
## 589 10 5 5 0.5
## 590 10 8 2 0.8
## 591 10 5 5 0.5
## 592 10 6 4 0.6
## 593 10 7 3 0.7
## 594 10 3 7 0.3
## 595 10 4 6 0.4
## 596 10 2 8 0.2
## 597 10 5 5 0.5
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## 598 10 6 4 0.6
## 599 10 6 4 0.6
## 600 10 7 3 0.7
## 601 10 4 6 0.4
## 602 10 6 4 0.6
## 603 10 6 4 0.6
## 604 10 5 5 0.5
## 605 10 5 5 0.5
## 606 10 7 3 0.7
## 607 10 7 3 0.7
## 608 10 6 4 0.6
## 609 10 3 7 0.3
## 610 10 4 6 0.4
## 611 10 9 1 0.9
## 612 10 6 4 0.6
## 613 10 5 5 0.5
## 614 10 4 6 0.4
## 615 10 6 4 0.6
## 616 10 4 6 0.4
## 617 10 7 3 0.7
## 618 10 3 7 0.3
## 619 10 6 4 0.6
## 620 10 5 5 0.5
## 621 10 7 3 0.7
## 622 10 5 5 0.5
## 623 10 5 5 0.5
## 624 10 5 5 0.5
## 625 10 6 4 0.6
## 626 10 3 7 0.3
## 627 10 4 6 0.4
## 628 10 8 2 0.8
## 629 10 6 4 0.6
## 630 10 6 4 0.6
## 631 10 5 5 0.5
## 632 10 3 7 0.3
## 633 10 5 5 0.5
## 634 10 4 6 0.4
## 635 10 6 4 0.6
## 636 10 7 3 0.7
## 637 10 5 5 0.5
## 638 10 4 6 0.4
## 639 10 4 6 0.4
## 640 10 5 5 0.5
## 641 10 3 7 0.3
## 642 10 4 6 0.4
## 643 10 5 5 0.5
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## 644 10 7 3 0.7
## 645 10 5 5 0.5
## 646 10 5 5 0.5
## 647 10 5 5 0.5
## 648 10 4 6 0.4
## 649 10 5 5 0.5
## 650 10 7 3 0.7
## 651 10 3 7 0.3
## 652 10 6 4 0.6
## 653 10 6 4 0.6
## 654 10 8 2 0.8
## 655 10 7 3 0.7
## 656 10 4 6 0.4
## 657 10 7 3 0.7
## 658 10 5 5 0.5
## 659 10 7 3 0.7
## 660 10 6 4 0.6
## 661 10 2 8 0.2
## 662 10 8 2 0.8
## 663 10 2 8 0.2
## 664 10 6 4 0.6
## 665 10 4 6 0.4
## 666 10 3 7 0.3
## 667 10 5 5 0.5
## 668 10 6 4 0.6
## 669 10 6 4 0.6
## 670 10 4 6 0.4
## 671 10 7 3 0.7
## 672 10 2 8 0.2
## 673 10 2 8 0.2
## 674 10 6 4 0.6
## 675 10 5 5 0.5
## 676 10 8 2 0.8
## 677 10 5 5 0.5
## 678 10 5 5 0.5
## 679 10 5 5 0.5
## 680 10 5 5 0.5
## 681 10 6 4 0.6
## 682 10 4 6 0.4
## 683 10 2 8 0.2
## 684 10 6 4 0.6
## 685 10 4 6 0.4
## 686 10 5 5 0.5
## 687 10 5 5 0.5
## 688 10 6 4 0.6
## 689 10 6 4 0.6
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## 690 10 4 6 0.4
## 691 10 4 6 0.4
## 692 10 4 6 0.4
## 693 10 5 5 0.5
## 694 10 5 5 0.5
## 695 10 5 5 0.5
## 696 10 5 5 0.5
## 697 10 6 4 0.6
## 698 10 6 4 0.6
## 699 10 5 5 0.5
## 700 10 7 3 0.7
## 701 10 2 8 0.2
## 702 10 7 3 0.7
## 703 10 7 3 0.7
## 704 10 1 9 0.1
## 705 10 5 5 0.5
## 706 10 5 5 0.5
## 707 10 4 6 0.4
## 708 10 4 6 0.4
## 709 10 6 4 0.6
## 710 10 3 7 0.3
## 711 10 4 6 0.4
## 712 10 5 5 0.5
## 713 10 8 2 0.8
## 714 10 3 7 0.3
## 715 10 6 4 0.6
## 716 10 5 5 0.5
## 717 10 4 6 0.4
## 718 10 2 8 0.2
## 719 10 3 7 0.3
## 720 10 1 9 0.1
## 721 10 3 7 0.3
## 722 10 6 4 0.6
## 723 10 3 7 0.3
## 724 10 5 5 0.5
## 725 10 5 5 0.5
## 726 10 7 3 0.7
## 727 10 7 3 0.7
## 728 10 3 7 0.3
## 729 10 4 6 0.4
## 730 10 5 5 0.5
## 731 10 7 3 0.7
## 732 10 6 4 0.6
## 733 10 7 3 0.7
## 734 10 8 2 0.8
## 735 10 6 4 0.6



204 CHAPTER 8. INTRODUCTION TO RANDOMIZATION, PART 1

## 736 10 2 8 0.2
## 737 10 6 4 0.6
## 738 10 6 4 0.6
## 739 10 5 5 0.5
## 740 10 4 6 0.4
## 741 10 6 4 0.6
## 742 10 5 5 0.5
## 743 10 5 5 0.5
## 744 10 4 6 0.4
## 745 10 5 5 0.5
## 746 10 4 6 0.4
## 747 10 3 7 0.3
## 748 10 5 5 0.5
## 749 10 6 4 0.6
## 750 10 6 4 0.6
## 751 10 7 3 0.7
## 752 10 4 6 0.4
## 753 10 4 6 0.4
## 754 10 5 5 0.5
## 755 10 6 4 0.6
## 756 10 6 4 0.6
## 757 10 3 7 0.3
## 758 10 5 5 0.5
## 759 10 4 6 0.4
## 760 10 5 5 0.5
## 761 10 5 5 0.5
## 762 10 5 5 0.5
## 763 10 5 5 0.5
## 764 10 4 6 0.4
## 765 10 5 5 0.5
## 766 10 5 5 0.5
## 767 10 5 5 0.5
## 768 10 5 5 0.5
## 769 10 7 3 0.7
## 770 10 3 7 0.3
## 771 10 2 8 0.2
## 772 10 6 4 0.6
## 773 10 8 2 0.8
## 774 10 5 5 0.5
## 775 10 7 3 0.7
## 776 10 6 4 0.6
## 777 10 5 5 0.5
## 778 10 7 3 0.7
## 779 10 3 7 0.3
## 780 10 5 5 0.5
## 781 10 6 4 0.6
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## 782 10 3 7 0.3
## 783 10 4 6 0.4
## 784 10 5 5 0.5
## 785 10 5 5 0.5
## 786 10 7 3 0.7
## 787 10 5 5 0.5
## 788 10 5 5 0.5
## 789 10 2 8 0.2
## 790 10 6 4 0.6
## 791 10 5 5 0.5
## 792 10 8 2 0.8
## 793 10 5 5 0.5
## 794 10 4 6 0.4
## 795 10 6 4 0.6
## 796 10 5 5 0.5
## 797 10 7 3 0.7
## 798 10 6 4 0.6
## 799 10 5 5 0.5
## 800 10 5 5 0.5
## 801 10 3 7 0.3
## 802 10 4 6 0.4
## 803 10 3 7 0.3
## 804 10 3 7 0.3
## 805 10 3 7 0.3
## 806 10 5 5 0.5
## 807 10 5 5 0.5
## 808 10 7 3 0.7
## 809 10 4 6 0.4
## 810 10 7 3 0.7
## 811 10 5 5 0.5
## 812 10 5 5 0.5
## 813 10 5 5 0.5
## 814 10 5 5 0.5
## 815 10 5 5 0.5
## 816 10 4 6 0.4
## 817 10 7 3 0.7
## 818 10 4 6 0.4
## 819 10 4 6 0.4
## 820 10 3 7 0.3
## 821 10 6 4 0.6
## 822 10 6 4 0.6
## 823 10 6 4 0.6
## 824 10 8 2 0.8
## 825 10 3 7 0.3
## 826 10 3 7 0.3
## 827 10 6 4 0.6
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## 828 10 7 3 0.7
## 829 10 5 5 0.5
## 830 10 3 7 0.3
## 831 10 6 4 0.6
## 832 10 6 4 0.6
## 833 10 5 5 0.5
## 834 10 6 4 0.6
## 835 10 5 5 0.5
## 836 10 8 2 0.8
## 837 10 5 5 0.5
## 838 10 5 5 0.5
## 839 10 3 7 0.3
## 840 10 2 8 0.2
## 841 10 4 6 0.4
## 842 10 6 4 0.6
## 843 10 7 3 0.7
## 844 10 7 3 0.7
## 845 10 3 7 0.3
## 846 10 3 7 0.3
## 847 10 3 7 0.3
## 848 10 4 6 0.4
## 849 10 5 5 0.5
## 850 10 6 4 0.6
## 851 10 4 6 0.4
## 852 10 3 7 0.3
## 853 10 4 6 0.4
## 854 10 5 5 0.5
## 855 10 4 6 0.4
## 856 10 6 4 0.6
## 857 10 6 4 0.6
## 858 10 7 3 0.7
## 859 10 5 5 0.5
## 860 10 5 5 0.5
## 861 10 4 6 0.4
## 862 10 6 4 0.6
## 863 10 4 6 0.4
## 864 10 6 4 0.6
## 865 10 6 4 0.6
## 866 10 6 4 0.6
## 867 10 2 8 0.2
## 868 10 4 6 0.4
## 869 10 3 7 0.3
## 870 10 5 5 0.5
## 871 10 7 3 0.7
## 872 10 5 5 0.5
## 873 10 5 5 0.5
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## 874 10 4 6 0.4
## 875 10 6 4 0.6
## 876 10 7 3 0.7
## 877 10 4 6 0.4
## 878 10 3 7 0.3
## 879 10 5 5 0.5
## 880 10 7 3 0.7
## 881 10 6 4 0.6
## 882 10 7 3 0.7
## 883 10 8 2 0.8
## 884 10 6 4 0.6
## 885 10 3 7 0.3
## 886 10 6 4 0.6
## 887 10 4 6 0.4
## 888 10 4 6 0.4
## 889 10 5 5 0.5
## 890 10 5 5 0.5
## 891 10 7 3 0.7
## 892 10 5 5 0.5
## 893 10 7 3 0.7
## 894 10 5 5 0.5
## 895 10 6 4 0.6
## 896 10 3 7 0.3
## 897 10 6 4 0.6
## 898 10 4 6 0.4
## 899 10 4 6 0.4
## 900 10 2 8 0.2
## 901 10 7 3 0.7
## 902 10 7 3 0.7
## 903 10 6 4 0.6
## 904 10 7 3 0.7
## 905 10 4 6 0.4
## 906 10 3 7 0.3
## 907 10 3 7 0.3
## 908 10 3 7 0.3
## 909 10 6 4 0.6
## 910 10 5 5 0.5
## 911 10 5 5 0.5
## 912 10 8 2 0.8
## 913 10 7 3 0.7
## 914 10 5 5 0.5
## 915 10 3 7 0.3
## 916 10 6 4 0.6
## 917 10 3 7 0.3
## 918 10 6 4 0.6
## 919 10 4 6 0.4
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## 920 10 8 2 0.8
## 921 10 5 5 0.5
## 922 10 6 4 0.6
## 923 10 2 8 0.2
## 924 10 6 4 0.6
## 925 10 3 7 0.3
## 926 10 5 5 0.5
## 927 10 4 6 0.4
## 928 10 3 7 0.3
## 929 10 6 4 0.6
## 930 10 5 5 0.5
## 931 10 5 5 0.5
## 932 10 4 6 0.4
## 933 10 4 6 0.4
## 934 10 4 6 0.4
## 935 10 7 3 0.7
## 936 10 3 7 0.3
## 937 10 2 8 0.2
## 938 10 5 5 0.5
## 939 10 3 7 0.3
## 940 10 6 4 0.6
## 941 10 5 5 0.5
## 942 10 6 4 0.6
## 943 10 5 5 0.5
## 944 10 4 6 0.4
## 945 10 4 6 0.4
## 946 10 3 7 0.3
## 947 10 3 7 0.3
## 948 10 4 6 0.4
## 949 10 4 6 0.4
## 950 10 5 5 0.5
## 951 10 9 1 0.9
## 952 10 3 7 0.3
## 953 10 7 3 0.7
## 954 10 8 2 0.8
## 955 10 7 3 0.7
## 956 10 6 4 0.6
## 957 10 5 5 0.5
## 958 10 5 5 0.5
## 959 10 7 3 0.7
## 960 10 5 5 0.5
## 961 10 4 6 0.4
## 962 10 5 5 0.5
## 963 10 7 3 0.7
## 964 10 5 5 0.5
## 965 10 4 6 0.4
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## 966 10 5 5 0.5
## 967 10 8 2 0.8
## 968 10 5 5 0.5
## 969 10 4 6 0.4
## 970 10 6 4 0.6
## 971 10 6 4 0.6
## 972 10 3 7 0.3
## 973 10 5 5 0.5
## 974 10 4 6 0.4
## 975 10 6 4 0.6
## 976 10 4 6 0.4
## 977 10 4 6 0.4
## 978 10 5 5 0.5
## 979 10 8 2 0.8
## 980 10 5 5 0.5
## 981 10 6 4 0.6
## 982 10 5 5 0.5
## 983 10 4 6 0.4
## 984 10 3 7 0.3
## 985 10 7 3 0.7
## 986 10 6 4 0.6
## 987 10 4 6 0.4
## 988 10 4 6 0.4
## 989 10 4 6 0.4
## 990 10 5 5 0.5
## 991 10 7 3 0.7
## 992 10 2 8 0.2
## 993 10 4 6 0.4
## 994 10 5 5 0.5
## 995 10 5 5 0.5
## 996 10 4 6 0.4
## 997 10 7 3 0.7
## 998 10 4 6 0.4
## 999 10 4 6 0.4
## 1000 10 2 8 0.2
## 1001 10 8 2 0.8
## 1002 10 5 5 0.5
## 1003 10 4 6 0.4
## 1004 10 6 4 0.6
## 1005 10 5 5 0.5
## 1006 10 3 7 0.3
## 1007 10 7 3 0.7
## 1008 10 5 5 0.5
## 1009 10 6 4 0.6
## 1010 10 5 5 0.5
## 1011 10 6 4 0.6
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## 1012 10 7 3 0.7
## 1013 10 4 6 0.4
## 1014 10 3 7 0.3
## 1015 10 7 3 0.7
## 1016 10 5 5 0.5
## 1017 10 7 3 0.7
## 1018 10 8 2 0.8
## 1019 10 5 5 0.5
## 1020 10 6 4 0.6
## 1021 10 4 6 0.4
## 1022 10 6 4 0.6
## 1023 10 7 3 0.7
## 1024 10 5 5 0.5
## 1025 10 6 4 0.6
## 1026 10 5 5 0.5
## 1027 10 4 6 0.4
## 1028 10 5 5 0.5
## 1029 10 6 4 0.6
## 1030 10 3 7 0.3
## 1031 10 4 6 0.4
## 1032 10 5 5 0.5
## 1033 10 3 7 0.3
## 1034 10 6 4 0.6
## 1035 10 5 5 0.5
## 1036 10 5 5 0.5
## 1037 10 4 6 0.4
## 1038 10 5 5 0.5
## 1039 10 4 6 0.4
## 1040 10 7 3 0.7
## 1041 10 5 5 0.5
## 1042 10 6 4 0.6
## 1043 10 4 6 0.4
## 1044 10 9 1 0.9
## 1045 10 4 6 0.4
## 1046 10 6 4 0.6
## 1047 10 6 4 0.6
## 1048 10 5 5 0.5
## 1049 10 3 7 0.3
## 1050 10 8 2 0.8
## 1051 10 4 6 0.4
## 1052 10 6 4 0.6
## 1053 10 6 4 0.6
## 1054 10 7 3 0.7
## 1055 10 5 5 0.5
## 1056 10 5 5 0.5
## 1057 10 6 4 0.6
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## 1058 10 5 5 0.5
## 1059 10 7 3 0.7
## 1060 10 7 3 0.7
## 1061 10 3 7 0.3
## 1062 10 4 6 0.4
## 1063 10 8 2 0.8
## 1064 10 5 5 0.5
## 1065 10 7 3 0.7
## 1066 10 6 4 0.6
## 1067 10 6 4 0.6
## 1068 10 4 6 0.4
## 1069 10 6 4 0.6
## 1070 10 5 5 0.5
## 1071 10 6 4 0.6
## 1072 10 6 4 0.6
## 1073 10 4 6 0.4
## 1074 10 5 5 0.5
## 1075 10 4 6 0.4
## 1076 10 4 6 0.4
## 1077 10 5 5 0.5
## 1078 10 6 4 0.6
## 1079 10 6 4 0.6
## 1080 10 4 6 0.4
## 1081 10 7 3 0.7
## 1082 10 3 7 0.3
## 1083 10 3 7 0.3
## 1084 10 3 7 0.3
## 1085 10 2 8 0.2
## 1086 10 4 6 0.4
## 1087 10 4 6 0.4
## 1088 10 4 6 0.4
## 1089 10 9 1 0.9
## 1090 10 7 3 0.7
## 1091 10 8 2 0.8
## 1092 10 6 4 0.6
## 1093 10 4 6 0.4
## 1094 10 4 6 0.4
## 1095 10 5 5 0.5
## 1096 10 4 6 0.4
## 1097 10 7 3 0.7
## 1098 10 5 5 0.5
## 1099 10 8 2 0.8
## 1100 10 3 7 0.3
## 1101 10 3 7 0.3
## 1102 10 6 4 0.6
## 1103 10 7 3 0.7
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## 1104 10 6 4 0.6
## 1105 10 5 5 0.5
## 1106 10 5 5 0.5
## 1107 10 6 4 0.6
## 1108 10 8 2 0.8
## 1109 10 5 5 0.5
## 1110 10 7 3 0.7
## 1111 10 7 3 0.7
## 1112 10 5 5 0.5
## 1113 10 3 7 0.3
## 1114 10 5 5 0.5
## 1115 10 4 6 0.4
## 1116 10 3 7 0.3
## 1117 10 5 5 0.5
## 1118 10 4 6 0.4
## 1119 10 4 6 0.4
## 1120 10 2 8 0.2
## 1121 10 7 3 0.7
## 1122 10 5 5 0.5
## 1123 10 8 2 0.8
## 1124 10 6 4 0.6
## 1125 10 5 5 0.5
## 1126 10 6 4 0.6
## 1127 10 5 5 0.5
## 1128 10 4 6 0.4
## 1129 10 5 5 0.5
## 1130 10 7 3 0.7
## 1131 10 5 5 0.5
## 1132 10 4 6 0.4
## 1133 10 4 6 0.4
## 1134 10 6 4 0.6
## 1135 10 5 5 0.5
## 1136 10 6 4 0.6
## 1137 10 5 5 0.5
## 1138 10 4 6 0.4
## 1139 10 3 7 0.3
## 1140 10 6 4 0.6
## 1141 10 6 4 0.6
## 1142 10 4 6 0.4
## 1143 10 4 6 0.4
## 1144 10 2 8 0.2
## 1145 10 2 8 0.2
## 1146 10 8 2 0.8
## 1147 10 5 5 0.5
## 1148 10 4 6 0.4
## 1149 10 4 6 0.4
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## 1150 10 5 5 0.5
## 1151 10 5 5 0.5
## 1152 10 5 5 0.5
## 1153 10 6 4 0.6
## 1154 10 6 4 0.6
## 1155 10 7 3 0.7
## 1156 10 4 6 0.4
## 1157 10 3 7 0.3
## 1158 10 7 3 0.7
## 1159 10 4 6 0.4
## 1160 10 5 5 0.5
## 1161 10 5 5 0.5
## 1162 10 5 5 0.5
## 1163 10 7 3 0.7
## 1164 10 6 4 0.6
## 1165 10 5 5 0.5
## 1166 10 4 6 0.4
## 1167 10 7 3 0.7
## 1168 10 6 4 0.6
## 1169 10 7 3 0.7
## 1170 10 5 5 0.5
## 1171 10 6 4 0.6
## 1172 10 6 4 0.6
## 1173 10 7 3 0.7
## 1174 10 4 6 0.4
## 1175 10 7 3 0.7
## 1176 10 7 3 0.7
## 1177 10 3 7 0.3
## 1178 10 6 4 0.6
## 1179 10 5 5 0.5
## 1180 10 5 5 0.5
## 1181 10 5 5 0.5
## 1182 10 6 4 0.6
## 1183 10 2 8 0.2
## 1184 10 5 5 0.5
## 1185 10 2 8 0.2
## 1186 10 6 4 0.6
## 1187 10 6 4 0.6
## 1188 10 3 7 0.3
## 1189 10 4 6 0.4
## 1190 10 4 6 0.4
## 1191 10 4 6 0.4
## 1192 10 6 4 0.6
## 1193 10 7 3 0.7
## 1194 10 3 7 0.3
## 1195 10 3 7 0.3



214 CHAPTER 8. INTRODUCTION TO RANDOMIZATION, PART 1

## 1196 10 3 7 0.3
## 1197 10 4 6 0.4
## 1198 10 3 7 0.3
## 1199 10 1 9 0.1
## 1200 10 6 4 0.6
## 1201 10 7 3 0.7
## 1202 10 2 8 0.2
## 1203 10 4 6 0.4
## 1204 10 5 5 0.5
## 1205 10 6 4 0.6
## 1206 10 4 6 0.4
## 1207 10 4 6 0.4
## 1208 10 5 5 0.5
## 1209 10 6 4 0.6
## 1210 10 3 7 0.3
## 1211 10 2 8 0.2
## 1212 10 3 7 0.3
## 1213 10 3 7 0.3
## 1214 10 4 6 0.4
## 1215 10 5 5 0.5
## 1216 10 5 5 0.5
## 1217 10 6 4 0.6
## 1218 10 6 4 0.6
## 1219 10 4 6 0.4
## 1220 10 3 7 0.3
## 1221 10 5 5 0.5
## 1222 10 5 5 0.5
## 1223 10 4 6 0.4
## 1224 10 7 3 0.7
## 1225 10 5 5 0.5
## 1226 10 4 6 0.4
## 1227 10 5 5 0.5
## 1228 10 5 5 0.5
## 1229 10 3 7 0.3
## 1230 10 6 4 0.6
## 1231 10 5 5 0.5
## 1232 10 5 5 0.5
## 1233 10 5 5 0.5
## 1234 10 6 4 0.6
## 1235 10 4 6 0.4
## 1236 10 5 5 0.5
## 1237 10 4 6 0.4
## 1238 10 6 4 0.6
## 1239 10 6 4 0.6
## 1240 10 7 3 0.7
## 1241 10 8 2 0.8
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## 1242 10 6 4 0.6
## 1243 10 6 4 0.6
## 1244 10 5 5 0.5
## 1245 10 4 6 0.4
## 1246 10 6 4 0.6
## 1247 10 4 6 0.4
## 1248 10 8 2 0.8
## 1249 10 2 8 0.2
## 1250 10 5 5 0.5
## 1251 10 4 6 0.4
## 1252 10 6 4 0.6
## 1253 10 6 4 0.6
## 1254 10 4 6 0.4
## 1255 10 2 8 0.2
## 1256 10 7 3 0.7
## 1257 10 5 5 0.5
## 1258 10 7 3 0.7
## 1259 10 5 5 0.5
## 1260 10 6 4 0.6
## 1261 10 6 4 0.6
## 1262 10 5 5 0.5
## 1263 10 6 4 0.6
## 1264 10 4 6 0.4
## 1265 10 7 3 0.7
## 1266 10 4 6 0.4
## 1267 10 3 7 0.3
## 1268 10 4 6 0.4
## 1269 10 5 5 0.5
## 1270 10 3 7 0.3
## 1271 10 5 5 0.5
## 1272 10 4 6 0.4
## 1273 10 7 3 0.7
## 1274 10 5 5 0.5
## 1275 10 4 6 0.4
## 1276 10 8 2 0.8
## 1277 10 5 5 0.5
## 1278 10 4 6 0.4
## 1279 10 3 7 0.3
## 1280 10 4 6 0.4
## 1281 10 5 5 0.5
## 1282 10 5 5 0.5
## 1283 10 4 6 0.4
## 1284 10 7 3 0.7
## 1285 10 4 6 0.4
## 1286 10 3 7 0.3
## 1287 10 4 6 0.4
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## 1288 10 4 6 0.4
## 1289 10 5 5 0.5
## 1290 10 3 7 0.3
## 1291 10 7 3 0.7
## 1292 10 6 4 0.6
## 1293 10 5 5 0.5
## 1294 10 5 5 0.5
## 1295 10 7 3 0.7
## 1296 10 2 8 0.2
## 1297 10 4 6 0.4
## 1298 10 2 8 0.2
## 1299 10 4 6 0.4
## 1300 10 6 4 0.6
## 1301 10 4 6 0.4
## 1302 10 6 4 0.6
## 1303 10 5 5 0.5
## 1304 10 9 1 0.9
## 1305 10 5 5 0.5
## 1306 10 5 5 0.5
## 1307 10 5 5 0.5
## 1308 10 5 5 0.5
## 1309 10 6 4 0.6
## 1310 10 1 9 0.1
## 1311 10 6 4 0.6
## 1312 10 2 8 0.2
## 1313 10 6 4 0.6
## 1314 10 6 4 0.6
## 1315 10 7 3 0.7
## 1316 10 9 1 0.9
## 1317 10 5 5 0.5
## 1318 10 4 6 0.4
## 1319 10 6 4 0.6
## 1320 10 3 7 0.3
## 1321 10 4 6 0.4
## 1322 10 3 7 0.3
## 1323 10 6 4 0.6
## 1324 10 6 4 0.6
## 1325 10 6 4 0.6
## 1326 10 4 6 0.4
## 1327 10 6 4 0.6
## 1328 10 6 4 0.6
## 1329 10 5 5 0.5
## 1330 10 5 5 0.5
## 1331 10 3 7 0.3
## 1332 10 6 4 0.6
## 1333 10 2 8 0.2



8.5. BIGGER AND BETTER! 217

## 1334 10 4 6 0.4
## 1335 10 8 2 0.8
## 1336 10 3 7 0.3
## 1337 10 4 6 0.4
## 1338 10 5 5 0.5
## 1339 10 4 6 0.4
## 1340 10 7 3 0.7
## 1341 10 3 7 0.3
## 1342 10 3 7 0.3
## 1343 10 7 3 0.7
## 1344 10 7 3 0.7
## 1345 10 4 6 0.4
## 1346 10 3 7 0.3
## 1347 10 7 3 0.7
## 1348 10 3 7 0.3
## 1349 10 4 6 0.4
## 1350 10 4 6 0.4
## 1351 10 7 3 0.7
## 1352 10 5 5 0.5
## 1353 10 6 4 0.6
## 1354 10 8 2 0.8
## 1355 10 3 7 0.3
## 1356 10 7 3 0.7
## 1357 10 4 6 0.4
## 1358 10 4 6 0.4
## 1359 10 4 6 0.4
## 1360 10 3 7 0.3
## 1361 10 4 6 0.4
## 1362 10 7 3 0.7
## 1363 10 7 3 0.7
## 1364 10 9 1 0.9
## 1365 10 5 5 0.5
## 1366 10 8 2 0.8
## 1367 10 5 5 0.5
## 1368 10 7 3 0.7
## 1369 10 3 7 0.3
## 1370 10 8 2 0.8
## 1371 10 9 1 0.9
## 1372 10 5 5 0.5
## 1373 10 6 4 0.6
## 1374 10 6 4 0.6
## 1375 10 8 2 0.8
## 1376 10 6 4 0.6
## 1377 10 3 7 0.3
## 1378 10 3 7 0.3
## 1379 10 5 5 0.5
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## 1380 10 6 4 0.6
## 1381 10 4 6 0.4
## 1382 10 7 3 0.7
## 1383 10 8 2 0.8
## 1384 10 7 3 0.7
## 1385 10 5 5 0.5
## 1386 10 5 5 0.5
## 1387 10 6 4 0.6
## 1388 10 4 6 0.4
## 1389 10 6 4 0.6
## 1390 10 6 4 0.6
## 1391 10 6 4 0.6
## 1392 10 3 7 0.3
## 1393 10 5 5 0.5
## 1394 10 4 6 0.4
## 1395 10 2 8 0.2
## 1396 10 5 5 0.5
## 1397 10 4 6 0.4
## 1398 10 6 4 0.6
## 1399 10 3 7 0.3
## 1400 10 6 4 0.6
## 1401 10 6 4 0.6
## 1402 10 3 7 0.3
## 1403 10 4 6 0.4
## 1404 10 6 4 0.6
## 1405 10 5 5 0.5
## 1406 10 6 4 0.6
## 1407 10 6 4 0.6
## 1408 10 4 6 0.4
## 1409 10 4 6 0.4
## 1410 10 6 4 0.6
## 1411 10 4 6 0.4
## 1412 10 7 3 0.7
## 1413 10 5 5 0.5
## 1414 10 6 4 0.6
## 1415 10 5 5 0.5
## 1416 10 4 6 0.4
## 1417 10 7 3 0.7
## 1418 10 7 3 0.7
## 1419 10 6 4 0.6
## 1420 10 3 7 0.3
## 1421 10 6 4 0.6
## 1422 10 3 7 0.3
## 1423 10 6 4 0.6
## 1424 10 8 2 0.8
## 1425 10 5 5 0.5
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## 1426 10 6 4 0.6
## 1427 10 3 7 0.3
## 1428 10 8 2 0.8
## 1429 10 5 5 0.5
## 1430 10 4 6 0.4
## 1431 10 6 4 0.6
## 1432 10 6 4 0.6
## 1433 10 6 4 0.6
## 1434 10 3 7 0.3
## 1435 10 7 3 0.7
## 1436 10 5 5 0.5
## 1437 10 5 5 0.5
## 1438 10 3 7 0.3
## 1439 10 6 4 0.6
## 1440 10 4 6 0.4
## 1441 10 5 5 0.5
## 1442 10 7 3 0.7
## 1443 10 4 6 0.4
## 1444 10 6 4 0.6
## 1445 10 4 6 0.4
## 1446 10 7 3 0.7
## 1447 10 6 4 0.6
## 1448 10 3 7 0.3
## 1449 10 4 6 0.4
## 1450 10 6 4 0.6
## 1451 10 5 5 0.5
## 1452 10 5 5 0.5
## 1453 10 8 2 0.8
## 1454 10 6 4 0.6
## 1455 10 5 5 0.5
## 1456 10 4 6 0.4
## 1457 10 7 3 0.7
## 1458 10 7 3 0.7
## 1459 10 5 5 0.5
## 1460 10 4 6 0.4
## 1461 10 5 5 0.5
## 1462 10 7 3 0.7
## 1463 10 3 7 0.3
## 1464 10 6 4 0.6
## 1465 10 5 5 0.5
## 1466 10 5 5 0.5
## 1467 10 4 6 0.4
## 1468 10 2 8 0.2
## 1469 10 4 6 0.4
## 1470 10 6 4 0.6
## 1471 10 6 4 0.6
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## 1472 10 7 3 0.7
## 1473 10 5 5 0.5
## 1474 10 6 4 0.6
## 1475 10 3 7 0.3
## 1476 10 6 4 0.6
## 1477 10 7 3 0.7
## 1478 10 6 4 0.6
## 1479 10 5 5 0.5
## 1480 10 9 1 0.9
## 1481 10 7 3 0.7
## 1482 10 6 4 0.6
## 1483 10 6 4 0.6
## 1484 10 5 5 0.5
## 1485 10 3 7 0.3
## 1486 10 4 6 0.4
## 1487 10 6 4 0.6
## 1488 10 6 4 0.6
## 1489 10 3 7 0.3
## 1490 10 6 4 0.6
## 1491 10 5 5 0.5
## 1492 10 6 4 0.6
## 1493 10 4 6 0.4
## 1494 10 5 5 0.5
## 1495 10 3 7 0.3
## 1496 10 7 3 0.7
## 1497 10 5 5 0.5
## 1498 10 6 4 0.6
## 1499 10 5 5 0.5
## 1500 10 0 10 0.0
## 1501 10 4 6 0.4
## 1502 10 3 7 0.3
## 1503 10 6 4 0.6
## 1504 10 4 6 0.4
## 1505 10 5 5 0.5
## 1506 10 6 4 0.6
## 1507 10 3 7 0.3
## 1508 10 4 6 0.4
## 1509 10 4 6 0.4
## 1510 10 6 4 0.6
## 1511 10 5 5 0.5
## 1512 10 4 6 0.4
## 1513 10 4 6 0.4
## 1514 10 3 7 0.3
## 1515 10 2 8 0.2
## 1516 10 1 9 0.1
## 1517 10 3 7 0.3
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## 1518 10 8 2 0.8
## 1519 10 4 6 0.4
## 1520 10 6 4 0.6
## 1521 10 7 3 0.7
## 1522 10 5 5 0.5
## 1523 10 2 8 0.2
## 1524 10 4 6 0.4
## 1525 10 5 5 0.5
## 1526 10 6 4 0.6
## 1527 10 5 5 0.5
## 1528 10 6 4 0.6
## 1529 10 6 4 0.6
## 1530 10 7 3 0.7
## 1531 10 7 3 0.7
## 1532 10 3 7 0.3
## 1533 10 7 3 0.7
## 1534 10 5 5 0.5
## 1535 10 3 7 0.3
## 1536 10 5 5 0.5
## 1537 10 3 7 0.3
## 1538 10 2 8 0.2
## 1539 10 4 6 0.4
## 1540 10 3 7 0.3
## 1541 10 4 6 0.4
## 1542 10 3 7 0.3
## 1543 10 6 4 0.6
## 1544 10 3 7 0.3
## 1545 10 5 5 0.5
## 1546 10 8 2 0.8
## 1547 10 6 4 0.6
## 1548 10 5 5 0.5
## 1549 10 5 5 0.5
## 1550 10 3 7 0.3
## 1551 10 6 4 0.6
## 1552 10 6 4 0.6
## 1553 10 2 8 0.2
## 1554 10 5 5 0.5
## 1555 10 5 5 0.5
## 1556 10 2 8 0.2
## 1557 10 7 3 0.7
## 1558 10 6 4 0.6
## 1559 10 4 6 0.4
## 1560 10 7 3 0.7
## 1561 10 7 3 0.7
## 1562 10 4 6 0.4
## 1563 10 4 6 0.4
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## 1564 10 6 4 0.6
## 1565 10 4 6 0.4
## 1566 10 6 4 0.6
## 1567 10 4 6 0.4
## 1568 10 6 4 0.6
## 1569 10 6 4 0.6
## 1570 10 5 5 0.5
## 1571 10 6 4 0.6
## 1572 10 6 4 0.6
## 1573 10 4 6 0.4
## 1574 10 4 6 0.4
## 1575 10 6 4 0.6
## 1576 10 9 1 0.9
## 1577 10 4 6 0.4
## 1578 10 6 4 0.6
## 1579 10 4 6 0.4
## 1580 10 4 6 0.4
## 1581 10 5 5 0.5
## 1582 10 2 8 0.2
## 1583 10 6 4 0.6
## 1584 10 4 6 0.4
## 1585 10 8 2 0.8
## 1586 10 8 2 0.8
## 1587 10 4 6 0.4
## 1588 10 3 7 0.3
## 1589 10 6 4 0.6
## 1590 10 4 6 0.4
## 1591 10 4 6 0.4
## 1592 10 6 4 0.6
## 1593 10 4 6 0.4
## 1594 10 3 7 0.3
## 1595 10 4 6 0.4
## 1596 10 7 3 0.7
## 1597 10 5 5 0.5
## 1598 10 4 6 0.4
## 1599 10 8 2 0.8
## 1600 10 6 4 0.6
## 1601 10 7 3 0.7
## 1602 10 5 5 0.5
## 1603 10 5 5 0.5
## 1604 10 3 7 0.3
## 1605 10 5 5 0.5
## 1606 10 5 5 0.5
## 1607 10 4 6 0.4
## 1608 10 7 3 0.7
## 1609 10 4 6 0.4
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## 1610 10 5 5 0.5
## 1611 10 6 4 0.6
## 1612 10 4 6 0.4
## 1613 10 6 4 0.6
## 1614 10 3 7 0.3
## 1615 10 7 3 0.7
## 1616 10 6 4 0.6
## 1617 10 5 5 0.5
## 1618 10 3 7 0.3
## 1619 10 6 4 0.6
## 1620 10 9 1 0.9
## 1621 10 6 4 0.6
## 1622 10 7 3 0.7
## 1623 10 8 2 0.8
## 1624 10 5 5 0.5
## 1625 10 4 6 0.4
## 1626 10 3 7 0.3
## 1627 10 3 7 0.3
## 1628 10 4 6 0.4
## 1629 10 8 2 0.8
## 1630 10 6 4 0.6
## 1631 10 5 5 0.5
## 1632 10 5 5 0.5
## 1633 10 5 5 0.5
## 1634 10 5 5 0.5
## 1635 10 4 6 0.4
## 1636 10 8 2 0.8
## 1637 10 6 4 0.6
## 1638 10 4 6 0.4
## 1639 10 6 4 0.6
## 1640 10 7 3 0.7
## 1641 10 4 6 0.4
## 1642 10 7 3 0.7
## 1643 10 5 5 0.5
## 1644 10 6 4 0.6
## 1645 10 3 7 0.3
## 1646 10 6 4 0.6
## 1647 10 4 6 0.4
## 1648 10 3 7 0.3
## 1649 10 4 6 0.4
## 1650 10 4 6 0.4
## 1651 10 6 4 0.6
## 1652 10 3 7 0.3
## 1653 10 6 4 0.6
## 1654 10 8 2 0.8
## 1655 10 4 6 0.4
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## 1656 10 4 6 0.4
## 1657 10 5 5 0.5
## 1658 10 6 4 0.6
## 1659 10 3 7 0.3
## 1660 10 5 5 0.5
## 1661 10 5 5 0.5
## 1662 10 5 5 0.5
## 1663 10 3 7 0.3
## 1664 10 8 2 0.8
## 1665 10 5 5 0.5
## 1666 10 6 4 0.6
## 1667 10 5 5 0.5
## 1668 10 4 6 0.4
## 1669 10 7 3 0.7
## 1670 10 4 6 0.4
## 1671 10 5 5 0.5
## 1672 10 3 7 0.3
## 1673 10 3 7 0.3
## 1674 10 3 7 0.3
## 1675 10 6 4 0.6
## 1676 10 3 7 0.3
## 1677 10 6 4 0.6
## 1678 10 4 6 0.4
## 1679 10 8 2 0.8
## 1680 10 4 6 0.4
## 1681 10 6 4 0.6
## 1682 10 4 6 0.4
## 1683 10 6 4 0.6
## 1684 10 6 4 0.6
## 1685 10 4 6 0.4
## 1686 10 6 4 0.6
## 1687 10 7 3 0.7
## 1688 10 6 4 0.6
## 1689 10 5 5 0.5
## 1690 10 5 5 0.5
## 1691 10 6 4 0.6
## 1692 10 6 4 0.6
## 1693 10 7 3 0.7
## 1694 10 5 5 0.5
## 1695 10 6 4 0.6
## 1696 10 5 5 0.5
## 1697 10 5 5 0.5
## 1698 10 5 5 0.5
## 1699 10 3 7 0.3
## 1700 10 7 3 0.7
## 1701 10 6 4 0.6
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## 1702 10 5 5 0.5
## 1703 10 4 6 0.4
## 1704 10 5 5 0.5
## 1705 10 8 2 0.8
## 1706 10 3 7 0.3
## 1707 10 7 3 0.7
## 1708 10 5 5 0.5
## 1709 10 4 6 0.4
## 1710 10 4 6 0.4
## 1711 10 6 4 0.6
## 1712 10 6 4 0.6
## 1713 10 6 4 0.6
## 1714 10 6 4 0.6
## 1715 10 5 5 0.5
## 1716 10 7 3 0.7
## 1717 10 3 7 0.3
## 1718 10 7 3 0.7
## 1719 10 4 6 0.4
## 1720 10 6 4 0.6
## 1721 10 5 5 0.5
## 1722 10 1 9 0.1
## 1723 10 6 4 0.6
## 1724 10 1 9 0.1
## 1725 10 5 5 0.5
## 1726 10 4 6 0.4
## 1727 10 5 5 0.5
## 1728 10 4 6 0.4
## 1729 10 5 5 0.5
## 1730 10 6 4 0.6
## 1731 10 6 4 0.6
## 1732 10 5 5 0.5
## 1733 10 5 5 0.5
## 1734 10 4 6 0.4
## 1735 10 5 5 0.5
## 1736 10 5 5 0.5
## 1737 10 3 7 0.3
## 1738 10 5 5 0.5
## 1739 10 5 5 0.5
## 1740 10 7 3 0.7
## 1741 10 4 6 0.4
## 1742 10 4 6 0.4
## 1743 10 5 5 0.5
## 1744 10 4 6 0.4
## 1745 10 2 8 0.2
## 1746 10 8 2 0.8
## 1747 10 5 5 0.5
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## 1748 10 4 6 0.4
## 1749 10 6 4 0.6
## 1750 10 6 4 0.6
## 1751 10 7 3 0.7
## 1752 10 5 5 0.5
## 1753 10 4 6 0.4
## 1754 10 4 6 0.4
## 1755 10 5 5 0.5
## 1756 10 2 8 0.2
## 1757 10 7 3 0.7
## 1758 10 2 8 0.2
## 1759 10 4 6 0.4
## 1760 10 5 5 0.5
## 1761 10 6 4 0.6
## 1762 10 5 5 0.5
## 1763 10 3 7 0.3
## 1764 10 5 5 0.5
## 1765 10 8 2 0.8
## 1766 10 5 5 0.5
## 1767 10 6 4 0.6
## 1768 10 4 6 0.4
## 1769 10 7 3 0.7
## 1770 10 6 4 0.6
## 1771 10 5 5 0.5
## 1772 10 4 6 0.4
## 1773 10 5 5 0.5
## 1774 10 6 4 0.6
## 1775 10 6 4 0.6
## 1776 10 3 7 0.3
## 1777 10 3 7 0.3
## 1778 10 4 6 0.4
## 1779 10 3 7 0.3
## 1780 10 5 5 0.5
## 1781 10 6 4 0.6
## 1782 10 5 5 0.5
## 1783 10 5 5 0.5
## 1784 10 4 6 0.4
## 1785 10 3 7 0.3
## 1786 10 6 4 0.6
## 1787 10 5 5 0.5
## 1788 10 7 3 0.7
## 1789 10 2 8 0.2
## 1790 10 4 6 0.4
## 1791 10 5 5 0.5
## 1792 10 5 5 0.5
## 1793 10 5 5 0.5
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## 1794 10 6 4 0.6
## 1795 10 7 3 0.7
## 1796 10 5 5 0.5
## 1797 10 6 4 0.6
## 1798 10 4 6 0.4
## 1799 10 5 5 0.5
## 1800 10 6 4 0.6
## 1801 10 6 4 0.6
## 1802 10 6 4 0.6
## 1803 10 2 8 0.2
## 1804 10 4 6 0.4
## 1805 10 5 5 0.5
## 1806 10 5 5 0.5
## 1807 10 7 3 0.7
## 1808 10 2 8 0.2
## 1809 10 5 5 0.5
## 1810 10 6 4 0.6
## 1811 10 5 5 0.5
## 1812 10 4 6 0.4
## 1813 10 5 5 0.5
## 1814 10 4 6 0.4
## 1815 10 4 6 0.4
## 1816 10 7 3 0.7
## 1817 10 7 3 0.7
## 1818 10 8 2 0.8
## 1819 10 3 7 0.3
## 1820 10 5 5 0.5
## 1821 10 4 6 0.4
## 1822 10 6 4 0.6
## 1823 10 6 4 0.6
## 1824 10 6 4 0.6
## 1825 10 5 5 0.5
## 1826 10 5 5 0.5
## 1827 10 5 5 0.5
## 1828 10 5 5 0.5
## 1829 10 7 3 0.7
## 1830 10 4 6 0.4
## 1831 10 4 6 0.4
## 1832 10 6 4 0.6
## 1833 10 4 6 0.4
## 1834 10 3 7 0.3
## 1835 10 5 5 0.5
## 1836 10 7 3 0.7
## 1837 10 6 4 0.6
## 1838 10 7 3 0.7
## 1839 10 4 6 0.4
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## 1840 10 6 4 0.6
## 1841 10 6 4 0.6
## 1842 10 8 2 0.8
## 1843 10 4 6 0.4
## 1844 10 6 4 0.6
## 1845 10 3 7 0.3
## 1846 10 2 8 0.2
## 1847 10 4 6 0.4
## 1848 10 5 5 0.5
## 1849 10 3 7 0.3
## 1850 10 6 4 0.6
## 1851 10 5 5 0.5
## 1852 10 9 1 0.9
## 1853 10 1 9 0.1
## 1854 10 6 4 0.6
## 1855 10 7 3 0.7
## 1856 10 5 5 0.5
## 1857 10 9 1 0.9
## 1858 10 8 2 0.8
## 1859 10 6 4 0.6
## 1860 10 5 5 0.5
## 1861 10 4 6 0.4
## 1862 10 5 5 0.5
## 1863 10 4 6 0.4
## 1864 10 8 2 0.8
## 1865 10 4 6 0.4
## 1866 10 6 4 0.6
## 1867 10 3 7 0.3
## 1868 10 7 3 0.7
## 1869 10 5 5 0.5
## 1870 10 7 3 0.7
## 1871 10 7 3 0.7
## 1872 10 9 1 0.9
## 1873 10 4 6 0.4
## 1874 10 7 3 0.7
## 1875 10 6 4 0.6
## 1876 10 7 3 0.7
## 1877 10 7 3 0.7
## 1878 10 5 5 0.5
## 1879 10 6 4 0.6
## 1880 10 6 4 0.6
## 1881 10 4 6 0.4
## 1882 10 5 5 0.5
## 1883 10 5 5 0.5
## 1884 10 4 6 0.4
## 1885 10 5 5 0.5
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## 1886 10 6 4 0.6
## 1887 10 5 5 0.5
## 1888 10 3 7 0.3
## 1889 10 6 4 0.6
## 1890 10 2 8 0.2
## 1891 10 4 6 0.4
## 1892 10 6 4 0.6
## 1893 10 4 6 0.4
## 1894 10 6 4 0.6
## 1895 10 4 6 0.4
## 1896 10 4 6 0.4
## 1897 10 4 6 0.4
## 1898 10 6 4 0.6
## 1899 10 5 5 0.5
## 1900 10 7 3 0.7
## 1901 10 4 6 0.4
## 1902 10 3 7 0.3
## 1903 10 6 4 0.6
## 1904 10 6 4 0.6
## 1905 10 2 8 0.2
## 1906 10 5 5 0.5
## 1907 10 3 7 0.3
## 1908 10 4 6 0.4
## 1909 10 5 5 0.5
## 1910 10 4 6 0.4
## 1911 10 5 5 0.5
## 1912 10 6 4 0.6
## 1913 10 8 2 0.8
## 1914 10 7 3 0.7
## 1915 10 3 7 0.3
## 1916 10 4 6 0.4
## 1917 10 4 6 0.4
## 1918 10 4 6 0.4
## 1919 10 4 6 0.4
## 1920 10 4 6 0.4
## 1921 10 4 6 0.4
## 1922 10 3 7 0.3
## 1923 10 5 5 0.5
## 1924 10 4 6 0.4
## 1925 10 8 2 0.8
## 1926 10 5 5 0.5
## 1927 10 5 5 0.5
## 1928 10 3 7 0.3
## 1929 10 6 4 0.6
## 1930 10 7 3 0.7
## 1931 10 4 6 0.4
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## 1932 10 5 5 0.5
## 1933 10 4 6 0.4
## 1934 10 3 7 0.3
## 1935 10 6 4 0.6
## 1936 10 7 3 0.7
## 1937 10 5 5 0.5
## 1938 10 5 5 0.5
## 1939 10 5 5 0.5
## 1940 10 5 5 0.5
## 1941 10 3 7 0.3
## 1942 10 4 6 0.4
## 1943 10 3 7 0.3
## 1944 10 7 3 0.7
## 1945 10 4 6 0.4
## 1946 10 3 7 0.3
## 1947 10 4 6 0.4
## 1948 10 5 5 0.5
## 1949 10 6 4 0.6
## 1950 10 6 4 0.6
## 1951 10 4 6 0.4
## 1952 10 9 1 0.9
## 1953 10 5 5 0.5
## 1954 10 5 5 0.5
## 1955 10 5 5 0.5
## 1956 10 4 6 0.4
## 1957 10 3 7 0.3
## 1958 10 7 3 0.7
## 1959 10 6 4 0.6
## 1960 10 3 7 0.3
## 1961 10 4 6 0.4
## 1962 10 7 3 0.7
## 1963 10 7 3 0.7
## 1964 10 6 4 0.6
## 1965 10 6 4 0.6
## 1966 10 4 6 0.4
## 1967 10 7 3 0.7
## 1968 10 6 4 0.6
## 1969 10 5 5 0.5
## 1970 10 4 6 0.4
## 1971 10 4 6 0.4
## 1972 10 1 9 0.1
## 1973 10 7 3 0.7
## 1974 10 3 7 0.3
## 1975 10 4 6 0.4
## 1976 10 5 5 0.5
## 1977 10 4 6 0.4
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## 1978 10 4 6 0.4
## 1979 10 3 7 0.3
## 1980 10 3 7 0.3
## 1981 10 4 6 0.4
## 1982 10 4 6 0.4
## 1983 10 5 5 0.5
## 1984 10 4 6 0.4
## 1985 10 2 8 0.2
## 1986 10 4 6 0.4
## 1987 10 4 6 0.4
## 1988 10 4 6 0.4
## 1989 10 5 5 0.5
## 1990 10 7 3 0.7
## 1991 10 3 7 0.3
## 1992 10 4 6 0.4
## 1993 10 6 4 0.6
## 1994 10 4 6 0.4
## 1995 10 7 3 0.7
## 1996 10 4 6 0.4
## 1997 10 6 4 0.6
## 1998 10 6 4 0.6
## 1999 10 3 7 0.3
## 2000 10 8 2 0.8

This is the same idea as before, but now there are 2000 rows in the data frame
instead of 20.

mean(coin_flips_2000_10$heads)

## [1] 5.0245

ggplot(coin_flips_2000_10, aes(x = heads)) +
geom_histogram(binwidth = 0.5) +
scale_x_continuous(limits = c(-1, 11), breaks = seq(0, 10, 1))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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This is helpful. In contrast with the set of simulations with twenty people, the
last histogram gives us something closer to what we expect. The mode is at
five heads, and every possible number of heads is represented, with decreasing
counts as one moves away from five. With 2000 people flipping coins, all possible
outcomes—including rare ones—are better represented.

Here is the the same histogram, but this time with the proportion of heads
instead of the count of heads:

ggplot(coin_flips_2000_10, aes(x = prop)) +
geom_histogram(binwidth = 0.05) +
scale_x_continuous(limits = c(-0.1, 1.1), breaks = seq(0, 1, 0.1))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Exercise 3 Do you think the shape of the distribution would be appreciably
different if we used 20,000 or even 200,000 people? Why or why not? (Normally,
I would encourage you to test your theory by trying it in R. However, it takes a
long time to simulate that many flips and I don’t want you to tie up resources
and memory. Think through this in your head.)

Please write up your answer here.

From now on, we will insist on using at least a thousand simulations—if not
more—to make sure that we represent the full range of possible outcomes.1

8.6 More flips

Now let’s increase the number of coin flips each person performs. We’ll still use
2000 simulations (imagine 2000 people all flipping coins), but this time, each
person will flip the coin 1000 times instead of only 10 times. The first code
chunk below accounts for a substantial amount of the time it takes to run the
code in this document.

1There is some theory behind choosing the number of times we need to simulate, but we’re
not going to get into all that.
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set.seed(1234)
coin_flips_2000_1000 <- do(2000) * rflip(1000, prob = 0.5)
coin_flips_2000_1000

## n heads tails prop
## 1 1000 485 515 0.485
## 2 1000 515 485 0.515
## 3 1000 481 519 0.481
## 4 1000 508 492 0.508
## 5 1000 499 501 0.499
## 6 1000 516 484 0.516
## 7 1000 497 503 0.497
## 8 1000 497 503 0.497
## 9 1000 494 506 0.494
## 10 1000 528 472 0.528
## 11 1000 495 505 0.495
## 12 1000 483 517 0.483
## 13 1000 520 480 0.520
## 14 1000 528 472 0.528
## 15 1000 478 522 0.478
## 16 1000 516 484 0.516
## 17 1000 493 507 0.493
## 18 1000 524 476 0.524
## 19 1000 473 527 0.473
## 20 1000 516 484 0.516
## 21 1000 529 471 0.529
## 22 1000 516 484 0.516
## 23 1000 535 465 0.535
## 24 1000 491 509 0.491
## 25 1000 500 500 0.500
## 26 1000 497 503 0.497
## 27 1000 507 493 0.507
## 28 1000 515 485 0.515
## 29 1000 493 507 0.493
## 30 1000 482 518 0.482
## 31 1000 485 515 0.485
## 32 1000 493 507 0.493
## 33 1000 498 502 0.498
## 34 1000 490 510 0.490
## 35 1000 485 515 0.485
## 36 1000 495 505 0.495
## 37 1000 488 512 0.488
## 38 1000 496 504 0.496
## 39 1000 491 509 0.491
## 40 1000 488 512 0.488
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## 41 1000 488 512 0.488
## 42 1000 524 476 0.524
## 43 1000 500 500 0.500
## 44 1000 516 484 0.516
## 45 1000 514 486 0.514
## 46 1000 479 521 0.479
## 47 1000 488 512 0.488
## 48 1000 469 531 0.469
## 49 1000 515 485 0.515
## 50 1000 520 480 0.520
## 51 1000 486 514 0.486
## 52 1000 507 493 0.507
## 53 1000 509 491 0.509
## 54 1000 467 533 0.467
## 55 1000 467 533 0.467
## 56 1000 504 496 0.504
## 57 1000 483 517 0.483
## 58 1000 513 487 0.513
## 59 1000 518 482 0.518
## 60 1000 493 507 0.493
## 61 1000 516 484 0.516
## 62 1000 507 493 0.507
## 63 1000 509 491 0.509
## 64 1000 508 492 0.508
## 65 1000 511 489 0.511
## 66 1000 491 509 0.491
## 67 1000 524 476 0.524
## 68 1000 515 485 0.515
## 69 1000 524 476 0.524
## 70 1000 510 490 0.510
## 71 1000 482 518 0.482
## 72 1000 498 502 0.498
## 73 1000 507 493 0.507
## 74 1000 490 510 0.490
## 75 1000 501 499 0.501
## 76 1000 502 498 0.502
## 77 1000 520 480 0.520
## 78 1000 528 472 0.528
## 79 1000 504 496 0.504
## 80 1000 501 499 0.501
## 81 1000 507 493 0.507
## 82 1000 486 514 0.486
## 83 1000 500 500 0.500
## 84 1000 505 495 0.505
## 85 1000 494 506 0.494
## 86 1000 505 495 0.505
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## 87 1000 512 488 0.512
## 88 1000 521 479 0.521
## 89 1000 497 503 0.497
## 90 1000 501 499 0.501
## 91 1000 489 511 0.489
## 92 1000 497 503 0.497
## 93 1000 500 500 0.500
## 94 1000 470 530 0.470
## 95 1000 511 489 0.511
## 96 1000 504 496 0.504
## 97 1000 460 540 0.460
## 98 1000 493 507 0.493
## 99 1000 477 523 0.477
## 100 1000 489 511 0.489
## 101 1000 511 489 0.511
## 102 1000 519 481 0.519
## 103 1000 491 509 0.491
## 104 1000 464 536 0.464
## 105 1000 493 507 0.493
## 106 1000 497 503 0.497
## 107 1000 515 485 0.515
## 108 1000 491 509 0.491
## 109 1000 472 528 0.472
## 110 1000 505 495 0.505
## 111 1000 503 497 0.503
## 112 1000 489 511 0.489
## 113 1000 530 470 0.530
## 114 1000 510 490 0.510
## 115 1000 521 479 0.521
## 116 1000 488 512 0.488
## 117 1000 453 547 0.453
## 118 1000 489 511 0.489
## 119 1000 486 514 0.486
## 120 1000 481 519 0.481
## 121 1000 495 505 0.495
## 122 1000 484 516 0.484
## 123 1000 534 466 0.534
## 124 1000 500 500 0.500
## 125 1000 497 503 0.497
## 126 1000 524 476 0.524
## 127 1000 494 506 0.494
## 128 1000 505 495 0.505
## 129 1000 479 521 0.479
## 130 1000 493 507 0.493
## 131 1000 488 512 0.488
## 132 1000 482 518 0.482
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## 133 1000 519 481 0.519
## 134 1000 497 503 0.497
## 135 1000 531 469 0.531
## 136 1000 481 519 0.481
## 137 1000 510 490 0.510
## 138 1000 500 500 0.500
## 139 1000 476 524 0.476
## 140 1000 493 507 0.493
## 141 1000 490 510 0.490
## 142 1000 469 531 0.469
## 143 1000 484 516 0.484
## 144 1000 534 466 0.534
## 145 1000 491 509 0.491
## 146 1000 510 490 0.510
## 147 1000 507 493 0.507
## 148 1000 495 505 0.495
## 149 1000 526 474 0.526
## 150 1000 497 503 0.497
## 151 1000 510 490 0.510
## 152 1000 496 504 0.496
## 153 1000 470 530 0.470
## 154 1000 502 498 0.502
## 155 1000 485 515 0.485
## 156 1000 516 484 0.516
## 157 1000 513 487 0.513
## 158 1000 510 490 0.510
## 159 1000 484 516 0.484
## 160 1000 517 483 0.517
## 161 1000 512 488 0.512
## 162 1000 492 508 0.492
## 163 1000 513 487 0.513
## 164 1000 478 522 0.478
## 165 1000 503 497 0.503
## 166 1000 485 515 0.485
## 167 1000 489 511 0.489
## 168 1000 477 523 0.477
## 169 1000 508 492 0.508
## 170 1000 530 470 0.530
## 171 1000 476 524 0.476
## 172 1000 510 490 0.510
## 173 1000 475 525 0.475
## 174 1000 479 521 0.479
## 175 1000 497 503 0.497
## 176 1000 505 495 0.505
## 177 1000 506 494 0.506
## 178 1000 514 486 0.514
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## 179 1000 511 489 0.511
## 180 1000 536 464 0.536
## 181 1000 487 513 0.487
## 182 1000 489 511 0.489
## 183 1000 487 513 0.487
## 184 1000 503 497 0.503
## 185 1000 493 507 0.493
## 186 1000 530 470 0.530
## 187 1000 496 504 0.496
## 188 1000 495 505 0.495
## 189 1000 481 519 0.481
## 190 1000 503 497 0.503
## 191 1000 482 518 0.482
## 192 1000 504 496 0.504
## 193 1000 513 487 0.513
## 194 1000 523 477 0.523
## 195 1000 512 488 0.512
## 196 1000 512 488 0.512
## 197 1000 508 492 0.508
## 198 1000 528 472 0.528
## 199 1000 498 502 0.498
## 200 1000 529 471 0.529
## 201 1000 516 484 0.516
## 202 1000 490 510 0.490
## 203 1000 498 502 0.498
## 204 1000 499 501 0.499
## 205 1000 502 498 0.502
## 206 1000 498 502 0.498
## 207 1000 503 497 0.503
## 208 1000 521 479 0.521
## 209 1000 509 491 0.509
## 210 1000 509 491 0.509
## 211 1000 492 508 0.492
## 212 1000 496 504 0.496
## 213 1000 516 484 0.516
## 214 1000 494 506 0.494
## 215 1000 487 513 0.487
## 216 1000 509 491 0.509
## 217 1000 487 513 0.487
## 218 1000 490 510 0.490
## 219 1000 520 480 0.520
## 220 1000 495 505 0.495
## 221 1000 500 500 0.500
## 222 1000 491 509 0.491
## 223 1000 511 489 0.511
## 224 1000 475 525 0.475
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## 225 1000 515 485 0.515
## 226 1000 477 523 0.477
## 227 1000 501 499 0.501
## 228 1000 509 491 0.509
## 229 1000 490 510 0.490
## 230 1000 498 502 0.498
## 231 1000 494 506 0.494
## 232 1000 521 479 0.521
## 233 1000 477 523 0.477
## 234 1000 510 490 0.510
## 235 1000 517 483 0.517
## 236 1000 506 494 0.506
## 237 1000 477 523 0.477
## 238 1000 490 510 0.490
## 239 1000 524 476 0.524
## 240 1000 503 497 0.503
## 241 1000 514 486 0.514
## 242 1000 506 494 0.506
## 243 1000 482 518 0.482
## 244 1000 507 493 0.507
## 245 1000 504 496 0.504
## 246 1000 501 499 0.501
## 247 1000 482 518 0.482
## 248 1000 480 520 0.480
## 249 1000 511 489 0.511
## 250 1000 497 503 0.497
## 251 1000 471 529 0.471
## 252 1000 510 490 0.510
## 253 1000 523 477 0.523
## 254 1000 485 515 0.485
## 255 1000 505 495 0.505
## 256 1000 507 493 0.507
## 257 1000 473 527 0.473
## 258 1000 495 505 0.495
## 259 1000 465 535 0.465
## 260 1000 501 499 0.501
## 261 1000 460 540 0.460
## 262 1000 499 501 0.499
## 263 1000 524 476 0.524
## 264 1000 514 486 0.514
## 265 1000 503 497 0.503
## 266 1000 469 531 0.469
## 267 1000 496 504 0.496
## 268 1000 489 511 0.489
## 269 1000 507 493 0.507
## 270 1000 466 534 0.466
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## 271 1000 482 518 0.482
## 272 1000 520 480 0.520
## 273 1000 513 487 0.513
## 274 1000 492 508 0.492
## 275 1000 486 514 0.486
## 276 1000 498 502 0.498
## 277 1000 507 493 0.507
## 278 1000 494 506 0.494
## 279 1000 499 501 0.499
## 280 1000 498 502 0.498
## 281 1000 459 541 0.459
## 282 1000 495 505 0.495
## 283 1000 498 502 0.498
## 284 1000 495 505 0.495
## 285 1000 488 512 0.488
## 286 1000 518 482 0.518
## 287 1000 502 498 0.502
## 288 1000 503 497 0.503
## 289 1000 476 524 0.476
## 290 1000 495 505 0.495
## 291 1000 495 505 0.495
## 292 1000 503 497 0.503
## 293 1000 482 518 0.482
## 294 1000 518 482 0.518
## 295 1000 514 486 0.514
## 296 1000 520 480 0.520
## 297 1000 498 502 0.498
## 298 1000 523 477 0.523
## 299 1000 516 484 0.516
## 300 1000 483 517 0.483
## 301 1000 504 496 0.504
## 302 1000 505 495 0.505
## 303 1000 502 498 0.502
## 304 1000 486 514 0.486
## 305 1000 540 460 0.540
## 306 1000 510 490 0.510
## 307 1000 507 493 0.507
## 308 1000 482 518 0.482
## 309 1000 509 491 0.509
## 310 1000 486 514 0.486
## 311 1000 474 526 0.474
## 312 1000 511 489 0.511
## 313 1000 484 516 0.484
## 314 1000 499 501 0.499
## 315 1000 496 504 0.496
## 316 1000 505 495 0.505
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## 317 1000 487 513 0.487
## 318 1000 520 480 0.520
## 319 1000 483 517 0.483
## 320 1000 515 485 0.515
## 321 1000 513 487 0.513
## 322 1000 509 491 0.509
## 323 1000 520 480 0.520
## 324 1000 509 491 0.509
## 325 1000 480 520 0.480
## 326 1000 524 476 0.524
## 327 1000 507 493 0.507
## 328 1000 509 491 0.509
## 329 1000 493 507 0.493
## 330 1000 464 536 0.464
## 331 1000 526 474 0.526
## 332 1000 513 487 0.513
## 333 1000 505 495 0.505
## 334 1000 509 491 0.509
## 335 1000 500 500 0.500
## 336 1000 499 501 0.499
## 337 1000 520 480 0.520
## 338 1000 491 509 0.491
## 339 1000 488 512 0.488
## 340 1000 483 517 0.483
## 341 1000 508 492 0.508
## 342 1000 474 526 0.474
## 343 1000 482 518 0.482
## 344 1000 485 515 0.485
## 345 1000 516 484 0.516
## 346 1000 511 489 0.511
## 347 1000 490 510 0.490
## 348 1000 519 481 0.519
## 349 1000 493 507 0.493
## 350 1000 508 492 0.508
## 351 1000 492 508 0.492
## 352 1000 500 500 0.500
## 353 1000 503 497 0.503
## 354 1000 478 522 0.478
## 355 1000 511 489 0.511
## 356 1000 495 505 0.495
## 357 1000 472 528 0.472
## 358 1000 468 532 0.468
## 359 1000 504 496 0.504
## 360 1000 478 522 0.478
## 361 1000 485 515 0.485
## 362 1000 503 497 0.503
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## 363 1000 487 513 0.487
## 364 1000 482 518 0.482
## 365 1000 485 515 0.485
## 366 1000 507 493 0.507
## 367 1000 477 523 0.477
## 368 1000 504 496 0.504
## 369 1000 502 498 0.502
## 370 1000 492 508 0.492
## 371 1000 485 515 0.485
## 372 1000 491 509 0.491
## 373 1000 502 498 0.502
## 374 1000 483 517 0.483
## 375 1000 510 490 0.510
## 376 1000 508 492 0.508
## 377 1000 500 500 0.500
## 378 1000 501 499 0.501
## 379 1000 518 482 0.518
## 380 1000 528 472 0.528
## 381 1000 500 500 0.500
## 382 1000 486 514 0.486
## 383 1000 487 513 0.487
## 384 1000 511 489 0.511
## 385 1000 483 517 0.483
## 386 1000 485 515 0.485
## 387 1000 485 515 0.485
## 388 1000 520 480 0.520
## 389 1000 486 514 0.486
## 390 1000 492 508 0.492
## 391 1000 519 481 0.519
## 392 1000 478 522 0.478
## 393 1000 509 491 0.509
## 394 1000 494 506 0.494
## 395 1000 482 518 0.482
## 396 1000 490 510 0.490
## 397 1000 488 512 0.488
## 398 1000 538 462 0.538
## 399 1000 483 517 0.483
## 400 1000 515 485 0.515
## 401 1000 489 511 0.489
## 402 1000 511 489 0.511
## 403 1000 486 514 0.486
## 404 1000 501 499 0.501
## 405 1000 497 503 0.497
## 406 1000 515 485 0.515
## 407 1000 514 486 0.514
## 408 1000 504 496 0.504
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## 409 1000 526 474 0.526
## 410 1000 481 519 0.481
## 411 1000 505 495 0.505
## 412 1000 504 496 0.504
## 413 1000 511 489 0.511
## 414 1000 510 490 0.510
## 415 1000 494 506 0.494
## 416 1000 515 485 0.515
## 417 1000 510 490 0.510
## 418 1000 488 512 0.488
## 419 1000 490 510 0.490
## 420 1000 506 494 0.506
## 421 1000 489 511 0.489
## 422 1000 514 486 0.514
## 423 1000 524 476 0.524
## 424 1000 492 508 0.492
## 425 1000 502 498 0.502
## 426 1000 519 481 0.519
## 427 1000 500 500 0.500
## 428 1000 516 484 0.516
## 429 1000 515 485 0.515
## 430 1000 496 504 0.496
## 431 1000 479 521 0.479
## 432 1000 481 519 0.481
## 433 1000 521 479 0.521
## 434 1000 485 515 0.485
## 435 1000 492 508 0.492
## 436 1000 507 493 0.507
## 437 1000 507 493 0.507
## 438 1000 497 503 0.497
## 439 1000 516 484 0.516
## 440 1000 491 509 0.491
## 441 1000 518 482 0.518
## 442 1000 490 510 0.490
## 443 1000 502 498 0.502
## 444 1000 521 479 0.521
## 445 1000 504 496 0.504
## 446 1000 495 505 0.495
## 447 1000 500 500 0.500
## 448 1000 513 487 0.513
## 449 1000 497 503 0.497
## 450 1000 488 512 0.488
## 451 1000 497 503 0.497
## 452 1000 532 468 0.532
## 453 1000 519 481 0.519
## 454 1000 487 513 0.487
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## 455 1000 500 500 0.500
## 456 1000 509 491 0.509
## 457 1000 506 494 0.506
## 458 1000 508 492 0.508
## 459 1000 524 476 0.524
## 460 1000 520 480 0.520
## 461 1000 509 491 0.509
## 462 1000 551 449 0.551
## 463 1000 512 488 0.512
## 464 1000 497 503 0.497
## 465 1000 500 500 0.500
## 466 1000 493 507 0.493
## 467 1000 508 492 0.508
## 468 1000 514 486 0.514
## 469 1000 524 476 0.524
## 470 1000 508 492 0.508
## 471 1000 493 507 0.493
## 472 1000 513 487 0.513
## 473 1000 515 485 0.515
## 474 1000 494 506 0.494
## 475 1000 487 513 0.487
## 476 1000 464 536 0.464
## 477 1000 511 489 0.511
## 478 1000 484 516 0.484
## 479 1000 527 473 0.527
## 480 1000 485 515 0.485
## 481 1000 495 505 0.495
## 482 1000 515 485 0.515
## 483 1000 484 516 0.484
## 484 1000 464 536 0.464
## 485 1000 541 459 0.541
## 486 1000 512 488 0.512
## 487 1000 506 494 0.506
## 488 1000 500 500 0.500
## 489 1000 522 478 0.522
## 490 1000 507 493 0.507
## 491 1000 521 479 0.521
## 492 1000 511 489 0.511
## 493 1000 486 514 0.486
## 494 1000 501 499 0.501
## 495 1000 515 485 0.515
## 496 1000 473 527 0.473
## 497 1000 499 501 0.499
## 498 1000 515 485 0.515
## 499 1000 519 481 0.519
## 500 1000 488 512 0.488
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## 501 1000 508 492 0.508
## 502 1000 484 516 0.484
## 503 1000 484 516 0.484
## 504 1000 502 498 0.502
## 505 1000 489 511 0.489
## 506 1000 495 505 0.495
## 507 1000 519 481 0.519
## 508 1000 521 479 0.521
## 509 1000 506 494 0.506
## 510 1000 515 485 0.515
## 511 1000 499 501 0.499
## 512 1000 514 486 0.514
## 513 1000 527 473 0.527
## 514 1000 504 496 0.504
## 515 1000 469 531 0.469
## 516 1000 489 511 0.489
## 517 1000 503 497 0.503
## 518 1000 531 469 0.531
## 519 1000 497 503 0.497
## 520 1000 499 501 0.499
## 521 1000 483 517 0.483
## 522 1000 501 499 0.501
## 523 1000 481 519 0.481
## 524 1000 516 484 0.516
## 525 1000 491 509 0.491
## 526 1000 486 514 0.486
## 527 1000 492 508 0.492
## 528 1000 498 502 0.498
## 529 1000 522 478 0.522
## 530 1000 487 513 0.487
## 531 1000 477 523 0.477
## 532 1000 501 499 0.501
## 533 1000 490 510 0.490
## 534 1000 487 513 0.487
## 535 1000 490 510 0.490
## 536 1000 484 516 0.484
## 537 1000 489 511 0.489
## 538 1000 502 498 0.502
## 539 1000 490 510 0.490
## 540 1000 493 507 0.493
## 541 1000 509 491 0.509
## 542 1000 523 477 0.523
## 543 1000 501 499 0.501
## 544 1000 482 518 0.482
## 545 1000 498 502 0.498
## 546 1000 481 519 0.481
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## 547 1000 502 498 0.502
## 548 1000 499 501 0.499
## 549 1000 504 496 0.504
## 550 1000 487 513 0.487
## 551 1000 481 519 0.481
## 552 1000 483 517 0.483
## 553 1000 488 512 0.488
## 554 1000 491 509 0.491
## 555 1000 532 468 0.532
## 556 1000 509 491 0.509
## 557 1000 495 505 0.495
## 558 1000 493 507 0.493
## 559 1000 519 481 0.519
## 560 1000 475 525 0.475
## 561 1000 523 477 0.523
## 562 1000 474 526 0.474
## 563 1000 461 539 0.461
## 564 1000 479 521 0.479
## 565 1000 528 472 0.528
## 566 1000 502 498 0.502
## 567 1000 503 497 0.503
## 568 1000 501 499 0.501
## 569 1000 487 513 0.487
## 570 1000 504 496 0.504
## 571 1000 504 496 0.504
## 572 1000 509 491 0.509
## 573 1000 493 507 0.493
## 574 1000 498 502 0.498
## 575 1000 488 512 0.488
## 576 1000 514 486 0.514
## 577 1000 482 518 0.482
## 578 1000 483 517 0.483
## 579 1000 500 500 0.500
## 580 1000 485 515 0.485
## 581 1000 503 497 0.503
## 582 1000 476 524 0.476
## 583 1000 518 482 0.518
## 584 1000 502 498 0.502
## 585 1000 496 504 0.496
## 586 1000 501 499 0.501
## 587 1000 501 499 0.501
## 588 1000 520 480 0.520
## 589 1000 489 511 0.489
## 590 1000 499 501 0.499
## 591 1000 484 516 0.484
## 592 1000 504 496 0.504
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## 593 1000 510 490 0.510
## 594 1000 499 501 0.499
## 595 1000 490 510 0.490
## 596 1000 503 497 0.503
## 597 1000 486 514 0.486
## 598 1000 489 511 0.489
## 599 1000 505 495 0.505
## 600 1000 493 507 0.493
## 601 1000 490 510 0.490
## 602 1000 482 518 0.482
## 603 1000 522 478 0.522
## 604 1000 525 475 0.525
## 605 1000 503 497 0.503
## 606 1000 471 529 0.471
## 607 1000 501 499 0.501
## 608 1000 504 496 0.504
## 609 1000 495 505 0.495
## 610 1000 504 496 0.504
## 611 1000 494 506 0.494
## 612 1000 530 470 0.530
## 613 1000 484 516 0.484
## 614 1000 489 511 0.489
## 615 1000 500 500 0.500
## 616 1000 508 492 0.508
## 617 1000 492 508 0.492
## 618 1000 478 522 0.478
## 619 1000 534 466 0.534
## 620 1000 489 511 0.489
## 621 1000 503 497 0.503
## 622 1000 504 496 0.504
## 623 1000 484 516 0.484
## 624 1000 494 506 0.494
## 625 1000 483 517 0.483
## 626 1000 509 491 0.509
## 627 1000 520 480 0.520
## 628 1000 489 511 0.489
## 629 1000 501 499 0.501
## 630 1000 500 500 0.500
## 631 1000 483 517 0.483
## 632 1000 514 486 0.514
## 633 1000 513 487 0.513
## 634 1000 499 501 0.499
## 635 1000 492 508 0.492
## 636 1000 464 536 0.464
## 637 1000 508 492 0.508
## 638 1000 506 494 0.506
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## 639 1000 499 501 0.499
## 640 1000 500 500 0.500
## 641 1000 512 488 0.512
## 642 1000 491 509 0.491
## 643 1000 510 490 0.510
## 644 1000 487 513 0.487
## 645 1000 484 516 0.484
## 646 1000 475 525 0.475
## 647 1000 501 499 0.501
## 648 1000 478 522 0.478
## 649 1000 490 510 0.490
## 650 1000 493 507 0.493
## 651 1000 510 490 0.510
## 652 1000 493 507 0.493
## 653 1000 519 481 0.519
## 654 1000 542 458 0.542
## 655 1000 495 505 0.495
## 656 1000 527 473 0.527
## 657 1000 537 463 0.537
## 658 1000 509 491 0.509
## 659 1000 461 539 0.461
## 660 1000 502 498 0.502
## 661 1000 508 492 0.508
## 662 1000 496 504 0.496
## 663 1000 487 513 0.487
## 664 1000 510 490 0.510
## 665 1000 488 512 0.488
## 666 1000 517 483 0.517
## 667 1000 503 497 0.503
## 668 1000 456 544 0.456
## 669 1000 470 530 0.470
## 670 1000 475 525 0.475
## 671 1000 510 490 0.510
## 672 1000 492 508 0.492
## 673 1000 492 508 0.492
## 674 1000 506 494 0.506
## 675 1000 492 508 0.492
## 676 1000 485 515 0.485
## 677 1000 500 500 0.500
## 678 1000 499 501 0.499
## 679 1000 512 488 0.512
## 680 1000 490 510 0.490
## 681 1000 502 498 0.502
## 682 1000 489 511 0.489
## 683 1000 499 501 0.499
## 684 1000 493 507 0.493
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## 685 1000 494 506 0.494
## 686 1000 515 485 0.515
## 687 1000 488 512 0.488
## 688 1000 487 513 0.487
## 689 1000 504 496 0.504
## 690 1000 504 496 0.504
## 691 1000 481 519 0.481
## 692 1000 487 513 0.487
## 693 1000 512 488 0.512
## 694 1000 512 488 0.512
## 695 1000 474 526 0.474
## 696 1000 498 502 0.498
## 697 1000 504 496 0.504
## 698 1000 510 490 0.510
## 699 1000 501 499 0.501
## 700 1000 517 483 0.517
## 701 1000 507 493 0.507
## 702 1000 478 522 0.478
## 703 1000 536 464 0.536
## 704 1000 484 516 0.484
## 705 1000 482 518 0.482
## 706 1000 485 515 0.485
## 707 1000 510 490 0.510
## 708 1000 487 513 0.487
## 709 1000 484 516 0.484
## 710 1000 504 496 0.504
## 711 1000 499 501 0.499
## 712 1000 507 493 0.507
## 713 1000 490 510 0.490
## 714 1000 511 489 0.511
## 715 1000 521 479 0.521
## 716 1000 507 493 0.507
## 717 1000 504 496 0.504
## 718 1000 489 511 0.489
## 719 1000 487 513 0.487
## 720 1000 502 498 0.502
## 721 1000 502 498 0.502
## 722 1000 491 509 0.491
## 723 1000 484 516 0.484
## 724 1000 500 500 0.500
## 725 1000 512 488 0.512
## 726 1000 491 509 0.491
## 727 1000 496 504 0.496
## 728 1000 485 515 0.485
## 729 1000 523 477 0.523
## 730 1000 515 485 0.515
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## 731 1000 503 497 0.503
## 732 1000 509 491 0.509
## 733 1000 487 513 0.487
## 734 1000 508 492 0.508
## 735 1000 480 520 0.480
## 736 1000 499 501 0.499
## 737 1000 495 505 0.495
## 738 1000 502 498 0.502
## 739 1000 516 484 0.516
## 740 1000 493 507 0.493
## 741 1000 484 516 0.484
## 742 1000 475 525 0.475
## 743 1000 483 517 0.483
## 744 1000 508 492 0.508
## 745 1000 523 477 0.523
## 746 1000 502 498 0.502
## 747 1000 503 497 0.503
## 748 1000 519 481 0.519
## 749 1000 483 517 0.483
## 750 1000 484 516 0.484
## 751 1000 501 499 0.501
## 752 1000 494 506 0.494
## 753 1000 511 489 0.511
## 754 1000 507 493 0.507
## 755 1000 493 507 0.493
## 756 1000 501 499 0.501
## 757 1000 507 493 0.507
## 758 1000 507 493 0.507
## 759 1000 522 478 0.522
## 760 1000 475 525 0.475
## 761 1000 501 499 0.501
## 762 1000 478 522 0.478
## 763 1000 504 496 0.504
## 764 1000 506 494 0.506
## 765 1000 499 501 0.499
## 766 1000 492 508 0.492
## 767 1000 503 497 0.503
## 768 1000 501 499 0.501
## 769 1000 512 488 0.512
## 770 1000 491 509 0.491
## 771 1000 503 497 0.503
## 772 1000 484 516 0.484
## 773 1000 525 475 0.525
## 774 1000 527 473 0.527
## 775 1000 514 486 0.514
## 776 1000 507 493 0.507
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## 777 1000 485 515 0.485
## 778 1000 482 518 0.482
## 779 1000 502 498 0.502
## 780 1000 492 508 0.492
## 781 1000 494 506 0.494
## 782 1000 501 499 0.501
## 783 1000 492 508 0.492
## 784 1000 502 498 0.502
## 785 1000 516 484 0.516
## 786 1000 505 495 0.505
## 787 1000 497 503 0.497
## 788 1000 492 508 0.492
## 789 1000 497 503 0.497
## 790 1000 511 489 0.511
## 791 1000 499 501 0.499
## 792 1000 507 493 0.507
## 793 1000 493 507 0.493
## 794 1000 491 509 0.491
## 795 1000 480 520 0.480
## 796 1000 512 488 0.512
## 797 1000 520 480 0.520
## 798 1000 482 518 0.482
## 799 1000 511 489 0.511
## 800 1000 517 483 0.517
## 801 1000 497 503 0.497
## 802 1000 513 487 0.513
## 803 1000 502 498 0.502
## 804 1000 521 479 0.521
## 805 1000 505 495 0.505
## 806 1000 479 521 0.479
## 807 1000 508 492 0.508
## 808 1000 516 484 0.516
## 809 1000 500 500 0.500
## 810 1000 517 483 0.517
## 811 1000 479 521 0.479
## 812 1000 493 507 0.493
## 813 1000 507 493 0.507
## 814 1000 519 481 0.519
## 815 1000 496 504 0.496
## 816 1000 497 503 0.497
## 817 1000 498 502 0.498
## 818 1000 500 500 0.500
## 819 1000 507 493 0.507
## 820 1000 527 473 0.527
## 821 1000 463 537 0.463
## 822 1000 506 494 0.506
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## 823 1000 511 489 0.511
## 824 1000 523 477 0.523
## 825 1000 515 485 0.515
## 826 1000 527 473 0.527
## 827 1000 519 481 0.519
## 828 1000 490 510 0.490
## 829 1000 505 495 0.505
## 830 1000 511 489 0.511
## 831 1000 469 531 0.469
## 832 1000 492 508 0.492
## 833 1000 497 503 0.497
## 834 1000 523 477 0.523
## 835 1000 480 520 0.480
## 836 1000 493 507 0.493
## 837 1000 529 471 0.529
## 838 1000 523 477 0.523
## 839 1000 499 501 0.499
## 840 1000 523 477 0.523
## 841 1000 501 499 0.501
## 842 1000 505 495 0.505
## 843 1000 523 477 0.523
## 844 1000 504 496 0.504
## 845 1000 492 508 0.492
## 846 1000 470 530 0.470
## 847 1000 493 507 0.493
## 848 1000 511 489 0.511
## 849 1000 485 515 0.485
## 850 1000 510 490 0.510
## 851 1000 498 502 0.498
## 852 1000 506 494 0.506
## 853 1000 501 499 0.501
## 854 1000 519 481 0.519
## 855 1000 514 486 0.514
## 856 1000 489 511 0.489
## 857 1000 513 487 0.513
## 858 1000 533 467 0.533
## 859 1000 485 515 0.485
## 860 1000 499 501 0.499
## 861 1000 490 510 0.490
## 862 1000 508 492 0.508
## 863 1000 482 518 0.482
## 864 1000 496 504 0.496
## 865 1000 496 504 0.496
## 866 1000 525 475 0.525
## 867 1000 500 500 0.500
## 868 1000 480 520 0.480
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## 869 1000 493 507 0.493
## 870 1000 500 500 0.500
## 871 1000 489 511 0.489
## 872 1000 503 497 0.503
## 873 1000 479 521 0.479
## 874 1000 500 500 0.500
## 875 1000 499 501 0.499
## 876 1000 502 498 0.502
## 877 1000 485 515 0.485
## 878 1000 515 485 0.515
## 879 1000 512 488 0.512
## 880 1000 509 491 0.509
## 881 1000 499 501 0.499
## 882 1000 477 523 0.477
## 883 1000 515 485 0.515
## 884 1000 490 510 0.490
## 885 1000 505 495 0.505
## 886 1000 499 501 0.499
## 887 1000 495 505 0.495
## 888 1000 527 473 0.527
## 889 1000 514 486 0.514
## 890 1000 513 487 0.513
## 891 1000 505 495 0.505
## 892 1000 504 496 0.504
## 893 1000 482 518 0.482
## 894 1000 499 501 0.499
## 895 1000 491 509 0.491
## 896 1000 474 526 0.474
## 897 1000 513 487 0.513
## 898 1000 492 508 0.492
## 899 1000 504 496 0.504
## 900 1000 511 489 0.511
## 901 1000 488 512 0.488
## 902 1000 534 466 0.534
## 903 1000 485 515 0.485
## 904 1000 471 529 0.471
## 905 1000 511 489 0.511
## 906 1000 502 498 0.502
## 907 1000 517 483 0.517
## 908 1000 520 480 0.520
## 909 1000 525 475 0.525
## 910 1000 517 483 0.517
## 911 1000 495 505 0.495
## 912 1000 497 503 0.497
## 913 1000 493 507 0.493
## 914 1000 496 504 0.496
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## 915 1000 472 528 0.472
## 916 1000 503 497 0.503
## 917 1000 512 488 0.512
## 918 1000 488 512 0.488
## 919 1000 482 518 0.482
## 920 1000 496 504 0.496
## 921 1000 474 526 0.474
## 922 1000 502 498 0.502
## 923 1000 490 510 0.490
## 924 1000 516 484 0.516
## 925 1000 488 512 0.488
## 926 1000 489 511 0.489
## 927 1000 477 523 0.477
## 928 1000 511 489 0.511
## 929 1000 486 514 0.486
## 930 1000 482 518 0.482
## 931 1000 486 514 0.486
## 932 1000 506 494 0.506
## 933 1000 492 508 0.492
## 934 1000 482 518 0.482
## 935 1000 509 491 0.509
## 936 1000 511 489 0.511
## 937 1000 477 523 0.477
## 938 1000 507 493 0.507
## 939 1000 506 494 0.506
## 940 1000 497 503 0.497
## 941 1000 506 494 0.506
## 942 1000 495 505 0.495
## 943 1000 513 487 0.513
## 944 1000 511 489 0.511
## 945 1000 486 514 0.486
## 946 1000 486 514 0.486
## 947 1000 511 489 0.511
## 948 1000 492 508 0.492
## 949 1000 475 525 0.475
## 950 1000 490 510 0.490
## 951 1000 488 512 0.488
## 952 1000 493 507 0.493
## 953 1000 485 515 0.485
## 954 1000 509 491 0.509
## 955 1000 486 514 0.486
## 956 1000 504 496 0.504
## 957 1000 477 523 0.477
## 958 1000 512 488 0.512
## 959 1000 501 499 0.501
## 960 1000 487 513 0.487
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## 961 1000 493 507 0.493
## 962 1000 492 508 0.492
## 963 1000 512 488 0.512
## 964 1000 505 495 0.505
## 965 1000 494 506 0.494
## 966 1000 494 506 0.494
## 967 1000 493 507 0.493
## 968 1000 502 498 0.502
## 969 1000 498 502 0.498
## 970 1000 498 502 0.498
## 971 1000 517 483 0.517
## 972 1000 525 475 0.525
## 973 1000 530 470 0.530
## 974 1000 503 497 0.503
## 975 1000 486 514 0.486
## 976 1000 525 475 0.525
## 977 1000 503 497 0.503
## 978 1000 493 507 0.493
## 979 1000 485 515 0.485
## 980 1000 485 515 0.485
## 981 1000 529 471 0.529
## 982 1000 508 492 0.508
## 983 1000 495 505 0.495
## 984 1000 488 512 0.488
## 985 1000 519 481 0.519
## 986 1000 515 485 0.515
## 987 1000 464 536 0.464
## 988 1000 524 476 0.524
## 989 1000 522 478 0.522
## 990 1000 520 480 0.520
## 991 1000 508 492 0.508
## 992 1000 512 488 0.512
## 993 1000 504 496 0.504
## 994 1000 481 519 0.481
## 995 1000 450 550 0.450
## 996 1000 500 500 0.500
## 997 1000 499 501 0.499
## 998 1000 487 513 0.487
## 999 1000 481 519 0.481
## 1000 1000 498 502 0.498
## 1001 1000 520 480 0.520
## 1002 1000 492 508 0.492
## 1003 1000 532 468 0.532
## 1004 1000 512 488 0.512
## 1005 1000 503 497 0.503
## 1006 1000 482 518 0.482
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## 1007 1000 486 514 0.486
## 1008 1000 518 482 0.518
## 1009 1000 469 531 0.469
## 1010 1000 468 532 0.468
## 1011 1000 471 529 0.471
## 1012 1000 524 476 0.524
## 1013 1000 500 500 0.500
## 1014 1000 514 486 0.514
## 1015 1000 510 490 0.510
## 1016 1000 478 522 0.478
## 1017 1000 518 482 0.518
## 1018 1000 503 497 0.503
## 1019 1000 512 488 0.512
## 1020 1000 506 494 0.506
## 1021 1000 492 508 0.492
## 1022 1000 513 487 0.513
## 1023 1000 499 501 0.499
## 1024 1000 469 531 0.469
## 1025 1000 497 503 0.497
## 1026 1000 491 509 0.491
## 1027 1000 508 492 0.508
## 1028 1000 498 502 0.498
## 1029 1000 500 500 0.500
## 1030 1000 513 487 0.513
## 1031 1000 502 498 0.502
## 1032 1000 528 472 0.528
## 1033 1000 482 518 0.482
## 1034 1000 497 503 0.497
## 1035 1000 510 490 0.510
## 1036 1000 509 491 0.509
## 1037 1000 490 510 0.490
## 1038 1000 500 500 0.500
## 1039 1000 470 530 0.470
## 1040 1000 481 519 0.481
## 1041 1000 510 490 0.510
## 1042 1000 465 535 0.465
## 1043 1000 501 499 0.501
## 1044 1000 495 505 0.495
## 1045 1000 490 510 0.490
## 1046 1000 491 509 0.491
## 1047 1000 497 503 0.497
## 1048 1000 495 505 0.495
## 1049 1000 532 468 0.532
## 1050 1000 497 503 0.497
## 1051 1000 510 490 0.510
## 1052 1000 488 512 0.488
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## 1053 1000 480 520 0.480
## 1054 1000 532 468 0.532
## 1055 1000 484 516 0.484
## 1056 1000 512 488 0.512
## 1057 1000 491 509 0.491
## 1058 1000 498 502 0.498
## 1059 1000 495 505 0.495
## 1060 1000 482 518 0.482
## 1061 1000 495 505 0.495
## 1062 1000 489 511 0.489
## 1063 1000 486 514 0.486
## 1064 1000 515 485 0.515
## 1065 1000 500 500 0.500
## 1066 1000 494 506 0.494
## 1067 1000 520 480 0.520
## 1068 1000 516 484 0.516
## 1069 1000 497 503 0.497
## 1070 1000 511 489 0.511
## 1071 1000 499 501 0.499
## 1072 1000 475 525 0.475
## 1073 1000 480 520 0.480
## 1074 1000 508 492 0.508
## 1075 1000 487 513 0.487
## 1076 1000 483 517 0.483
## 1077 1000 500 500 0.500
## 1078 1000 502 498 0.502
## 1079 1000 471 529 0.471
## 1080 1000 526 474 0.526
## 1081 1000 494 506 0.494
## 1082 1000 507 493 0.507
## 1083 1000 508 492 0.508
## 1084 1000 487 513 0.487
## 1085 1000 493 507 0.493
## 1086 1000 504 496 0.504
## 1087 1000 514 486 0.514
## 1088 1000 512 488 0.512
## 1089 1000 499 501 0.499
## 1090 1000 531 469 0.531
## 1091 1000 485 515 0.485
## 1092 1000 515 485 0.515
## 1093 1000 475 525 0.475
## 1094 1000 473 527 0.473
## 1095 1000 487 513 0.487
## 1096 1000 481 519 0.481
## 1097 1000 486 514 0.486
## 1098 1000 466 534 0.466
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## 1099 1000 475 525 0.475
## 1100 1000 513 487 0.513
## 1101 1000 497 503 0.497
## 1102 1000 523 477 0.523
## 1103 1000 491 509 0.491
## 1104 1000 521 479 0.521
## 1105 1000 489 511 0.489
## 1106 1000 512 488 0.512
## 1107 1000 496 504 0.496
## 1108 1000 517 483 0.517
## 1109 1000 533 467 0.533
## 1110 1000 527 473 0.527
## 1111 1000 533 467 0.533
## 1112 1000 497 503 0.497
## 1113 1000 490 510 0.490
## 1114 1000 481 519 0.481
## 1115 1000 491 509 0.491
## 1116 1000 489 511 0.489
## 1117 1000 472 528 0.472
## 1118 1000 511 489 0.511
## 1119 1000 494 506 0.494
## 1120 1000 545 455 0.545
## 1121 1000 498 502 0.498
## 1122 1000 490 510 0.490
## 1123 1000 516 484 0.516
## 1124 1000 475 525 0.475
## 1125 1000 494 506 0.494
## 1126 1000 537 463 0.537
## 1127 1000 481 519 0.481
## 1128 1000 495 505 0.495
## 1129 1000 488 512 0.488
## 1130 1000 490 510 0.490
## 1131 1000 486 514 0.486
## 1132 1000 527 473 0.527
## 1133 1000 501 499 0.501
## 1134 1000 505 495 0.505
## 1135 1000 502 498 0.502
## 1136 1000 494 506 0.494
## 1137 1000 495 505 0.495
## 1138 1000 517 483 0.517
## 1139 1000 480 520 0.480
## 1140 1000 477 523 0.477
## 1141 1000 505 495 0.505
## 1142 1000 516 484 0.516
## 1143 1000 526 474 0.526
## 1144 1000 518 482 0.518
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## 1145 1000 495 505 0.495
## 1146 1000 511 489 0.511
## 1147 1000 493 507 0.493
## 1148 1000 506 494 0.506
## 1149 1000 498 502 0.498
## 1150 1000 504 496 0.504
## 1151 1000 509 491 0.509
## 1152 1000 487 513 0.487
## 1153 1000 504 496 0.504
## 1154 1000 496 504 0.496
## 1155 1000 512 488 0.512
## 1156 1000 477 523 0.477
## 1157 1000 514 486 0.514
## 1158 1000 511 489 0.511
## 1159 1000 475 525 0.475
## 1160 1000 464 536 0.464
## 1161 1000 448 552 0.448
## 1162 1000 526 474 0.526
## 1163 1000 538 462 0.538
## 1164 1000 499 501 0.499
## 1165 1000 487 513 0.487
## 1166 1000 509 491 0.509
## 1167 1000 501 499 0.501
## 1168 1000 481 519 0.481
## 1169 1000 509 491 0.509
## 1170 1000 486 514 0.486
## 1171 1000 487 513 0.487
## 1172 1000 491 509 0.491
## 1173 1000 489 511 0.489
## 1174 1000 475 525 0.475
## 1175 1000 474 526 0.474
## 1176 1000 473 527 0.473
## 1177 1000 513 487 0.513
## 1178 1000 517 483 0.517
## 1179 1000 497 503 0.497
## 1180 1000 469 531 0.469
## 1181 1000 520 480 0.520
## 1182 1000 457 543 0.457
## 1183 1000 532 468 0.532
## 1184 1000 500 500 0.500
## 1185 1000 514 486 0.514
## 1186 1000 522 478 0.522
## 1187 1000 517 483 0.517
## 1188 1000 518 482 0.518
## 1189 1000 503 497 0.503
## 1190 1000 506 494 0.506
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## 1191 1000 504 496 0.504
## 1192 1000 509 491 0.509
## 1193 1000 506 494 0.506
## 1194 1000 511 489 0.511
## 1195 1000 496 504 0.496
## 1196 1000 513 487 0.513
## 1197 1000 505 495 0.505
## 1198 1000 512 488 0.512
## 1199 1000 495 505 0.495
## 1200 1000 512 488 0.512
## 1201 1000 495 505 0.495
## 1202 1000 527 473 0.527
## 1203 1000 495 505 0.495
## 1204 1000 513 487 0.513
## 1205 1000 515 485 0.515
## 1206 1000 488 512 0.488
## 1207 1000 495 505 0.495
## 1208 1000 494 506 0.494
## 1209 1000 505 495 0.505
## 1210 1000 500 500 0.500
## 1211 1000 483 517 0.483
## 1212 1000 505 495 0.505
## 1213 1000 523 477 0.523
## 1214 1000 508 492 0.508
## 1215 1000 498 502 0.498
## 1216 1000 499 501 0.499
## 1217 1000 489 511 0.489
## 1218 1000 505 495 0.505
## 1219 1000 509 491 0.509
## 1220 1000 501 499 0.501
## 1221 1000 496 504 0.496
## 1222 1000 496 504 0.496
## 1223 1000 504 496 0.504
## 1224 1000 491 509 0.491
## 1225 1000 500 500 0.500
## 1226 1000 523 477 0.523
## 1227 1000 499 501 0.499
## 1228 1000 489 511 0.489
## 1229 1000 486 514 0.486
## 1230 1000 515 485 0.515
## 1231 1000 494 506 0.494
## 1232 1000 496 504 0.496
## 1233 1000 496 504 0.496
## 1234 1000 486 514 0.486
## 1235 1000 533 467 0.533
## 1236 1000 487 513 0.487
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## 1237 1000 485 515 0.485
## 1238 1000 503 497 0.503
## 1239 1000 508 492 0.508
## 1240 1000 510 490 0.510
## 1241 1000 496 504 0.496
## 1242 1000 497 503 0.497
## 1243 1000 504 496 0.504
## 1244 1000 470 530 0.470
## 1245 1000 512 488 0.512
## 1246 1000 526 474 0.526
## 1247 1000 487 513 0.487
## 1248 1000 508 492 0.508
## 1249 1000 505 495 0.505
## 1250 1000 519 481 0.519
## 1251 1000 490 510 0.490
## 1252 1000 475 525 0.475
## 1253 1000 479 521 0.479
## 1254 1000 509 491 0.509
## 1255 1000 500 500 0.500
## 1256 1000 479 521 0.479
## 1257 1000 529 471 0.529
## 1258 1000 518 482 0.518
## 1259 1000 510 490 0.510
## 1260 1000 482 518 0.482
## 1261 1000 498 502 0.498
## 1262 1000 478 522 0.478
## 1263 1000 498 502 0.498
## 1264 1000 521 479 0.521
## 1265 1000 501 499 0.501
## 1266 1000 489 511 0.489
## 1267 1000 502 498 0.502
## 1268 1000 509 491 0.509
## 1269 1000 502 498 0.502
## 1270 1000 455 545 0.455
## 1271 1000 486 514 0.486
## 1272 1000 524 476 0.524
## 1273 1000 510 490 0.510
## 1274 1000 492 508 0.492
## 1275 1000 484 516 0.484
## 1276 1000 480 520 0.480
## 1277 1000 520 480 0.520
## 1278 1000 486 514 0.486
## 1279 1000 506 494 0.506
## 1280 1000 492 508 0.492
## 1281 1000 512 488 0.512
## 1282 1000 522 478 0.522
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## 1283 1000 525 475 0.525
## 1284 1000 494 506 0.494
## 1285 1000 500 500 0.500
## 1286 1000 499 501 0.499
## 1287 1000 522 478 0.522
## 1288 1000 494 506 0.494
## 1289 1000 525 475 0.525
## 1290 1000 506 494 0.506
## 1291 1000 496 504 0.496
## 1292 1000 524 476 0.524
## 1293 1000 475 525 0.475
## 1294 1000 465 535 0.465
## 1295 1000 495 505 0.495
## 1296 1000 517 483 0.517
## 1297 1000 502 498 0.502
## 1298 1000 494 506 0.494
## 1299 1000 518 482 0.518
## 1300 1000 479 521 0.479
## 1301 1000 513 487 0.513
## 1302 1000 522 478 0.522
## 1303 1000 494 506 0.494
## 1304 1000 499 501 0.499
## 1305 1000 493 507 0.493
## 1306 1000 535 465 0.535
## 1307 1000 495 505 0.495
## 1308 1000 507 493 0.507
## 1309 1000 509 491 0.509
## 1310 1000 500 500 0.500
## 1311 1000 480 520 0.480
## 1312 1000 524 476 0.524
## 1313 1000 489 511 0.489
## 1314 1000 504 496 0.504
## 1315 1000 516 484 0.516
## 1316 1000 521 479 0.521
## 1317 1000 532 468 0.532
## 1318 1000 518 482 0.518
## 1319 1000 500 500 0.500
## 1320 1000 502 498 0.502
## 1321 1000 491 509 0.491
## 1322 1000 529 471 0.529
## 1323 1000 513 487 0.513
## 1324 1000 489 511 0.489
## 1325 1000 496 504 0.496
## 1326 1000 515 485 0.515
## 1327 1000 498 502 0.498
## 1328 1000 495 505 0.495
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## 1329 1000 459 541 0.459
## 1330 1000 521 479 0.521
## 1331 1000 515 485 0.515
## 1332 1000 491 509 0.491
## 1333 1000 496 504 0.496
## 1334 1000 514 486 0.514
## 1335 1000 497 503 0.497
## 1336 1000 515 485 0.515
## 1337 1000 483 517 0.483
## 1338 1000 497 503 0.497
## 1339 1000 496 504 0.496
## 1340 1000 495 505 0.495
## 1341 1000 497 503 0.497
## 1342 1000 499 501 0.499
## 1343 1000 515 485 0.515
## 1344 1000 520 480 0.520
## 1345 1000 520 480 0.520
## 1346 1000 513 487 0.513
## 1347 1000 504 496 0.504
## 1348 1000 528 472 0.528
## 1349 1000 489 511 0.489
## 1350 1000 512 488 0.512
## 1351 1000 527 473 0.527
## 1352 1000 503 497 0.503
## 1353 1000 471 529 0.471
## 1354 1000 478 522 0.478
## 1355 1000 501 499 0.501
## 1356 1000 491 509 0.491
## 1357 1000 504 496 0.504
## 1358 1000 502 498 0.502
## 1359 1000 471 529 0.471
## 1360 1000 492 508 0.492
## 1361 1000 488 512 0.488
## 1362 1000 494 506 0.494
## 1363 1000 531 469 0.531
## 1364 1000 473 527 0.473
## 1365 1000 487 513 0.487
## 1366 1000 503 497 0.503
## 1367 1000 494 506 0.494
## 1368 1000 530 470 0.530
## 1369 1000 496 504 0.496
## 1370 1000 517 483 0.517
## 1371 1000 526 474 0.526
## 1372 1000 515 485 0.515
## 1373 1000 488 512 0.488
## 1374 1000 455 545 0.455
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## 1375 1000 503 497 0.503
## 1376 1000 494 506 0.494
## 1377 1000 527 473 0.527
## 1378 1000 503 497 0.503
## 1379 1000 472 528 0.472
## 1380 1000 511 489 0.511
## 1381 1000 488 512 0.488
## 1382 1000 493 507 0.493
## 1383 1000 520 480 0.520
## 1384 1000 524 476 0.524
## 1385 1000 508 492 0.508
## 1386 1000 515 485 0.515
## 1387 1000 519 481 0.519
## 1388 1000 490 510 0.490
## 1389 1000 477 523 0.477
## 1390 1000 508 492 0.508
## 1391 1000 515 485 0.515
## 1392 1000 520 480 0.520
## 1393 1000 489 511 0.489
## 1394 1000 500 500 0.500
## 1395 1000 519 481 0.519
## 1396 1000 493 507 0.493
## 1397 1000 509 491 0.509
## 1398 1000 489 511 0.489
## 1399 1000 494 506 0.494
## 1400 1000 508 492 0.508
## 1401 1000 513 487 0.513
## 1402 1000 514 486 0.514
## 1403 1000 516 484 0.516
## 1404 1000 502 498 0.502
## 1405 1000 496 504 0.496
## 1406 1000 483 517 0.483
## 1407 1000 516 484 0.516
## 1408 1000 502 498 0.502
## 1409 1000 510 490 0.510
## 1410 1000 469 531 0.469
## 1411 1000 487 513 0.487
## 1412 1000 518 482 0.518
## 1413 1000 499 501 0.499
## 1414 1000 463 537 0.463
## 1415 1000 521 479 0.521
## 1416 1000 483 517 0.483
## 1417 1000 469 531 0.469
## 1418 1000 493 507 0.493
## 1419 1000 496 504 0.496
## 1420 1000 482 518 0.482
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## 1421 1000 477 523 0.477
## 1422 1000 536 464 0.536
## 1423 1000 507 493 0.507
## 1424 1000 505 495 0.505
## 1425 1000 511 489 0.511
## 1426 1000 517 483 0.517
## 1427 1000 510 490 0.510
## 1428 1000 486 514 0.486
## 1429 1000 520 480 0.520
## 1430 1000 493 507 0.493
## 1431 1000 497 503 0.497
## 1432 1000 491 509 0.491
## 1433 1000 520 480 0.520
## 1434 1000 494 506 0.494
## 1435 1000 514 486 0.514
## 1436 1000 479 521 0.479
## 1437 1000 506 494 0.506
## 1438 1000 492 508 0.492
## 1439 1000 474 526 0.474
## 1440 1000 501 499 0.501
## 1441 1000 504 496 0.504
## 1442 1000 507 493 0.507
## 1443 1000 482 518 0.482
## 1444 1000 512 488 0.512
## 1445 1000 506 494 0.506
## 1446 1000 516 484 0.516
## 1447 1000 504 496 0.504
## 1448 1000 508 492 0.508
## 1449 1000 504 496 0.504
## 1450 1000 499 501 0.499
## 1451 1000 520 480 0.520
## 1452 1000 484 516 0.484
## 1453 1000 504 496 0.504
## 1454 1000 499 501 0.499
## 1455 1000 499 501 0.499
## 1456 1000 500 500 0.500
## 1457 1000 503 497 0.503
## 1458 1000 488 512 0.488
## 1459 1000 474 526 0.474
## 1460 1000 504 496 0.504
## 1461 1000 510 490 0.510
## 1462 1000 498 502 0.498
## 1463 1000 510 490 0.510
## 1464 1000 523 477 0.523
## 1465 1000 525 475 0.525
## 1466 1000 475 525 0.475
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## 1467 1000 496 504 0.496
## 1468 1000 482 518 0.482
## 1469 1000 506 494 0.506
## 1470 1000 468 532 0.468
## 1471 1000 500 500 0.500
## 1472 1000 486 514 0.486
## 1473 1000 508 492 0.508
## 1474 1000 517 483 0.517
## 1475 1000 507 493 0.507
## 1476 1000 518 482 0.518
## 1477 1000 508 492 0.508
## 1478 1000 482 518 0.482
## 1479 1000 504 496 0.504
## 1480 1000 483 517 0.483
## 1481 1000 521 479 0.521
## 1482 1000 506 494 0.506
## 1483 1000 510 490 0.510
## 1484 1000 500 500 0.500
## 1485 1000 473 527 0.473
## 1486 1000 516 484 0.516
## 1487 1000 505 495 0.505
## 1488 1000 486 514 0.486
## 1489 1000 467 533 0.467
## 1490 1000 522 478 0.522
## 1491 1000 515 485 0.515
## 1492 1000 495 505 0.495
## 1493 1000 476 524 0.476
## 1494 1000 497 503 0.497
## 1495 1000 514 486 0.514
## 1496 1000 490 510 0.490
## 1497 1000 518 482 0.518
## 1498 1000 508 492 0.508
## 1499 1000 480 520 0.480
## 1500 1000 501 499 0.501
## 1501 1000 490 510 0.490
## 1502 1000 475 525 0.475
## 1503 1000 493 507 0.493
## 1504 1000 498 502 0.498
## 1505 1000 541 459 0.541
## 1506 1000 484 516 0.484
## 1507 1000 508 492 0.508
## 1508 1000 453 547 0.453
## 1509 1000 530 470 0.530
## 1510 1000 491 509 0.491
## 1511 1000 496 504 0.496
## 1512 1000 520 480 0.520
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## 1513 1000 508 492 0.508
## 1514 1000 504 496 0.504
## 1515 1000 524 476 0.524
## 1516 1000 510 490 0.510
## 1517 1000 500 500 0.500
## 1518 1000 490 510 0.490
## 1519 1000 505 495 0.505
## 1520 1000 509 491 0.509
## 1521 1000 525 475 0.525
## 1522 1000 493 507 0.493
## 1523 1000 511 489 0.511
## 1524 1000 497 503 0.497
## 1525 1000 479 521 0.479
## 1526 1000 489 511 0.489
## 1527 1000 528 472 0.528
## 1528 1000 515 485 0.515
## 1529 1000 492 508 0.492
## 1530 1000 498 502 0.498
## 1531 1000 518 482 0.518
## 1532 1000 484 516 0.484
## 1533 1000 485 515 0.485
## 1534 1000 502 498 0.502
## 1535 1000 515 485 0.515
## 1536 1000 535 465 0.535
## 1537 1000 529 471 0.529
## 1538 1000 481 519 0.481
## 1539 1000 505 495 0.505
## 1540 1000 492 508 0.492
## 1541 1000 478 522 0.478
## 1542 1000 514 486 0.514
## 1543 1000 491 509 0.491
## 1544 1000 494 506 0.494
## 1545 1000 498 502 0.498
## 1546 1000 487 513 0.487
## 1547 1000 494 506 0.494
## 1548 1000 511 489 0.511
## 1549 1000 510 490 0.510
## 1550 1000 488 512 0.488
## 1551 1000 491 509 0.491
## 1552 1000 544 456 0.544
## 1553 1000 514 486 0.514
## 1554 1000 501 499 0.501
## 1555 1000 506 494 0.506
## 1556 1000 485 515 0.485
## 1557 1000 505 495 0.505
## 1558 1000 490 510 0.490
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## 1559 1000 502 498 0.502
## 1560 1000 500 500 0.500
## 1561 1000 485 515 0.485
## 1562 1000 503 497 0.503
## 1563 1000 483 517 0.483
## 1564 1000 517 483 0.517
## 1565 1000 509 491 0.509
## 1566 1000 510 490 0.510
## 1567 1000 488 512 0.488
## 1568 1000 491 509 0.491
## 1569 1000 526 474 0.526
## 1570 1000 484 516 0.484
## 1571 1000 494 506 0.494
## 1572 1000 498 502 0.498
## 1573 1000 481 519 0.481
## 1574 1000 520 480 0.520
## 1575 1000 504 496 0.504
## 1576 1000 512 488 0.512
## 1577 1000 510 490 0.510
## 1578 1000 503 497 0.503
## 1579 1000 501 499 0.501
## 1580 1000 495 505 0.495
## 1581 1000 497 503 0.497
## 1582 1000 533 467 0.533
## 1583 1000 521 479 0.521
## 1584 1000 492 508 0.492
## 1585 1000 496 504 0.496
## 1586 1000 484 516 0.484
## 1587 1000 487 513 0.487
## 1588 1000 495 505 0.495
## 1589 1000 476 524 0.476
## 1590 1000 483 517 0.483
## 1591 1000 520 480 0.520
## 1592 1000 502 498 0.502
## 1593 1000 497 503 0.497
## 1594 1000 495 505 0.495
## 1595 1000 510 490 0.510
## 1596 1000 500 500 0.500
## 1597 1000 517 483 0.517
## 1598 1000 513 487 0.513
## 1599 1000 491 509 0.491
## 1600 1000 475 525 0.475
## 1601 1000 498 502 0.498
## 1602 1000 516 484 0.516
## 1603 1000 493 507 0.493
## 1604 1000 485 515 0.485
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## 1605 1000 504 496 0.504
## 1606 1000 496 504 0.496
## 1607 1000 480 520 0.480
## 1608 1000 498 502 0.498
## 1609 1000 530 470 0.530
## 1610 1000 470 530 0.470
## 1611 1000 516 484 0.516
## 1612 1000 514 486 0.514
## 1613 1000 500 500 0.500
## 1614 1000 469 531 0.469
## 1615 1000 495 505 0.495
## 1616 1000 489 511 0.489
## 1617 1000 503 497 0.503
## 1618 1000 475 525 0.475
## 1619 1000 492 508 0.492
## 1620 1000 504 496 0.504
## 1621 1000 488 512 0.488
## 1622 1000 492 508 0.492
## 1623 1000 516 484 0.516
## 1624 1000 479 521 0.479
## 1625 1000 502 498 0.502
## 1626 1000 490 510 0.490
## 1627 1000 493 507 0.493
## 1628 1000 517 483 0.517
## 1629 1000 509 491 0.509
## 1630 1000 498 502 0.498
## 1631 1000 517 483 0.517
## 1632 1000 497 503 0.497
## 1633 1000 519 481 0.519
## 1634 1000 493 507 0.493
## 1635 1000 500 500 0.500
## 1636 1000 501 499 0.501
## 1637 1000 486 514 0.486
## 1638 1000 502 498 0.502
## 1639 1000 500 500 0.500
## 1640 1000 505 495 0.505
## 1641 1000 464 536 0.464
## 1642 1000 500 500 0.500
## 1643 1000 502 498 0.502
## 1644 1000 488 512 0.488
## 1645 1000 480 520 0.480
## 1646 1000 491 509 0.491
## 1647 1000 529 471 0.529
## 1648 1000 490 510 0.490
## 1649 1000 487 513 0.487
## 1650 1000 494 506 0.494
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## 1651 1000 527 473 0.527
## 1652 1000 493 507 0.493
## 1653 1000 512 488 0.512
## 1654 1000 512 488 0.512
## 1655 1000 481 519 0.481
## 1656 1000 486 514 0.486
## 1657 1000 459 541 0.459
## 1658 1000 487 513 0.487
## 1659 1000 481 519 0.481
## 1660 1000 544 456 0.544
## 1661 1000 479 521 0.479
## 1662 1000 513 487 0.513
## 1663 1000 501 499 0.501
## 1664 1000 480 520 0.480
## 1665 1000 489 511 0.489
## 1666 1000 491 509 0.491
## 1667 1000 503 497 0.503
## 1668 1000 527 473 0.527
## 1669 1000 506 494 0.506
## 1670 1000 487 513 0.487
## 1671 1000 506 494 0.506
## 1672 1000 506 494 0.506
## 1673 1000 485 515 0.485
## 1674 1000 525 475 0.525
## 1675 1000 520 480 0.520
## 1676 1000 490 510 0.490
## 1677 1000 508 492 0.508
## 1678 1000 488 512 0.488
## 1679 1000 505 495 0.505
## 1680 1000 485 515 0.485
## 1681 1000 508 492 0.508
## 1682 1000 473 527 0.473
## 1683 1000 503 497 0.503
## 1684 1000 526 474 0.526
## 1685 1000 496 504 0.496
## 1686 1000 524 476 0.524
## 1687 1000 498 502 0.498
## 1688 1000 540 460 0.540
## 1689 1000 486 514 0.486
## 1690 1000 491 509 0.491
## 1691 1000 499 501 0.499
## 1692 1000 521 479 0.521
## 1693 1000 496 504 0.496
## 1694 1000 501 499 0.501
## 1695 1000 485 515 0.485
## 1696 1000 482 518 0.482
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## 1697 1000 510 490 0.510
## 1698 1000 488 512 0.488
## 1699 1000 499 501 0.499
## 1700 1000 486 514 0.486
## 1701 1000 496 504 0.496
## 1702 1000 504 496 0.504
## 1703 1000 499 501 0.499
## 1704 1000 484 516 0.484
## 1705 1000 489 511 0.489
## 1706 1000 491 509 0.491
## 1707 1000 515 485 0.515
## 1708 1000 476 524 0.476
## 1709 1000 508 492 0.508
## 1710 1000 485 515 0.485
## 1711 1000 483 517 0.483
## 1712 1000 529 471 0.529
## 1713 1000 552 448 0.552
## 1714 1000 483 517 0.483
## 1715 1000 511 489 0.511
## 1716 1000 479 521 0.479
## 1717 1000 496 504 0.496
## 1718 1000 511 489 0.511
## 1719 1000 530 470 0.530
## 1720 1000 501 499 0.501
## 1721 1000 505 495 0.505
## 1722 1000 527 473 0.527
## 1723 1000 495 505 0.495
## 1724 1000 496 504 0.496
## 1725 1000 494 506 0.494
## 1726 1000 486 514 0.486
## 1727 1000 495 505 0.495
## 1728 1000 503 497 0.503
## 1729 1000 493 507 0.493
## 1730 1000 475 525 0.475
## 1731 1000 493 507 0.493
## 1732 1000 501 499 0.501
## 1733 1000 511 489 0.511
## 1734 1000 487 513 0.487
## 1735 1000 480 520 0.480
## 1736 1000 471 529 0.471
## 1737 1000 482 518 0.482
## 1738 1000 527 473 0.527
## 1739 1000 494 506 0.494
## 1740 1000 500 500 0.500
## 1741 1000 527 473 0.527
## 1742 1000 521 479 0.521
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## 1743 1000 498 502 0.498
## 1744 1000 487 513 0.487
## 1745 1000 488 512 0.488
## 1746 1000 534 466 0.534
## 1747 1000 492 508 0.492
## 1748 1000 491 509 0.491
## 1749 1000 516 484 0.516
## 1750 1000 496 504 0.496
## 1751 1000 496 504 0.496
## 1752 1000 497 503 0.497
## 1753 1000 508 492 0.508
## 1754 1000 488 512 0.488
## 1755 1000 526 474 0.526
## 1756 1000 495 505 0.495
## 1757 1000 510 490 0.510
## 1758 1000 504 496 0.504
## 1759 1000 496 504 0.496
## 1760 1000 501 499 0.501
## 1761 1000 562 438 0.562
## 1762 1000 505 495 0.505
## 1763 1000 493 507 0.493
## 1764 1000 513 487 0.513
## 1765 1000 506 494 0.506
## 1766 1000 517 483 0.517
## 1767 1000 499 501 0.499
## 1768 1000 489 511 0.489
## 1769 1000 488 512 0.488
## 1770 1000 516 484 0.516
## 1771 1000 479 521 0.479
## 1772 1000 494 506 0.494
## 1773 1000 506 494 0.506
## 1774 1000 497 503 0.497
## 1775 1000 485 515 0.485
## 1776 1000 482 518 0.482
## 1777 1000 518 482 0.518
## 1778 1000 483 517 0.483
## 1779 1000 496 504 0.496
## 1780 1000 480 520 0.480
## 1781 1000 487 513 0.487
## 1782 1000 511 489 0.511
## 1783 1000 507 493 0.507
## 1784 1000 474 526 0.474
## 1785 1000 506 494 0.506
## 1786 1000 493 507 0.493
## 1787 1000 497 503 0.497
## 1788 1000 507 493 0.507
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## 1789 1000 535 465 0.535
## 1790 1000 501 499 0.501
## 1791 1000 514 486 0.514
## 1792 1000 528 472 0.528
## 1793 1000 486 514 0.486
## 1794 1000 482 518 0.482
## 1795 1000 484 516 0.484
## 1796 1000 503 497 0.503
## 1797 1000 528 472 0.528
## 1798 1000 507 493 0.507
## 1799 1000 478 522 0.478
## 1800 1000 536 464 0.536
## 1801 1000 500 500 0.500
## 1802 1000 489 511 0.489
## 1803 1000 527 473 0.527
## 1804 1000 487 513 0.487
## 1805 1000 515 485 0.515
## 1806 1000 481 519 0.481
## 1807 1000 496 504 0.496
## 1808 1000 489 511 0.489
## 1809 1000 524 476 0.524
## 1810 1000 513 487 0.513
## 1811 1000 503 497 0.503
## 1812 1000 493 507 0.493
## 1813 1000 495 505 0.495
## 1814 1000 506 494 0.506
## 1815 1000 513 487 0.513
## 1816 1000 485 515 0.485
## 1817 1000 498 502 0.498
## 1818 1000 483 517 0.483
## 1819 1000 502 498 0.502
## 1820 1000 501 499 0.501
## 1821 1000 498 502 0.498
## 1822 1000 505 495 0.505
## 1823 1000 495 505 0.495
## 1824 1000 517 483 0.517
## 1825 1000 504 496 0.504
## 1826 1000 499 501 0.499
## 1827 1000 496 504 0.496
## 1828 1000 499 501 0.499
## 1829 1000 481 519 0.481
## 1830 1000 496 504 0.496
## 1831 1000 488 512 0.488
## 1832 1000 492 508 0.492
## 1833 1000 495 505 0.495
## 1834 1000 528 472 0.528
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## 1835 1000 520 480 0.520
## 1836 1000 516 484 0.516
## 1837 1000 496 504 0.496
## 1838 1000 493 507 0.493
## 1839 1000 511 489 0.511
## 1840 1000 491 509 0.491
## 1841 1000 469 531 0.469
## 1842 1000 487 513 0.487
## 1843 1000 490 510 0.490
## 1844 1000 475 525 0.475
## 1845 1000 491 509 0.491
## 1846 1000 510 490 0.510
## 1847 1000 491 509 0.491
## 1848 1000 512 488 0.512
## 1849 1000 503 497 0.503
## 1850 1000 485 515 0.485
## 1851 1000 508 492 0.508
## 1852 1000 497 503 0.497
## 1853 1000 512 488 0.512
## 1854 1000 511 489 0.511
## 1855 1000 506 494 0.506
## 1856 1000 516 484 0.516
## 1857 1000 499 501 0.499
## 1858 1000 499 501 0.499
## 1859 1000 490 510 0.490
## 1860 1000 488 512 0.488
## 1861 1000 499 501 0.499
## 1862 1000 522 478 0.522
## 1863 1000 464 536 0.464
## 1864 1000 487 513 0.487
## 1865 1000 512 488 0.512
## 1866 1000 504 496 0.504
## 1867 1000 504 496 0.504
## 1868 1000 501 499 0.501
## 1869 1000 526 474 0.526
## 1870 1000 534 466 0.534
## 1871 1000 503 497 0.503
## 1872 1000 496 504 0.496
## 1873 1000 497 503 0.497
## 1874 1000 517 483 0.517
## 1875 1000 508 492 0.508
## 1876 1000 501 499 0.501
## 1877 1000 482 518 0.482
## 1878 1000 498 502 0.498
## 1879 1000 510 490 0.510
## 1880 1000 503 497 0.503
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## 1881 1000 502 498 0.502
## 1882 1000 476 524 0.476
## 1883 1000 507 493 0.507
## 1884 1000 500 500 0.500
## 1885 1000 493 507 0.493
## 1886 1000 507 493 0.507
## 1887 1000 500 500 0.500
## 1888 1000 509 491 0.509
## 1889 1000 510 490 0.510
## 1890 1000 500 500 0.500
## 1891 1000 512 488 0.512
## 1892 1000 527 473 0.527
## 1893 1000 484 516 0.484
## 1894 1000 458 542 0.458
## 1895 1000 497 503 0.497
## 1896 1000 502 498 0.502
## 1897 1000 496 504 0.496
## 1898 1000 505 495 0.505
## 1899 1000 513 487 0.513
## 1900 1000 543 457 0.543
## 1901 1000 506 494 0.506
## 1902 1000 508 492 0.508
## 1903 1000 528 472 0.528
## 1904 1000 472 528 0.472
## 1905 1000 492 508 0.492
## 1906 1000 493 507 0.493
## 1907 1000 482 518 0.482
## 1908 1000 501 499 0.501
## 1909 1000 504 496 0.504
## 1910 1000 504 496 0.504
## 1911 1000 499 501 0.499
## 1912 1000 491 509 0.491
## 1913 1000 507 493 0.507
## 1914 1000 463 537 0.463
## 1915 1000 499 501 0.499
## 1916 1000 486 514 0.486
## 1917 1000 483 517 0.483
## 1918 1000 515 485 0.515
## 1919 1000 475 525 0.475
## 1920 1000 495 505 0.495
## 1921 1000 495 505 0.495
## 1922 1000 504 496 0.504
## 1923 1000 484 516 0.484
## 1924 1000 523 477 0.523
## 1925 1000 491 509 0.491
## 1926 1000 472 528 0.472
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## 1927 1000 498 502 0.498
## 1928 1000 514 486 0.514
## 1929 1000 473 527 0.473
## 1930 1000 485 515 0.485
## 1931 1000 502 498 0.502
## 1932 1000 491 509 0.491
## 1933 1000 499 501 0.499
## 1934 1000 498 502 0.498
## 1935 1000 492 508 0.492
## 1936 1000 502 498 0.502
## 1937 1000 477 523 0.477
## 1938 1000 518 482 0.518
## 1939 1000 520 480 0.520
## 1940 1000 469 531 0.469
## 1941 1000 500 500 0.500
## 1942 1000 509 491 0.509
## 1943 1000 482 518 0.482
## 1944 1000 519 481 0.519
## 1945 1000 488 512 0.488
## 1946 1000 488 512 0.488
## 1947 1000 517 483 0.517
## 1948 1000 510 490 0.510
## 1949 1000 519 481 0.519
## 1950 1000 486 514 0.486
## 1951 1000 496 504 0.496
## 1952 1000 503 497 0.503
## 1953 1000 503 497 0.503
## 1954 1000 528 472 0.528
## 1955 1000 506 494 0.506
## 1956 1000 484 516 0.484
## 1957 1000 504 496 0.504
## 1958 1000 494 506 0.494
## 1959 1000 492 508 0.492
## 1960 1000 487 513 0.487
## 1961 1000 518 482 0.518
## 1962 1000 475 525 0.475
## 1963 1000 498 502 0.498
## 1964 1000 473 527 0.473
## 1965 1000 509 491 0.509
## 1966 1000 459 541 0.459
## 1967 1000 508 492 0.508
## 1968 1000 499 501 0.499
## 1969 1000 514 486 0.514
## 1970 1000 511 489 0.511
## 1971 1000 504 496 0.504
## 1972 1000 490 510 0.490
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## 1973 1000 518 482 0.518
## 1974 1000 487 513 0.487
## 1975 1000 498 502 0.498
## 1976 1000 515 485 0.515
## 1977 1000 521 479 0.521
## 1978 1000 492 508 0.492
## 1979 1000 522 478 0.522
## 1980 1000 498 502 0.498
## 1981 1000 510 490 0.510
## 1982 1000 495 505 0.495
## 1983 1000 529 471 0.529
## 1984 1000 483 517 0.483
## 1985 1000 505 495 0.505
## 1986 1000 497 503 0.497
## 1987 1000 493 507 0.493
## 1988 1000 491 509 0.491
## 1989 1000 525 475 0.525
## 1990 1000 490 510 0.490
## 1991 1000 498 502 0.498
## 1992 1000 524 476 0.524
## 1993 1000 506 494 0.506
## 1994 1000 485 515 0.485
## 1995 1000 502 498 0.502
## 1996 1000 491 509 0.491
## 1997 1000 479 521 0.479
## 1998 1000 524 476 0.524
## 1999 1000 505 495 0.505
## 2000 1000 507 493 0.507

mean(coin_flips_2000_1000$heads)

## [1] 499.9055

ggplot(coin_flips_2000_1000, aes(x = heads)) +
geom_histogram(binwidth = 10, boundary = 500)
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And now the same histogram, but with proportions:

ggplot(coin_flips_2000_1000, aes(x = prop)) +
geom_histogram(binwidth = 0.01, boundary = 0.5)
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Exercise 4 Comment on the histogram above. Describe its shape using the
vocabulary of the three important features (modes, symmetry, outliers). Why
do you think it’s shaped like this?

Please write up your answer here.

Exercise 5 Given the amount of randomness involved (each person is tossing
coins which randomly come up heads or tails), why do we see so much structure
and orderliness in the histograms?

Please write up your answer here.

8.7 But who cares about coin flips?

It’s fair to ask why we go to all this trouble to talk about coin flips. The most
pressing research questions of our day do not involve people sitting around and
flipping coins, either physically or virtually.

But now substitute “heads” and “tails” with “cancer” and “no cancer”. Or
“guilty” and “not guilty”. Or “shot” and “not shot”. The fact is that many im-
portant issues are measured as variables with two possible outcomes. There is
some underlying “probability” of seeing one outcome over the other. (It doesn’t
have to be 50% like the coin.) Statistical methods—including simulation—can
say a lot about what we “expect” to see if these outcomes are truly random.
More importantly, when we see outcomes that aren’t consistent with our simu-
lations, we may wonder if there is some underlying mechanism that may be not
so random after all. It may not look like it on first blush, but this idea is at the
core of the scientific method.

For example, let’s suppose that 85% of U.S. adults support some form of back-
ground checks for gun buyers.2 Now, imagine we went out and surveyed a
random group of people and asked them a simple yes/no question about their
support for background checks. What might we see?

Let’s simulate. Imagine flipping a coin, but instead of coming up heads 50%
of the time, suppose it were possible for the coin to come up heads 85% of the
time.3 A sequence of heads and tails with this weird coin would be much like
randomly surveying people and asking them about background checks.

We can make a “virtual” weird coin with the rflip command by specifying how
often we want heads to come up.

2This is likely close to the truth. See this article: https://iop.harvard.edu/get-involved/
harvard-political-review/vast-majority-americans-support-universal-background-checks

3The idea of a “weighted” coin that can do this comes up all the time in probability and
statistics courses, but it seems that it’s not likely one could actually manufacture a coin that
came up heads more or less than 50% of the time when flipped. See this paper for more
details: http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf

https://iop.harvard.edu/get-involved/harvard-political-review/vast-majority-americans-support-universal-background-checks
https://iop.harvard.edu/get-involved/harvard-political-review/vast-majority-americans-support-universal-background-checks
http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf
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set.seed(1234)
rflip(1, prob = 0.85)

##
## Flipping 1 coin [ Prob(Heads) = 0.85 ] ...
##
## H
##
## Number of Heads: 1 [Proportion Heads: 1]

If we flip our weird coin a bunch of times, we can see that our coin is not fair.
Indeed, it appears to come up heads way more often than not:

set.seed(1234)
rflip(100, prob = 0.85)

##
## Flipping 100 coins [ Prob(Heads) = 0.85 ] ...
##
## H H H H T H H H H H H H H T H H H H H H H H H H H H H T H H H H H H H H
## H H T H H H H H H H H H H H H H H H H H H H H H T H H H H H H H H H H T
## H H H H H H H H T H H H H T H H H T H T H H H H H H H H
##
## Number of Heads: 90 [Proportion Heads: 0.9]

The results from the above code can be thought of as a survey of 100 random U.S.
adults about their support for background checks for purchasing guns. “Heads”
means “supports” and “tails” means “opposes.” If the majority of Americans
support background checks, then we will come across more people in our survey
who tell us they support background checks. This shows up in our simulation
as the appearance of more heads than tails.

Note that there is no guarantee that our sample will have exactly 85% heads.
In fact, it doesn’t; it has 90% heads.

Again, keep in mind that we’re simulating the act of obtaining a random sample
of 100 U.S. adults. If we get a different sample, we’ll get different results. (We
set a different seed here. That ensures that this code chunk is randomly different
from the one above.)

set.seed(123456)
rflip(100, prob = 0.85)

##
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## Flipping 100 coins [ Prob(Heads) = 0.85 ] ...
##
## H H H H H H H H T H H H T T T T T H H H H H H H H H T T T H H T H H H H
## T T H H H H T H H H H H H H H H H T H T H H H H H H H H H H H H H H H H
## T H H H T H H H H H H T H H H H H H H H H H H H T H H H
##
## Number of Heads: 81 [Proportion Heads: 0.81]

See, this time, only 81% came up heads, even though we expected 85%. That’s
how randomness works.

Exercise 6(a) Now imagine that 2000 people all go out and conduct surveys
of 100 random U.S. adults, asking them about their support for background
checks. Write some R code that simulates this. Plot a histogram of the results.
(Hint: you’ll need do(2000) * in there.) Use the proportion of supporters
(prop), not the raw count of supporters (heads).

set.seed(1234)
# Add code here to simulate 2000 surveys of 100 U.S. adults.

# Plot the results in a histogram using proportions.

Exercise 6(b) Run another simulation, but this time, have each person survey
1000 adults and not just 100.

set.seed(1234)
# Add code here to simulate 2000 surveys of 1000 U.S. adults.

# Plot the results in a histogram using proportions.

Exercise 6(c) What changed when you surveyed 1000 people instead of 100?

Please write up your answer here.

8.8 Sampling variability

We’ve seen that taking repeated samples (using the do command) leads to lots
of different outcomes. That is randomness in action. We don’t expect the results
of each survey to be exactly the same every time the survey is administered.

But despite this randomness, there is an interesting pattern that we can observe.
It has to do with the number of times we flip the coin. Since we’re using coin
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flips to simulate the act of conducting a survey, the number of coin flips is
playing the role of the sample size. In other words, if we want to simulate a
survey of U.S. adults with a sample size of 100, we simulate that by flipping 100
coins.

Exercise 7 Go back and look at all the examples above. What do you notice
about the range of values on the x-axis when the sample size is small versus
large? (In other words, in what way are the histograms different when using
rflip(10, prob = ...) or rflip(100, prob = ...) versus rflip(1000,
prob = ...)? It’s easier to compare histograms one to another when looking
at the proportions instead of the raw head counts because proportions are always
on the same scale from 0 to 1.)

Please write up your answer here.

8.9 Conclusion

Simulation is a tool for understanding what happens when a statistical process
is repeated many times in a randomized way. The availability of fast computer
processing makes simulation easy and accessible. Eventually, the goal will be to
use simulation to answer important questions about data and the processes in
the world that generate data. This is possible because, despite the ubiquitous
presence of randomness, a certain order emerges when the number of samples
is large enough. Even though there is sampling variability (different random
outcomes each time we sample), there are patterns in that variability that can
be exploited to make predictions.



Chapter 9

Introduction to
randomization, Part 2

2.0

Functions introduced in this chapter

sample, specify, hypothesize, generate, calculate, visualize,
shade_p_value, get_p_value

9.1 Introduction

In this chapter, we’ll learn more about randomization and simulation. Instead
of flipping coins, though, we’ll randomly shuffle data around in order to explore
the effects of randomizing a predictor variable.

9.1.1 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)
If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following commands
at the Console:

install.packages("openintro")
install.packages("infer")

283



284 CHAPTER 9. INTRODUCTION TO RANDOMIZATION, PART 2

9.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/09-intro_to_randomization_2.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

9.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

9.2 Load packages

We’ll load tidyverse as usual along with the janitor package to make
tables (with tabyl). The openintro package has a data set called
sex_discrimination that we will explore. Finally, the infer package
will provide tools that we will use in nearly every chapter for the remainder of
the book.

library(tidyverse)
library(janitor)
library(openintro)

## Loading required package: airports

## Loading required package: cherryblossom

## Loading required package: usdata

##
## Attaching package: 'openintro'

## The following object is masked from 'package:mosaic':
##
## dotPlot

## The following objects are masked from 'package:lattice':
##
## ethanol, lsegments
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## The following object is masked from 'package:faraway':
##
## orings

library(infer)

##
## Attaching package: 'infer'

## The following objects are masked from 'package:mosaic':
##
## prop_test, t_test

9.3 Our research question

An interesting study was conducted in the 1970s that investigated gender dis-
crimination in hiring.1 The researchers brought in 48 male bank supervisors
and asked them to evaluate personnel files. Based on their review, they were
to determine if the person was qualified for promotion to branch manager. The
trick is that all the files were identical, but half listed the candidate as male and
half listed the candidate as female. The files were randomly assigned to the 48
supervisors.
The research question is whether the files supposedly belonging to males were
recommended for promotion more than the files supposedly belonging to fe-
males.

Exercise 1 Is the study described above an observational study or an exper-
iment? How do you know?
Please write up your answer here.

Exercise 2(a) Identify the sample in the study. In other words, how many
people were in the sample and what are the important characteristics common
to those people.
Please write up your answer here.

Exercise 2(b) Identify the population of interest in the study. In other words,
who is the sample supposed to represent? That is, what group of people that
this study is trying to learn about?
Please write up your answer here.

1Rosen B and Jerdee T. 1974. Influence of sex role stereotypes on personnel decisions.
Journal of Applied Psychology 59(1):9-14.
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Exercise 2(c) In your opinion, does the sample from this study truly repre-
sent the population you identified above?
Please write up your answer here.

9.4 Exploratory data analysis

Here is the data:

sex_discrimination

## # A tibble: 48 x 2
## sex decision
## <fct> <fct>
## 1 male promoted
## 2 male promoted
## 3 male promoted
## 4 male promoted
## 5 male promoted
## 6 male promoted
## 7 male promoted
## 8 male promoted
## 9 male promoted
## 10 male promoted
## # i 38 more rows

glimpse(sex_discrimination)

## Rows: 48
## Columns: 2
## $ sex <fct> male, male, male, male, male, male, male, male, male, male, m~
## $ decision <fct> promoted, promoted, promoted, promoted, promoted, promoted, p~

Exercise 3 Which variable is the response variable and which variable is the
predictor variable?
Please write up your answer here.

Here is a contingency table with decision as the row variable and sex as the
column variable. (Recall that we always list the response variable first. That
way, the column sums will show us how many are in each of the predictor
groups.)
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tabyl(sex_discrimination, decision, sex) %>%
adorn_totals()

## decision male female
## promoted 21 14
## not promoted 3 10
## Total 24 24

Exercise 4 Create another contingency table of decision and sex, this time
with percentages (not proportions) instead of counts. You’ll probably have to
go back to the “Categorical data” to review the syntax. (Hint: you should have
three separate adorn functions on the lines following the tabyl command.)

# Add code here to create a contingency table of percentages

Although we can read off the percentages in the contingency table, we need to
do computations using the proportions. (Remember that we use percentages
to communicate with other human beings, but we do math with proportions.)
Fortunately, the output of tabyl is a tibble! So we can manipulate and grab
the elements we need.

Let’s create and store the tabyl output with proportions. We don’t need the
marginal distribution, so we can dispense with adorn_totals.

decision_sex_tabyl <- tabyl(sex_discrimination, decision, sex) %>%
adorn_percentages("col")

decision_sex_tabyl

## decision male female
## promoted 0.875 0.5833333
## not promoted 0.125 0.4166667

Exercise 5 Interpret these proportions in the context of the data. In other
words, what do these proportions say about the male files that were recom-
mended for promotion versus the female files recommended for promotion?

Please write up your answer here.
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The real statistic of interest to us is the difference between these proportions.
We can use the mutate command from dplyr variable compute the difference
for us.

decision_sex_tabyl %>%
mutate(diff = male - female)

## decision male female diff
## promoted 0.875 0.5833333 0.2916667
## not promoted 0.125 0.4166667 -0.2916667

As a matter of fact, once we know the difference in promotion rates, we don’t
really need the individual proportions anymore. The transmute verb is a version
of mutate that gives us exactly what we want. It will create a new column just
like mutate, but then it keeps only that new column. We’ll call the resulting
output decision_sex_diff.

decision_sex_diff <- decision_sex_tabyl %>%
transmute(diff = male - female)

decision_sex_diff

## diff
## 0.2916667
## -0.2916667

Notice the order of subtraction: we’re doing the men’s rates minus the women’s
rates.

This computes both the difference in promotion rates (in the first row) and the
difference in not-promoted rates (in the second row). Let’s just keep the first
row, since we care more about promotion rates. (That’s our success category.)
We can use slice to grab the first row:

decision_sex_diff %>%
slice(1)

## diff
## 0.2916667

This means that there is a 29% difference between the male files that were
promoted and the female files that were promoted. The difference was computed
as males minus females, so the fact that the number is positive means that male
files were more likely to recommended for promotion.
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9.5 Permuting

One way to see if there is evidence of an association between promotion decisions
and sex is to assume, temporarily, that there is no association. If there were
truly no association, then the difference between the promotion rates between
the male files and female files should be 0%. Of course, the number of people
promoted in the data was 35, an odd number, so the number of male files pro-
moted and female files promoted cannot be the same. Therefore, the difference
in proportions can’t be exactly 0 in this data. Nevertheless, we would expect—
under the assumption of no association—the number of male files promoted to
be close to the number of female files promoted, giving a difference around 0%.

Now, we saw a difference of about 29% between the two groups in the data. Then
again, non-zero differences—sometimes even large ones— can just come about
by pure chance alone. We may have accidentally sampled more bank managers
who just happened to prefer the male candidates. This could happen for sexist
reasons; it’s possible our sample of bank managers are, by chance, more sexist
than bank managers in the general population during the 1970s. Or it might be
for more benign reasons; perhaps the male applications got randomly steered
to bank managers who were more likely to be impressed with any application,
and therefore, they were more likely to promote anyone regardless of the gender
listed. We have to consider the possibility that our observed difference seems
large even though there may have been no association between promotion and
sex in the general population.

So how do we test the range of values that could arise from just chance alone?
In other words, how do we explore sampling variability?

One way to force the variables to be independent is to “permute”—in other
words, shuffle—the values of sex in our data. If we ignore the sex listed in the
file and give it a random label (independent of the actual sex listed in the file),
we know for sure that such an assignment is random and not due to any actual
evidence of sexism. In that case, promotion is equally likely to occur in both
groups.

Let’s see how permuting works in R. To begin with, look at the actual values of
sex in our data:

sex_discrimination$sex

## [1] male male male male male male male male male male
## [11] male male male male male male male male male male
## [21] male male male male female female female female female female
## [31] female female female female female female female female female female
## [41] female female female female female female female female
## Levels: male female
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All the males happen to be listed first, followed by all the females.

Now we permute all the values around (using the sample command). As ex-
plained in an earlier chapter, we will set the seed so that our results are repro-
ducible.

set.seed(3141593)
sample(sex_discrimination$sex)

## [1] male female male male female female female female female female
## [11] female female female female male male female male female male
## [21] female female male male female female male female male male
## [31] male male male female male female male male male male
## [41] female female female male male male female male
## Levels: male female

Do it again without the seed, just to make sure it’s truly random:

sample(sex_discrimination$sex)

## [1] male male male female male female male female female female
## [11] female male female male female female female female male male
## [21] female female female male male female male male male female
## [31] male male male male male female female female female male
## [41] female female male male male female female male
## Levels: male female

9.6 Randomization

The idea here is to keep the promotion status the same for each file, but ran-
domly permute the sex labels. There will still be the same number of male
and female files, but now they will be randomly matched with promoted files
and not promoted files. Since this new grouping into “males” and “females” is
completely random and arbitrary, we expect the likelihood of promotion to be
equal for both groups.

A more precise way of saying this is that the expected difference under the
assumption of independent variables is 0%. If there were truly no association,
then the percentage of people promoted would be independent of sex. However,
sampling variability means that we are not likely to see an exact difference of
0%. (Also, as we mentioned earlier, the odd number of promotions means the
difference will never be exactly 0% anyway in this data.) The real question,
then, is how different could the difference be from 0% and still be reasonably
possible due to random chance.
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Let’s perform a few random simulations. We’ll walk through the steps one line
at a time. The first thing we do is permute the sex column:

set.seed(3141593)
sex_discrimination %>%

mutate(sex = sample(sex))

## # A tibble: 48 x 2
## sex decision
## <fct> <fct>
## 1 male promoted
## 2 female promoted
## 3 male promoted
## 4 male promoted
## 5 female promoted
## 6 female promoted
## 7 female promoted
## 8 female promoted
## 9 female promoted
## 10 female promoted
## # i 38 more rows

Then we follow the steps from earlier, generating a contingency table with pro-
portions. This is accomplished by simply adding two lines of code to the previous
code:

set.seed(3141593)
sex_discrimination %>%

mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col")

## decision male female
## promoted 0.6666667 0.7916667
## not promoted 0.3333333 0.2083333

Note that the proportions in this table are different from the ones in the real
data.

Then we calculate the difference between the male and female columns by adding
a line with transmute:

set.seed(3141593)
sex_discrimination %>%
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mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col") %>%
transmute(diff = male - female)

## diff
## -0.125
## 0.125

In this case, the first row happens to be negative, but that’s okay. This particular
random shuffling had more females promoted than males. (Remember, though,
that the permuted sex labels are now meaningless.)
Finally, we grab the entry in the first row with slice:

set.seed(3141593)
sex_discrimination %>%

mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col") %>%
transmute(diff = male - female) %>%
slice(1)

## diff
## -0.125

We’ll repeat this code a few more times, but without the seed, to get new
random observations.

sex_discrimination %>%
mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col") %>%
transmute(diff = male - female) %>%
slice(1)

## diff
## 0.04166667

sex_discrimination %>%
mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col") %>%
transmute(diff = male - female) %>%
slice(1)
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## diff
## 0.125

sex_discrimination %>%
mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col") %>%
transmute(diff = male - female) %>%
slice(1)

## diff
## 0.125

sex_discrimination %>%
mutate(sex = sample(sex)) %>%
tabyl(decision, sex) %>%
adorn_percentages("col") %>%
transmute(diff = male - female) %>%
slice(1)

## diff
## -0.2916667

Think carefully about what these random numbers mean. Each time we ran-
domize, we get a simulated difference in the proportion of promotions between
male files and female files. The sample part ensures that there is no actual rela-
tionship between promotion and sex among these randomized values. We expect
each simulated difference to be close to zero, but we also expect deviations from
zero due to randomness and chance.

9.7 The infer package

The above code examples show the nuts and bolts of permuting data around to
break any association that might exist between two variables. However, to do
a proper randomization, we need to repeat this process many, many times (just
like how we flipped thousands of “coins” in the last chapter).

Here we introduce some code from the infer package that will help us automate
this procedure. The added benefit of introducing infer now is that we will
continue to use it in nearly every chapter of the book that follows.

Here is the code template, starting with setting the seed:
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set.seed(3141593)
sims <- sex_discrimination %>%

specify(decision ~ sex, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female"))

sims

## Response: decision (factor)
## Explanatory: sex (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 -0.125
## 2 2 -0.125
## 3 3 -0.0417
## 4 4 0.0417
## 5 5 0.125
## 6 6 -0.0417
## 7 7 -0.0417
## 8 8 0.125
## 9 9 0.125
## 10 10 0.208
## # i 990 more rows

We will learn more about all these lines of code in future chapters. By the end
of the course, running this type of analysis will be second nature. For now,
you can copy and paste the code chunk above and make minor changes as you
need. Here are the three things you will need to look out for for doing this with
different data sets in the future:

1. The second line (after setting the seed) will be your new data set.
2. In the specify line, you will have a different response variable, predictor

variable, and success condition that will depend on the context of your
new data.

3. In the calculate line, you will have two different levels that you want
to compare. Be careful to list them in the order in which you want to
subtract them.

9.8 Plot results

A histogram will show us the range of possible values under the assumption of
independence of the two variables. We can get one from our infer output using
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visualize. (This is a lot easier than building a histogram with ggplot!)

sims %>%
visualize()
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The bins aren’t great in the picture above. There is no way currently to set the
binwidth or boundary as we’ve done before, but we can experiment with the
total number of bins. 9 seems to be a good number.

sims %>%
visualize(bins = 9)
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Exercise 6 Why is the mode of the graph above at 0? This has been explained
several different times in this chapter, but put it into your own words to make
sure you understand the logic behind the randomization.

Please write up your answer here.

Let’s compare these simulated values to the observed difference in the real data.
We’ve computed the latter already, but let’s use infer tools to find it. We’ll
give the answer a name, obs_diff.

obs_diff <- sex_discrimination %>%
observe(decision ~ sex, success = "promoted",

stat = "diff in props", order = c("male", "female"))
obs_diff

## Response: decision (factor)
## Explanatory: sex (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.292
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Now we can graph the observed difference in the data alongside the simulated
values under the assumption of independent variables. The name of the function
shade_p_value is a little cryptic for now, but it will become clear within a few
chapters.

sims %>%
visualize(bins = 9) +
shade_p_value(obs_stat = obs_diff, direction = "greater")
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9.9 By chance?

How likely is it that the observed difference (or a difference even more extreme)
could have resulted from chance alone? Because sims contains simulated re-
sults after permuting, the values in the stat column assume that promotion is
independent of sex. In order to assess how plausible our observed difference is
under that assumption, we want to find out how many of the simulated values
are at least as big, if not bigger, than the observed difference, 0.292.

Look at the randomized differences sorted in decreasing order:

sims %>%
arrange(desc(stat))
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## Response: decision (factor)
## Explanatory: sex (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 133 0.375
## 2 181 0.375
## 3 568 0.375
## 4 619 0.375
## 5 50 0.292
## 6 68 0.292
## 7 77 0.292
## 8 93 0.292
## 9 111 0.292
## 10 119 0.292
## # i 990 more rows

Of the 1000 simulations, the most extreme difference of 37.5% occurred four
times, just by chance. That seems like a pretty extreme value when expecting
a value of 0%, but the laws of probability tell us that extreme values will be
observed from time to time, even if rarely. Also recall that the observed differ-
ence in the actual data was 29.2%. This specific value came up quite a bit in
our simulated data. In fact, the 31st entry of the sorted data above is the last
occurrence of the value 0.292. After that, the next higher larger value is 0.208.
So let’s return to the original question. How many simulated values are as
large—if not larger—than the observed difference? Apparently, 31 out of 1000,
which is 0.031. In other words 3% of the simulated data is as extreme or
more extreme than the actual difference in promotion rates between male files
and female files in the real data. That’s not very large. In other words, a
difference like 29.2% could occur just by chance—like flipping 10 out of 10
heads or something like that. But it doesn’t happen very often.
We can automate this calculation using the function get_p_value (similar to
shade_p_value above) even though we don’t yet know what “p value” means.

sims %>%
get_p_value(obs_stat = obs_diff, direction = "greater")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.031

COPY/PASTE WARNING: If the observed difference were negative, then
extreme values of interest would be less than, say, -0.292, not greater than 0.292.
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You must note if the observed difference is positive or negative and then use
“greater” or “less” as appropriate!

Again, 0.031 is a small number. This shows us that if there were truly no
association between promotion and sex, then our data is a rare event. (An
observed difference this extreme or more extreme would only occur about 3%
of the time by chance.)

Because the probability above is so small, it seems unlikely that our variables
are independent. Therefore, it seems more likely that there is an association
between promotion and sex. We have evidence of a statistically significant
difference between the chance of getting recommended for promotion if the file
indicates male versus female.

Because this is an experiment, it’s possible that a causal claim could be made. If
everything in the application files was identical except the indication of gender,
then it stands to reason that gender explains why more male files were promoted
over female files. But all that depends on the experiment being a well-designed
experiment.

Exercise 7 Although we are not experts in experimental design, what con-
cerns do you have about generalizing the results of this experiment to broad
conclusions about sexism in the 1970s? (To be clear, I’m not saying that sexism
wasn’t a broad problem in the 1970s. It surely was—and still is. I’m only asking
you to opine as to why the results of this one study might not be conclusive in
making an overly broad statement.)

Please write up your answer here.

9.10 Your turn

In this section, you’ll explore another famous data set related to the topic of
gender discrimination. (Also from the 1970s!)

The following code will download admissions data from the six largest graduate
departments at the University of California, Berkeley in 1973. We’ve seen the
read_csv command before, but we’ve added some extra stuff in there to make
sure all the columns get imported as factor variables (rather than having to
convert them ourselves later).

ucb_admit <- read_csv("https://vectorposse.github.io/intro_stats/data/ucb_admit.csv",
col_types = list(

Admit = col_factor(),
Gender = col_factor(),
Dept = col_factor()))
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ucb_admit

## # A tibble: 4,526 x 3
## Admit Gender Dept
## <fct> <fct> <fct>
## 1 Admitted Male A
## 2 Admitted Male A
## 3 Admitted Male A
## 4 Admitted Male A
## 5 Admitted Male A
## 6 Admitted Male A
## 7 Admitted Male A
## 8 Admitted Male A
## 9 Admitted Male A
## 10 Admitted Male A
## # i 4,516 more rows

glimpse(ucb_admit)

## Rows: 4,526
## Columns: 3
## $ Admit <fct> Admitted, Admitted, Admitted, Admitted, Admitted, Admitted, Adm~
## $ Gender <fct> Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, Mal~
## $ Dept <fct> A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, ~

As you go through the exercises below, you should carefully copy and paste
commands from earlier in the chapter, making the necessary changes.

Remember that R is case sensitive! In the sex_discrimination data,
all the variables and levels started with lowercase letters. In the
ucb_admit data, they all start with uppercase letters, so you’ll need
to be careful to change that after you copy and paste code examples
from above.

Exercise 8(a) Is this data observational or experimental? How do you know?

Please write up your answer here.

Exercise 8(b) Exploratory data analysis: make two contingency tables with
Admit as the response variable and Gender as the explanatory variable. One
table should have counts and the other table should have percentages. (Both
tables should include the marginal distribution at the bottom.)
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# Add code here to make a contingency table with counts.

# Add code here to make a contingency table with percentages.

Exercise 8(c) Use observe from the infer package to calculate the observed
difference in proportions between males who were admitted and females who
were admitted. Do the subtraction in that order: males minus females. Store
your output as obs_diff2 so that it doesn’t overwrite the variable obs_diff
we created earlier.

# Add code here to calculate the observed difference.
# Store this as obs_diff2.

Exercise 8(d) Simulate 1000 outcomes under the assumption that admis-
sion is independent of gender. Use the specify, hypothesize, generate, and
calculate sequence from the infer package as above. Call the simulated data
frame sims2 so that it doesn’t conflict with the earlier sims. Don’t touch the
set.seed command. That will ensure that all students get the same random-
ization.

set.seed(10101)
# Add code here to simulate 1000 outcomes
# under the independence assumption
# and store the simulations in a data frame called sims2.

Exercise 8(e) Plot the simulated values in a histogram using the visualize
verb from infer. When you first run the code, remove the bins = 9 we had
earlier and let visualize choose the number of bins. If you are satisfied with
the graph, you don’t need to specify a number of bins. If you are not satisfied,
you can experiment with the number of bins until you find a number that seems
reasonable.

Be sure to include a vertical line at the value of the observed difference using
the shade_p_value command. Don’t forget that the location of that line is
obs_diff2 now.

# Add code here to plot the results.

Exercise 8(f) Finally, comment on what you see. Based on the histogram
above, is the observed difference in the data rare? In other words, under the
assumption that admission and gender are independent, are we likely to see an
observed difference as far away from zero as we actually see in the data? So
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what is your conclusion then? Do you believe there was an association between
admission and gender in the UC Berkeley admissions process in 1973?

Please write up your answer here.

9.11 Simpson’s paradox

The example above from UC Berkeley seems like an open and shut case. Male
applicants were clearly admitted at a greater rate than female applicants. While
we never expect the application rates to be exactly equal—even under the as-
sumption that admission and gender are independent—the randomization ex-
ercise showed us that the observed data was way outside the range of possible
differences that could have occurred just by chance.

But we also know this is observational data. Association is not causation.

Exercise 9 Note that we didn’t say “correlation is not causation”. The latter
is also true, but why does it not apply in this case? (Think about the conditions
for correlation.)

Please write up your answer here.

Since we don’t have data from a carefully controlled experiment, we always
have to be worried about lurking variables. Could there be a third variable
apart from admission and gender that could be driving the association between
them? In other words, the fact that males were admitted at a higher rate than
females might be sexism, or it might be spurious.

Since we have access to a third variable, Dept, let’s analyze it as well. The tabyl
command will happily take a third variable and create a set of contingency
tables, one for each department.

Here are the tables with counts:

tabyl(ucb_admit, Admit, Gender, Dept) %>%
adorn_totals()

## $A
## Admit Male Female
## Admitted 512 89
## Rejected 313 19
## Total 825 108
##
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## $B
## Admit Male Female
## Admitted 353 17
## Rejected 207 8
## Total 560 25
##
## $C
## Admit Male Female
## Admitted 120 202
## Rejected 205 391
## Total 325 593
##
## $D
## Admit Male Female
## Admitted 138 131
## Rejected 279 244
## Total 417 375
##
## $E
## Admit Male Female
## Admitted 53 94
## Rejected 138 299
## Total 191 393
##
## $F
## Admit Male Female
## Admitted 22 24
## Rejected 351 317
## Total 373 341

And here are the tables with percentages:

tabyl(ucb_admit, Admit, Gender, Dept) %>%
adorn_totals() %>%
adorn_percentages("col") %>%
adorn_pct_formatting()

## $A
## Admit Male Female
## Admitted 62.1% 82.4%
## Rejected 37.9% 17.6%
## Total 100.0% 100.0%
##
## $B
## Admit Male Female
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## Admitted 63.0% 68.0%
## Rejected 37.0% 32.0%
## Total 100.0% 100.0%
##
## $C
## Admit Male Female
## Admitted 36.9% 34.1%
## Rejected 63.1% 65.9%
## Total 100.0% 100.0%
##
## $D
## Admit Male Female
## Admitted 33.1% 34.9%
## Rejected 66.9% 65.1%
## Total 100.0% 100.0%
##
## $E
## Admit Male Female
## Admitted 27.7% 23.9%
## Rejected 72.3% 76.1%
## Total 100.0% 100.0%
##
## $F
## Admit Male Female
## Admitted 5.9% 7.0%
## Rejected 94.1% 93.0%
## Total 100.0% 100.0%

Exercise 10 Look at the contingency tables with percentages. Examine each
department individually. What do you notice about the admit rates (as percent-
ages) between males and females for most of the departments listed? Identify
the four departments where female admission rates were higher than male ad-
mission rates.

Please write up your answer here.

This is completely counterintuitive. How can males be admitted at a higher
rate overall, and yet in most departments, females were admitted at a higher
rate.

This phenomenon is often called Simpson’s Paradox. Like almost everything in
statistics, this is named after a person (Edward H. Simpson) who got the popular
credit for writing about the phenomenon, but not being the person who actually
discovered the phenomenon. (There does not appear to be a primeval reference
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for the first person to have studied it. Similar observations had appeared in
various sources more than 50 years before Simpson wrote his paper.)

Exercise 11 Look at the contingency tables with counts. Focus on the four
departments you identified above. What is true of the total number of male
and female applicants for those four department (and not for the other two
departments)?

Please write up your answer here.

Exercise 12(a) Now create a contingency table with percentages that uses
Admit for the row variable and Dept as the column variable.

# Add code here to create a contingency table with percentages
# for Dept and Admit

Exercise 12(b) According to the contingency table above, which two depart-
ments were (by far) the least selective? (In other words, which two departments
admitted a vast majority of their applicants?)

Please write up your answer here.

Exercise 12(c) Earlier, you identified four departments where male appli-
cants outnumbered female applicants. (These were the same departments that
had higher admission rates for females.) But for which two departments was
the difference between the number of male and female applicants the largest?

Please write up your answer here.

Your work in the previous exercises begins to paint a picture that explains what’s
going on with this “paradox”. Males applied in much greater numbers to a few
departments with high acceptance rates. As a result, more male students overall
got in to graduate school. Females applied in greater numbers to departments
that were more selective. Overall, then, fewer females got in to graduate school.
But on a department-by-department basis, female applicants were usually more
likely to get accepted.

None of this suggests that sexism fails to exist. It doesn’t even prove that
sexism wasn’t a factor in some departmental admission procedures. What it
does suggest is that when we don’t take into account possible lurking variables,
we run the risk of oversimplifying issues that are potentially complex.



306 CHAPTER 9. INTRODUCTION TO RANDOMIZATION, PART 2

In our analysis of the UC Berkeley data, we’ve exhausted all the variables avail-
able to us in the data set. There remains the potential for unmeasured con-
founders, or variables that could still act as lurking variables, but we have no
idea about them because they aren’t in our data. This is an unavoidable peril
of working with observational data. If we aren’t careful to “control” for a rea-
sonable set of possible lurking variables, we must be very careful when trying
to make broad conclusions.

9.12 Conclusion

Here we used randomization to explore the idea of two variables being indepen-
dent or associated. When we assume they are independent, we can explore the
sampling variability of the differences that could occur by pure chance alone.
We expect the difference to be zero, but we know that randomness will cause
the simulated differences to have a range of values. Is the difference in the
observed data far away from zero? In that case, we can say we have evidence
that the variables are not independent; in other words, it is more likely that our
variables are associated.

9.12.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 10

Hypothesis testing with
randomization, Part 1

2.0

Functions introduced in this chapter

drop_na, pull

10.1 Introduction

Using a sample to deduce something about a population is called “statistical
inference”. In this chapter, we’ll learn about one form of statistical inference
called “hypothesis testing”. The focus will be on walking through the example
from Part 2 of “Introduction to randomization” and recasting it here as a formal
hypothesis test.

There are no new R commands here, but there are many new ideas that will
require careful reading. You are not expected to be an expert on hypothesis
testing after this one chapter. However, within the next few chapters, as we
learn more about hypothesis testing and work through many more examples,
the hope is that you will begin to assimilate and internalize the logic of inference
and the steps of a hypothesis test.

10.1.1 Install new packages

There are no new packages used in this chapter.

307
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10.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/10-hypothesis_testing_with_randomization_1.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

10.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

10.2 Load packages

We load tidyverse and janitor. We’ll continue to explore the infer package
for investigating statistical claims. We load the openintro package to access the
sex_discrimination data (the one with the male bank managers promoting
male files versus female files).

library(tidyverse)
library(janitor)
library(infer)
library(openintro)

10.3 Our research question

We return to the sex discrimination experiment from the last chapter. We are
interested in finding out if there is an association between the recommendation
to promote a candidate for branch manager and the gender listed on the file
being evaluated by the male bank manager.

10.4 Hypothesis testing

The approach we used in Part 2 of “Introduction to randomization” was to as-
sume that the two variables decision and sex were independent. From that
assumption, we were able to compare the observed difference in promotion per-
centages between males and females from the actual data to the distribution of
random values obtained by randomization. When the observed difference was
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far enough away from zero, we concluded that the assumption of independence
was probably false, giving us evidence that the two variables were associated
after all.

This logic is formalized into a sequence of steps known as a hypothesis test.
In this section, we will introduce a rubric for conducting a full and complete
hypothesis test for the sex discrimination example. (This rubric also appears
in the Appendix. If you need the rubric as a file, you can also download copies
either as an .Rmd file here or as an .nb.html file here.)

A hypothesis test can be organized into five parts:

1. Exploratory data analysis
2. Hypotheses
3. Model
4. Mechanics
5. Conclusion

Below, I’ll address each of these steps.

10.4.1 Exploratory data analysis

Before we can answer questions using data, we need to understand our data.

Most data sets come with some information about the provenance and struc-
ture of the data. (Often this is called “metadata”.) Data provenance is the
story of how the data was collected and for what purpose. Together with some
information about the types of variables recorded, this is the who, what, when,
where, why, and how. Without context, data is just a bunch of letters and
numbers. You must understand the nature of the data in order to use the data.
Information about the structure of the data is often recorded in a “code book”.

For data that you collect yourself, you’ll already know all about it, although
should probably write that stuff down in case other people want to use your
data (or in case “future you” wants to use the data). For other data sets,
you hope that other people have recorded information about how the data was
collected and what is described in the data. When working with data sets in
R as we do for these chapters, we’ve already seen that there are help files—
sometimes more or less helpful. In some cases, you’ll need to go beyond the
brief explanations in the help file to investigate the data provenance. And for
files we download from other places on the internet, we may have a lot of work
to do.

Exercise 1 What are some ethical issues you might want to consider when
looking into the provenance of data? Have a discussion with a classmate and/or

https://vectorposse.github.io/intro_stats/chapter_downloads/rubric_for_inference.Rmd
https://vectorposse.github.io/intro_stats/chapter_downloads/rubric_for_inference.nb.html
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do some internet sleuthing to see if you can identify one or two key issues that
should be considered before you access or analyze data.

Please write up your answer here.

For exploring the raw data in front of us, we can use commands like View from
the Console to see the data in spreadsheet form, although if we’re using R
Notebooks, we can just type the name of the data frame in a code chunk and
run it to print the data in a form we can navigate and explore. There is also
glimpse to explore the structure of the data (the variables and how they’re
coded), as well as other summary functions to get a quick sense of the variables.

Sometimes you have to prepare your data for analysis. A common example is
converting categorical variables that should be coded as factor variables, but
often are coded as character vectors, or are coded numerically (like “1” and “0”
instead of “Yes” and “No”). Sometimes missing data is coded unusually (like
“999”) and that has to be fixed before trying to calculate statistics. “Cleaning”
data is often a task that takes more time than analyzing it!

Finally, once the data is in a suitably tidy form, we can use visualizations like
tables, graphs, and charts to understand the data better. Often, there are
conditions about the shape of our data that have to be met before inference is
appropriate, and this step can help diagnose problems that could arise in the
inferential procedure. This is a good time to look for outliers, for example.

10.4.2 Hypotheses

We are trying to ask some question about a population of interest. However, all
we have in our data is a sample of that population. The word inference comes
from the verb “infer”: we are trying to infer what might be true of a population
just from examining a sample. It’s also possible that our question involves com-
paring two or more populations to each other. In this case, we’ll have multiple
samples, one from each of our populations. For example, in our sex discrimi-
nation example, we are comparing two populations: male bank managers who
consider male files for promotion, and male bank managers who consider female
files for promotion. Our data gives us two samples who form only a part of the
larger populations of interest.

To convince our audience that our analysis is correct, it makes sense to take a
skeptical position. If we are trying to prove that there is an association between
promotion and sex, we don’t just declare it to be so. We start with a “null
hypothesis”, or an expression of the belief that there is no association. A null
hypothesis always represents the “default” position that a skeptic might take.
It codifies the idea that “there’s nothing to see here.”

Our job is to gather evidence to show that there is something interesting going
on. The statement of interest to us is called the “alternative hypothesis”. This
is usually the thing we’re trying to prove related to our research question.
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We can perform one-sided tests or two-sided tests. A one-sided test is when we
have a specific direction in mind for the effect. For example, if we are trying
to prove that male files are more likely to be promoted than female files, then
we would perform a one-sided test. On the other hand, if we only care about
proving an association, then male files could be either more likely or less likely
to be promoted than female files. (This is contrasted to the null that states that
male files are equally likely to be promoted as female files.) If it seems weird to
run a two-sided test, keep in mind that we want to give our statistical analysis
a chance to prove an association regardless of the direction of the association.
Wouldn’t you be interested to know if it turned out that male files are, in fact,
less likely to be promoted?

You can’t cheat and look at the data first. In a normal research study out there
in the real world, you develop hypotheses long before you collect data. So you
have to decide to do a one-sided or two-sided test before you have the luxury of
seeing your data pointing in one direction or the other.

Running a two-sided test is often a good default option. Again, this is because
our analysis will allow us to show interesting effects in any direction.

We typically express hypotheses in two ways. First, we write down full sen-
tences that express in the context of the problem what our null and alternative
hypotheses are stating. Then, we express the same ideas as mathematical state-
ments. This translation from words to math is important as it gives us the
connection to the quantitative statistical analysis we need to perform. The null
hypothesis will always be that some quantity is equal to (=) the null value. The
alternative hypothesis depends on whether we are conducting a one-sided test
or a two-sided test. A one-sided test is mathematically saying that the quantity
of interest is either greater than (>) or less than (<) the null value. A two-sided
test always states that the quantity of interest is not equal to (≠) the null value.
(Notice the math symbol enclosed in dollar signs in the previous sentence. In
the HTML file, these symbols will appear correctly. In the R Notebook, you
can hover the cursor anywhere between the dollar signs and the math symbol
will show up. Alternatively, you can click somewhere between the dollar signs
and hit Ctrl-Enter or Cmd-Enter, just like with inline R code.)

The most important thing to know is that the entire hypothesis test up until
you reach the conclusion is conducted under the assumption that the null
hypothesis is true. In other words, we pretend the whole time that our
alternative hypothesis is false, and we carry out our analysis working under
that assumption. This may seem odd, but it makes sense when you remember
that the goal of inference is to try to convince a skeptic. Others will only believe
your claim after you present evidence that suggests that the data is inconsistent
with the claims made in the null.
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10.4.3 Model

A model is an approximation—usually a simplification—of reality. In a hy-
pothesis test, when we say “model” we are talking specifically about the “null
model”. In other words, what is true about the population under the assumption
of the null? If we sample from the population repeatedly, we find that there is
some kind of distribution of values that can occur by pure chance alone. This is
called the sampling distribution model. We have been learning about how to use
randomization to understand the sampling distribution and how much sampling
variability to expect, even when the null hypothesis is true.

Building a model is contingent upon certain assumptions being true. We can-
not usually demonstrate directly that these assumptions are conclusively met;
however, there are often conditions that can be checked with our data that can
give us some confidence in saying that the assumptions are probably met. For
example, there is no hope that we can infer anything from our sample unless
that sample is close to a random sample of the population. There is rarely any
direct evidence of having a properly random sample, and often, random samples
are too much to ask for. There is almost never such a thing as a truly random
sample of the population. Nevertheless, it is up to us to make the case that
our sample is as representative of the population as possible. Additionally, we
have to know that our sample comprises less than 10% of the size of the popu-
lation. The reasons for this are somewhat technical and the 10% figure is just
a rough guideline, but we should think carefully about this whenever we want
our inference to be correct.

Those are just two examples. For the randomization tests we are running, those
are the only two conditions we need to check. For other hypothesis tests in the
future that use different types of models, we will need to check more conditions
that correspond to the modeling assumptions we will need to make.

10.4.4 Mechanics

This is the nitty-gritty, nuts-and-bolts part of a hypothesis test. Once we have
a model that tells us how data should behave under the assumption of the null
hypothesis, we need to check how our data actually behaved. The measure of
where our data is relative to the null model is called the test statistic. For
example, if the null hypothesis states that there should be a difference of zero
between promotion rates for males and females, then the test statistic would be
the actual observed difference in our data between males and females.

Once we have a test statistic, we can plot it in the same graph as the null model.
This gives us a visual sense of how rare or unusual our observed data is. The
further our test statistic is from the center of the null model, the more evidence
we have that our data would be very unusual if the null model were true. And
that, in turn, gives us a reason not to believe the null model. When conducting
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a two-sided test, we will actually graph locations on both side of the null value:
the test statistic on one side of the null value and a point the same distance on
the other side of the null value. This will acknowledge that we’re interested in
evidence of an effect in either direction.

Finally, we convert the visual evidence explained in the previous paragraph to
a number called a P-value. This measures how likely it is to see our observed
data—or data even more extreme—under the assumption of the null. A small
P-value, then, means that if the null were really true, we wouldn’t be very likely
at all to see data like ours. That leaves us with little confidence that the null
model is really true. (After all, we did see the data we gathered!) If the P-
value is large—in other words, if the test statistic is closer to the middle of the
null distribution—then our data is perfectly consistent with the null hypothesis.
That doesn’t mean the null is true, but it certainly does not give us evidence
against the null.

A one-sided test will give us a P-value that only counts data more extreme than
the observed data in the direction that we explicitly hypothesized. For example,
if our alternative hypothesis was that male files are more likely to be promoted,
then we would only look at the part of the model that showed differences with
as many or more male promotions as our data showed. A two-sided P-value, by
contrast, will count data that is extreme in either direction. This will include
values on both sides of the distribution, which is why it’s called a two-sided
test. Computationally, it is usually easiest to calculate the one-sided P-value
and just double it.1

Remember the statement made earlier that throughout the hypothesis testing
process, we work under the assumption that the null hypothesis is true.
The P-value is no exception. It tells us under the assumption of the null
how likely we are to to see data at least as extreme (if not even more extreme)
as the data we actually saw.

10.4.5 Conclusion

The P-value we calculate in the Mechanics section allows us to determine what
our decision will be relative to the null hypothesis. As explained above, when
the P-value is small, that means we had data that would be very unlikely had the
null been true. The sensible conclusion is then to “reject the null hypothesis.”
On the other hand, if the data is consistent with the null hypothesis, then we
“fail to reject the null hypothesis.”

How small does the P-value need to be before we are willing to reject the null
hypothesis? That is a decision we have to make based on how much we are
willing to risk an incorrect conclusion. A value that is widely used is 0.05; in
other words, if 𝑃 < 0.05 we reject the null, and if 𝑃 > 0.05, we fail to reject the

1This is not technically the most mathematically appropriate thing to do, but it’s a rea-
sonable approximation in many common situations.
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null. However, for situations where we want to be conservative, we could choose
this threshold to be much smaller. If we insist that the P-value be less than
0.01, for example, then we will only reject the null when we have a lot more
evidence. The threshold we choose is called the “significance level”, denoted
by the Greek letter alpha: 𝛼. The value of 𝛼 must be chosen long before we
compute our P-value so that we’re not tempted to cheat and change the value
of 𝛼 to suit our P-value (and by doing so, quite literally, move the goalposts).

Note that we never accept the null hypothesis. The hypothesis testing
procedure gives us no evidence in favor of the null. All we can say is that the
evidence is either strong enough to warrant rejection of the null, or else it isn’t,
in which case we can conclude nothing. If we can’t prove the null false, we are
left not knowing much of anything at all.

The phrases “reject the null” or “fail to reject the null” are very statsy. Your
audience may not be statistically trained. Besides, the real conclusion you care
about concerns the research question of interest you posed at the beginning
of this process, and that is built into the alternative hypothesis, not the null.
Therefore, we need some statement that addresses the alternative hypothesis
in words that a general audience will understand. I recommend the following
templates:

• When you reject the null, you can safely say, “We have sufficient evidence
that [restate the alternative hypothesis].”

• When you fail to reject the null, you can safely say, “We have insufficient
evidence that [restate the alternative hypothesis].”

The last part of your conclusion should be an acknowledgement of the uncer-
tainty in this process. Statistics tries to tame randomness, but in the end,
randomness is always somewhat unpredictable. It is possible that we came to
the wrong conclusion, not because we made mistakes in our computation, but
because statistics just can’t be right 100% of the time when randomness is in-
volved. Therefore, we need to explain to our audience that we may have made
an error.

A Type I error is what happens when the null hypothesis is actually true, but
our procedure rejects it anyway. This happens when we get an unrepresenta-
tive extreme sample for some reason. For example, perhaps there really is no
association between promotion and sex. Even if that were true, we could acci-
dentally survey a group of bank managers who—by pure chance alone—happen
to recommend promotion more often for the male files. Our test statistic will
be “accidentally” far from the null value, and we will mistakenly reject the null.
Whenever we reject the null, we are at risk of making a Type I error. Given
that we are conclusively stating a statistically significant finding, if that finding
is wrong, this is a false positive, a term that is synonymous with a Type I error.
The significance level 𝛼 discussed above is, in fact, the probability of making
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a Type I error. (If the null is true, we will still reject the null if our P-value
happens to be less than 𝛼.)

On the other hand, the null may actually be false, and yet, we may not manage
to gather enough evidence to disprove it. This can also happen due to an
unusual sample—a sample that doesn’t conform to the “truth”. But there are
other ways this can happen as well, most commonly when you have a small
sample size (which doesn’t allow you to prove much of anything at all) or when
the effect you’re trying to measure exists, but is so small that it is hard to
distinguish from no effect at all (which is what the null postulates). In these
cases, we are at risk of making a Type II error. Anytime we say that we fail
to reject the null, we have to worry about the possibility of making a Type II
error, also called a false negative.

10.5 Example

Below, we’ll model the process of walking through a complete hypothesis test,
showing how we would address each step. Then, you’ll have a turn at doing
the same thing for a different question. Unless otherwise stated, we will always
assume a significance level of 𝛼 = 0.05. (In other words, we will reject the null
if our computed P-value is less than 0.05, and we will fail to reject the null if
our P-value is greater than or equal to 0.05.)

Note that there is some mathematical formatting. As mentioned before, this is
done by enclosing such math in dollar signs. Don’t worry too much about the
syntax; just mimic what you see in the example.

10.6 Exploratory data analysis

10.6.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

You can look at the help file by typing ?sex_discrimination at the Console.
(However, do not put that command here in a code chunk. The R Notebook
has no way of displaying a help file when it’s processed.) You can also type that
into the Help tab in the lower-right panel in RStudio.

The help file doesn’t say too much, but there is a “Source” at the bottom. We
can do an internet search for “Rosen Jerdee Influence of sex role stereotypes on
personnel decisions”. As many academics articles on the internet are, this one
is pay-walled, so we can’t read it for free. If you go to school or work for an
institution with a library, though, you may be able to access articles through
your library services. Talk to a librarian if you’d like to access research articles.
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As long as you have the citation details, librarians can often track down articles,
and many are already accessible through library databases.

In this case, we can read the abstract for free. This tells us that the data we
have is only one part of a larger set of experiments done.

This is also the place to comment on any ethical concerns you may have. For ex-
ample, how was the data collected? Did the researchers follow ethical guidelines
in the treatment of their subjects, like obtaining consent? Without accessing
the full article, it’s hard to know in this case. But do your best in each data
analysis task you have to try to find out as much as possible about the data.

In this section, we’ll also print the data set and use glimpse to summarize the
variables.

sex_discrimination

## # A tibble: 48 x 2
## sex decision
## <fct> <fct>
## 1 male promoted
## 2 male promoted
## 3 male promoted
## 4 male promoted
## 5 male promoted
## 6 male promoted
## 7 male promoted
## 8 male promoted
## 9 male promoted
## 10 male promoted
## # i 38 more rows

glimpse(sex_discrimination)

## Rows: 48
## Columns: 2
## $ sex <fct> male, male, male, male, male, male, male, male, male, male, m~
## $ decision <fct> promoted, promoted, promoted, promoted, promoted, promoted, p~

10.6.2 Prepare the data for analysis.

In this section, we do any tasks required to clean the data. This will often involve
using mutate, either to convert other variable types to factors, or compute
additional variables using existing columns. It may involve using filter to
analyze only one part of the data we care about.
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If there is missing data, this is the place to identify it and decide if you need
to address it before starting your analysis. It’s always important to check for
missing data. It’s not always necessary to address it now as many of the R
functions we use will ignore rows with missing data.

The easiest way to detect missing data is to try deleting rows that are missing
some data with drop_na and see if the number of rows changes:

sex_discrimination %>%
drop_na()

## # A tibble: 48 x 2
## sex decision
## <fct> <fct>
## 1 male promoted
## 2 male promoted
## 3 male promoted
## 4 male promoted
## 5 male promoted
## 6 male promoted
## 7 male promoted
## 8 male promoted
## 9 male promoted
## 10 male promoted
## # i 38 more rows

Since the result still has 48 rows, there are no missing values.

The sex_discimination data is already squeaky clean, so we don’t need to do
anything here.

10.6.3 Make tables or plots to explore the data visually.

As we have two categorical variables, a contingency table is a good way of
visualizing the distribution of both variables together. (Don’t forget to include
the marginal distribution and create two tables: one with counts and one with
percentages!)

tabyl(sex_discrimination, decision, sex) %>%
adorn_totals()

## decision male female
## promoted 21 14
## not promoted 3 10
## Total 24 24
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tabyl(sex_discrimination, decision, sex) %>%
adorn_totals() %>%
adorn_percentages("col") %>%
adorn_pct_formatting()

## decision male female
## promoted 87.5% 58.3%
## not promoted 12.5% 41.7%
## Total 100.0% 100.0%

10.7 Hypotheses

10.7.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

There are technically two samples of interest here. All the data comes from a
group of 48 bank managers recruited for the study, but one group of interest are
bank managers who are evaluating male files, and the other group of interest
are bank managers who are evaluating female files.

One of the contingency tables above shows the sample sizes for each group in
the marginal distribution along the bottom of the table (i.e., the column sums).
There are 24 mangers with male files and 24 managers with female files.

The populations of interest are probably all bank managers evaluating male
candidates and all bank managers evaluating female candidates, probably only
in in the U.S. (where the two researchers were based) and only during the 1970s.

10.7.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

(Note: The null hypothesis is indicated by the symbol 𝐻0, often pronounced
“H naught” or “H sub zero.” The alternative hypothesis is indicated by 𝐻𝐴,
pronounced “H sub A.”)

𝐻0 ∶ There is no association between decision and sex in hiring branch managers
for banks in the 1970s.

𝐻𝐴 ∶ There is an association between decision and sex in hiring branch managers
for banks in the 1970s.
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10.7.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝑝𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑,𝑚𝑎𝑙𝑒 − 𝑝𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑,𝑓𝑒𝑚𝑎𝑙𝑒 = 0
𝐻𝐴 ∶ 𝑝𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑,𝑚𝑎𝑙𝑒 − 𝑝𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑,𝑓𝑒𝑚𝑎𝑙𝑒 ≠ 0
Note: First, pay attention to the “success” condition (in this case, “promoted”).
We could choose to measure either those promoted or those not promoted. The
difference will be positive for one and negative for the other, so it really doesn’t
matter which one we choose. Just make a choice and be consistent. Also pay
close attention here to the order of the subtraction. Again, while it doesn’t
matter conceptually, we need to make sure that the code we include later agrees
with this order.

10.8 Model

10.8.1 Identify the sampling distribution model.

We will randomize to simulate the sampling distribution.

10.8.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random (for both groups)

– We have no evidence that these are random samples of bank man-
agers. We hope that they are representative. If the populations of
interest are all bank managers in the U.S. evaluating either male can-
didates or female candidates, then we have some doubts as to how
representative these samples are. It is likely that the bank managers
were recruited from limited geographic areas based on the location of
the researchers, and we know that geography could easily be a con-
founder for sex discrimination (because some areas of the country
might be more prone to it than others). Despite our misgivings, we
will proceed on with the analysis, but we will temper our expectations
for grand, sweeping conclusions.

• 10% (for both groups)

– Regardless of the intended populations, 24 bank managers evaluating
male files and 24 bank managers evaluating female files are surely less
than 10% of all bank managers under consideration.
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10.9 Mechanics

10.9.1 Compute the test statistic.

We let infer do the work here:

obs_diff <- sex_discrimination %>%
observe(decision ~ sex, success = "promoted",

stat = "diff in props", order = c("male", "female"))
obs_diff

## Response: decision (factor)
## Explanatory: sex (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.292

Note: obs_diff is a tibble, albeit a small one, having only one column and one
row. That tibble is what we need to feed into the visualization later. However,
for reporting the value by itself, we have to pull it out of the tibble. We will do
this below using the pull function. See the inline code in the next subsection.

10.9.2 Report the test statistic in context (when possible).

The observed difference in the proportion of promotion recommendations for
male files versus female files is 0.2916667 (subtracting males minus females).
Or, another way to say this: there is a 29.1666667% difference in the promotion
rates between male files and female files.

10.9.3 Plot the null distribution.

Note: In this section, we will use the series of verbs from infer to generate
all the information we need about the hypothesis test. We call that output
decision_sex_test here, but you’ll want to change it to another name for a
different test. The recommended pattern is response_predictor_test.

Don’t forget to set the seed. We are using randomization to permute the values
of the predictor variable in order to break any association that might exist in
the data. This will allow us to explore the sampling distribution created under
the assumption of the null hypothesis.

When you get to the visualize step, leave the number of bins out. (Just
type visualize() with empty parentheses.) If you determine that the default
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binning is not optimal, you can add back bins and experiment with the number.
We know from the previous chapter that 9 bins is good here.

set.seed(9999)
decision_sex_test <- sex_discrimination %>%

specify(decision ~ sex, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female"))

decision_sex_test

## Response: decision (factor)
## Explanatory: sex (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 -0.0417
## 2 2 0.208
## 3 3 0.0417
## 4 4 -0.125
## 5 5 -0.0417
## 6 6 -0.208
## 7 7 -0.208
## 8 8 0.0417
## 9 9 -0.292
## 10 10 0.125
## # i 990 more rows

decision_sex_test %>%
visualize(bins = 9) +
shade_p_value(obs_stat = obs_diff, direction = "two-sided")
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(You’ll note that there is light gray shading in both tails above. This is because
we are conducting a two-sided test, which means that we’re interested in values
that are more extreme than our observed difference in both directions.)

10.9.4 Calculate the P-value.

P <- decision_sex_test %>%
get_p_value(obs_stat = obs_diff, direction = "two-sided")

P

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.048

Note: as with the test statistic above, the P-value appears above in a 1x1 tibble.
That’s fine for this step, but in the inline code below, we will need to use pull
again to extract the value.
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10.9.5 Interpret the P-value as a probability given the
null.

The P-value is 0.048. If there were no association between decision and sex,
there would be a 4.8% chance of seeing data at least as extreme as we saw.

Some important things here:

1. We include an interpretation for our P-value. Remember that the P-value
is the probability—under the assumption of the null hypothesis—of
seeing results as extreme or even more extreme than the data we saw.

2. The P-value is less than 0.05 (just barely). Remember that as we talk
about the conclusion in the next section of the rubric.

10.10 Conclusion

10.10.1 State the statistical conclusion.

We reject the null hypothesis.

10.10.2 State (but do not overstate) a contextually mean-
ingful conclusion.

There is sufficient evidence to suggest that there is an an association between
decision and sex in hiring branch managers for banks in the 1970s.

Note: the easiest thing to do here is just restate the alternative hypothesis. If we
reject the null, then we have sufficient evidence for the alternative hypothesis.
If we fail to reject the null, we have insufficient evidence for the alternative
hypothesis. Either way, though, this contextually meaningful conclusion is all
about the alternative hypothesis.

10.10.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

We have some reservations about how generalizable this conclusion is due to
the fact that we are lacking information about how representative our samples
of bank managers were. We also point out that this experiment was conducted
in the 1970s, so its conclusions are not valid for today.

Note: This would also be the place to point out any possible sources of bias or
confounding that might be present, especially for observational studies.
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10.10.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

As we rejected the null, we run the risk of committing a Type I error. It is
possible that there is no association between decision and sex, but we’ve come
across a sample in which male files were somehow more likely to be recommended
for promotion.

After writing up your conclusions and acknowledging the possibility of a Type
I or Type II error, the hypothesis test is complete. (At least for now. In the
future, we will add one more step of computing a confidence interval.)

10.11 More on one-sided and two-sided tests

I want to emphasize again the difference between conducting a one-sided versus
a two-sided test. You may recall that in “Introduction to simulation, Part 2”,
we calculated this:

set.seed(9999)
sex_discrimination %>%

specify(decision ~ sex, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female")) %>%
get_p_value(obs_stat = obs_diff, direction = "greater")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.024

The justification was that, back then, we already suspected that male files were
more likely to be promoted, and it appears that our evidence (the test statistic,
or our observed difference) was pretty far in that direction. (Actually, we may
get a slightly different number each time. Remember that we are randomizing.
Therefore, we won’t expect to get the exact same numbers each time.)

By way of contrast, in this chapter we computed the two-sided P-value:
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set.seed(9999)
sex_discrimination %>%

specify(decision ~ sex, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female")) %>%
get_p_value(obs_stat = obs_diff, direction = "two-sided")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.048

The only change to the code is the word “two-sided” (versus “greater”) in the
last line.

Our P-value in this chapter is twice as large as it could have been if we had run
a one-sided test.

Doubling the P-value might mean that it no longer falls under the significance
threshold 𝛼 = 0.05 (although in this case, we still came in under 0.05). This
raises an obvious question: why use two-sided tests at all? If the P-values are
higher, that makes it less likely that we will reject the null, which means we
won’t be able to prove our alternative hypothesis. Isn’t that a bad thing?

As a matter of fact, there are many researchers in the world who do think it’s
a bad thing, and routinely do things like use one-sided tests to give them a
better chance of getting small P-values. But this is not ethical. The point
of research is to do good science, not prove your pet theories correct. There
are many incentives in the world for a researcher to prove their theories cor-
rect (money, awards, career advancement, fame and recognition, legacy, etc.),
but these should be secondary to the ultimate purpose of advancing knowledge.
Sadly, many researchers out there have these priorities reversed. I do not claim
that researchers set out to cheat; I suspect that the vast majority of researchers
act in good faith. Nevertheless, the rewards associated with “successful” re-
search cause cognitive biases that are hard to overcome. And “success” is often
very narrowly defined as research that produces small P-values.

A better approach is to be conservative. For example, a two-sided test is not
only more conservative because it produces higher P-values, but also because it
answers a more general question. That is, it is scientifically interesting when an
association goes in either direction (e.g. more male promotions, but also possibly
more female promotions). This is why we recommended above using two-sided
tests by default, and only using a one-sided test when there is a very strong
research hypothesis that justifies it.
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10.12 A reminder about failing to reject the null

It’s also important to remember that when we fail to reject the null hypothesis,
we are not saying that the null hypothesis is true. Neither are we saying it’s
false. Failure to reject the null is really a failure to conclude anything at all.
But rather than looking at it as a failure, a more productive viewpoint is to see
it as an opportunity for more research, possibly with larger sample sizes.

Even when we do reject the null, it is important not to see that as the end of the
conversation. Too many times, a researcher publishes a “statistically significant”
finding in a peer-reviewed journal, and then that result is taken as “Truth”. We
should, instead, view statistical inference as incremental knowledge that works
slowly to refine our state of scientific knowledge, as opposed to a collection of
“facts” and “non-facts”.

10.13 Your turn

Now it’s your turn to run a complete hypothesis test. Determine if males were
admitted to the top six UC Berkeley grad programs at a higher rate than fe-
males. For purposes of this exercise, we will not take into account the Dept
variable as we did in the last chapter when we discussed Simpson’s Paradox.
But as that is a potential source of confounding, be sure to mention it in the
part of the rubric where you discuss reservations about your conclusion.

As always, use a significance level of 𝛼 = 0.05.

Here is the data import:

ucb_admit <- read_csv("https://vectorposse.github.io/intro_stats/data/ucb_admit.csv",
col_types = list(

Admit = col_factor(),
Gender = col_factor(),
Dept = col_factor()))

I have copied the template below. You need to fill in each step. Some of the
steps will be the same or similar to steps in the example above. It is perfectly
okay to copy and paste R code, making the necessary changes. It is not okay
to copy and paste text. You need to put everything into your own words. Also,
don’t copy and paste the parts that are labeled as “Notes”. That is information
to help you understand each step, but it’s not part of the statistical analysis
itself.

The template below is exactly the same as in the Appendix up to the part about
confidence intervals which we haven’t learned yet.
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Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model
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Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

set.seed(9999)
# Add code here to simulate the null distribution.
# Run 1000 reps like in the earlier example.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.
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Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

10.14 Conclusion

A hypothesis test is a formal set of steps—a procedure, if you will—for imple-
menting the logic of inference. We take a skeptical position and assume a null
hypothesis in contrast to the question of interest, the alternative hypothesis. We
build a model under the assumption of the null hypothesis to see if our data is
consistent with the null (in which case we fail to reject the null) or unusual/rare
relative to the null (in which case we reject the null). We always work under
the assumption of the null so that we can convince a skeptical audience using
evidence. We also take care to acknowledge that statistical procedures can be
wrong, and not to put too much credence in the results of any single set of data
or single hypothesis test.

10.14.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 11

Hypothesis testing with
randomization, Part 2

2.0

Functions introduced in this chapter

factor

11.1 Introduction

Now that we have learned about hypothesis testing, we’ll explore a different
example. Although the rubric for performing the hypothesis test will not change,
the individual steps will be implemented in a different way due to the research
question we’re asking and the type of data used to answer it.

11.1.1 Install new packages

If you are using RStudio Workbench, you do not need to install any packages.
(Any packages you need should already be installed by the server administra-
tors.)

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following command
at the Console:

install.packages("MASS")

331
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11.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).
https://vectorposse.github.io/intro_stats/chapter_downloads/11-hypothesis_testing_with_randomization_2.Rmd
Once the file is downloaded, move it to your project folder in RStudio and open
it there.

11.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

11.2 Load packages

In additional to tidyverse and janitor, we load the MASS package to access
the Melanoma data on patients in Denmark with malignant melanoma, and the
infer package for inference tools.

library(tidyverse)
library(janitor)
library(MASS)

##
## Attaching package: 'MASS'

## The following objects are masked from 'package:openintro':
##
## housing, mammals

## The following object is masked from 'package:dplyr':
##
## select

library(infer)

11.3 Our research question

We know that certain types of cancer are more common among females or males.
Is there a sex bias among patients with malignant melanoma?
Let’s jump into the “Exploratory data analysis” part of the rubric first.
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11.4 Exploratory data analysis

11.4.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

You can look at the help file by typing ?Melanoma at the Console. However, do
not put that command here in a code chunk. The R Notebook has no way of
displaying a help file when it’s processed. Be careful: there’s another data set
called melanoma with a lower-case “m”. Make sure you are using an uppercase
“M”.

There is a reference at the bottom of the help file.

Exercise 1 Using the reference in the help file, do an internet search to find
the source of this data. How can you tell that this reference is not, in fact, a
reference to a study of cancer patients in Denmark?

Please write up your answer here.

From the exercise above, we can see that it will be very difficult, if not impossi-
ble, to discover anything useful about the true provenance of the data (unless you
happen to have a copy of that textbook, which in theory provided another more
primary source). We will not know, for example, how the data was collected
and if the patients consented to having their data shared publicly. The data is
suitably anonymized, though, so we don’t have any serious concerns about the
privacy of the data. Having said that, if a condition is rare enough, a dedicated
research can often “de-anonymize” data by cross-referencing information in the
data to other kinds of public records. But melanoma is not particularly rare.
At any rate, all we can do is assume that the textbook authors obtained the
data from a source that used proper procedures for collecting and handling the
data.

We print the data frame:

Melanoma

## time status sex age year thickness ulcer
## 1 10 3 1 76 1972 6.76 1
## 2 30 3 1 56 1968 0.65 0
## 3 35 2 1 41 1977 1.34 0
## 4 99 3 0 71 1968 2.90 0
## 5 185 1 1 52 1965 12.08 1
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## 6 204 1 1 28 1971 4.84 1
## 7 210 1 1 77 1972 5.16 1
## 8 232 3 0 60 1974 3.22 1
## 9 232 1 1 49 1968 12.88 1
## 10 279 1 0 68 1971 7.41 1
## 11 295 1 0 53 1969 4.19 1
## 12 355 3 0 64 1972 0.16 1
## 13 386 1 0 68 1965 3.87 1
## 14 426 1 1 63 1970 4.84 1
## 15 469 1 0 14 1969 2.42 1
## 16 493 3 1 72 1971 12.56 1
## 17 529 1 1 46 1971 5.80 1
## 18 621 1 1 72 1972 7.06 1
## 19 629 1 1 95 1968 5.48 1
## 20 659 1 1 54 1972 7.73 1
## 21 667 1 0 89 1968 13.85 1
## 22 718 1 1 25 1967 2.34 1
## 23 752 1 1 37 1973 4.19 1
## 24 779 1 1 43 1967 4.04 1
## 25 793 1 1 68 1970 4.84 1
## 26 817 1 0 67 1966 0.32 0
## 27 826 3 0 86 1965 8.54 1
## 28 833 1 0 56 1971 2.58 1
## 29 858 1 0 16 1967 3.56 0
## 30 869 1 0 42 1965 3.54 0
## 31 872 1 0 65 1968 0.97 0
## 32 967 1 1 52 1970 4.83 1
## 33 977 1 1 58 1967 1.62 1
## 34 982 1 0 60 1970 6.44 1
## 35 1041 1 1 68 1967 14.66 0
## 36 1055 1 0 75 1967 2.58 1
## 37 1062 1 1 19 1966 3.87 1
## 38 1075 1 1 66 1971 3.54 1
## 39 1156 1 0 56 1970 1.34 1
## 40 1228 1 1 46 1973 2.24 1
## 41 1252 1 0 58 1971 3.87 1
## 42 1271 1 0 74 1971 3.54 1
## 43 1312 1 0 65 1970 17.42 1
## 44 1427 3 1 64 1972 1.29 0
## 45 1435 1 1 27 1969 3.22 0
## 46 1499 2 1 73 1973 1.29 0
## 47 1506 1 1 56 1970 4.51 1
## 48 1508 2 1 63 1973 8.38 1
## 49 1510 2 0 69 1973 1.94 0
## 50 1512 2 0 77 1973 0.16 0
## 51 1516 1 1 80 1968 2.58 1



11.4. EXPLORATORY DATA ANALYSIS 335

## 52 1525 3 0 76 1970 1.29 1
## 53 1542 2 0 65 1973 0.16 0
## 54 1548 1 0 61 1972 1.62 0
## 55 1557 2 0 26 1973 1.29 0
## 56 1560 1 0 57 1973 2.10 0
## 57 1563 2 0 45 1973 0.32 0
## 58 1584 1 1 31 1970 0.81 0
## 59 1605 2 0 36 1973 1.13 0
## 60 1621 1 0 46 1972 5.16 1
## 61 1627 2 0 43 1973 1.62 0
## 62 1634 2 0 68 1973 1.37 0
## 63 1641 2 1 57 1973 0.24 0
## 64 1641 2 0 57 1973 0.81 0
## 65 1648 2 0 55 1973 1.29 0
## 66 1652 2 0 58 1973 1.29 0
## 67 1654 2 1 20 1973 0.97 0
## 68 1654 2 0 67 1973 1.13 0
## 69 1667 1 0 44 1971 5.80 1
## 70 1678 2 0 59 1973 1.29 0
## 71 1685 2 0 32 1973 0.48 0
## 72 1690 1 1 83 1971 1.62 0
## 73 1710 2 0 55 1973 2.26 0
## 74 1710 2 1 15 1973 0.58 0
## 75 1726 1 0 58 1970 0.97 1
## 76 1745 2 0 47 1973 2.58 1
## 77 1762 2 0 54 1973 0.81 0
## 78 1779 2 1 55 1973 3.54 1
## 79 1787 2 1 38 1973 0.97 0
## 80 1787 2 0 41 1973 1.78 1
## 81 1793 2 0 56 1973 1.94 0
## 82 1804 2 0 48 1973 1.29 0
## 83 1812 2 1 44 1973 3.22 1
## 84 1836 2 0 70 1972 1.53 0
## 85 1839 2 0 40 1972 1.29 0
## 86 1839 2 1 53 1972 1.62 1
## 87 1854 2 0 65 1972 1.62 1
## 88 1856 2 1 54 1972 0.32 0
## 89 1860 3 1 71 1969 4.84 1
## 90 1864 2 0 49 1972 1.29 0
## 91 1899 2 0 55 1972 0.97 0
## 92 1914 2 0 69 1972 3.06 0
## 93 1919 2 1 83 1972 3.54 0
## 94 1920 2 1 60 1972 1.62 1
## 95 1927 2 1 40 1972 2.58 1
## 96 1933 1 0 77 1972 1.94 0
## 97 1942 2 0 35 1972 0.81 0
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## 98 1955 2 0 46 1972 7.73 1
## 99 1956 2 0 34 1972 0.97 0
## 100 1958 2 0 69 1972 12.88 0
## 101 1963 2 0 60 1972 2.58 0
## 102 1970 2 1 84 1972 4.09 1
## 103 2005 2 0 66 1972 0.64 0
## 104 2007 2 1 56 1972 0.97 0
## 105 2011 2 0 75 1972 3.22 1
## 106 2024 2 0 36 1972 1.62 0
## 107 2028 2 1 52 1972 3.87 1
## 108 2038 2 0 58 1972 0.32 1
## 109 2056 2 0 39 1972 0.32 0
## 110 2059 2 1 68 1972 3.22 1
## 111 2061 1 1 71 1968 2.26 0
## 112 2062 1 0 52 1965 3.06 0
## 113 2075 2 1 55 1972 2.58 1
## 114 2085 3 0 66 1970 0.65 0
## 115 2102 2 1 35 1972 1.13 0
## 116 2103 1 1 44 1966 0.81 0
## 117 2104 2 0 72 1972 0.97 0
## 118 2108 1 0 58 1969 1.76 1
## 119 2112 2 0 54 1972 1.94 1
## 120 2150 2 0 33 1972 0.65 0
## 121 2156 2 0 45 1972 0.97 0
## 122 2165 2 1 62 1972 5.64 0
## 123 2209 2 0 72 1971 9.66 0
## 124 2227 2 0 51 1971 0.10 0
## 125 2227 2 1 77 1971 5.48 1
## 126 2256 1 0 43 1971 2.26 1
## 127 2264 2 0 65 1971 4.83 1
## 128 2339 2 0 63 1971 0.97 0
## 129 2361 2 1 60 1971 0.97 0
## 130 2387 2 0 50 1971 5.16 1
## 131 2388 1 1 40 1966 0.81 0
## 132 2403 2 0 67 1971 2.90 1
## 133 2426 2 0 69 1971 3.87 0
## 134 2426 2 0 74 1971 1.94 1
## 135 2431 2 0 49 1971 0.16 0
## 136 2460 2 0 47 1971 0.64 0
## 137 2467 1 0 42 1965 2.26 1
## 138 2492 2 0 54 1971 1.45 0
## 139 2493 2 1 72 1971 4.82 1
## 140 2521 2 0 45 1971 1.29 1
## 141 2542 2 1 67 1971 7.89 1
## 142 2559 2 0 48 1970 0.81 1
## 143 2565 1 1 34 1970 3.54 1
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## 144 2570 2 0 44 1970 1.29 0
## 145 2660 2 0 31 1970 0.64 0
## 146 2666 2 0 42 1970 3.22 1
## 147 2676 2 0 24 1970 1.45 1
## 148 2738 2 0 58 1970 0.48 0
## 149 2782 1 1 78 1969 1.94 0
## 150 2787 2 1 62 1970 0.16 0
## 151 2984 2 1 70 1969 0.16 0
## 152 3032 2 0 35 1969 1.29 0
## 153 3040 2 0 61 1969 1.94 0
## 154 3042 1 0 54 1967 3.54 1
## 155 3067 2 0 29 1969 0.81 0
## 156 3079 2 1 64 1969 0.65 0
## 157 3101 2 1 47 1969 7.09 0
## 158 3144 2 1 62 1969 0.16 0
## 159 3152 2 0 32 1969 1.62 0
## 160 3154 3 1 49 1969 1.62 0
## 161 3180 2 0 25 1969 1.29 0
## 162 3182 3 1 49 1966 6.12 0
## 163 3185 2 0 64 1969 0.48 0
## 164 3199 2 0 36 1969 0.64 0
## 165 3228 2 0 58 1969 3.22 1
## 166 3229 2 0 37 1969 1.94 0
## 167 3278 2 1 54 1969 2.58 0
## 168 3297 2 0 61 1968 2.58 1
## 169 3328 2 1 31 1968 0.81 0
## 170 3330 2 1 61 1968 0.81 1
## 171 3338 1 0 60 1967 3.22 1
## 172 3383 2 0 43 1968 0.32 0
## 173 3384 2 0 68 1968 3.22 1
## 174 3385 2 0 4 1968 2.74 0
## 175 3388 2 1 60 1968 4.84 1
## 176 3402 2 1 50 1968 1.62 0
## 177 3441 2 0 20 1968 0.65 0
## 178 3458 3 0 54 1967 1.45 0
## 179 3459 2 0 29 1968 0.65 0
## 180 3459 2 1 56 1968 1.29 1
## 181 3476 2 0 60 1968 1.62 0
## 182 3523 2 0 46 1968 3.54 0
## 183 3667 2 0 42 1967 3.22 0
## 184 3695 2 0 34 1967 0.65 0
## 185 3695 2 0 56 1967 1.03 0
## 186 3776 2 1 12 1967 7.09 1
## 187 3776 2 0 21 1967 1.29 1
## 188 3830 2 1 46 1967 0.65 0
## 189 3856 2 0 49 1967 1.78 0
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## 190 3872 2 0 35 1967 12.24 1
## 191 3909 2 1 42 1967 8.06 1
## 192 3968 2 0 47 1967 0.81 0
## 193 4001 2 0 69 1967 2.10 0
## 194 4103 2 0 52 1966 3.87 0
## 195 4119 2 1 52 1966 0.65 0
## 196 4124 2 0 30 1966 1.94 1
## 197 4207 2 1 22 1966 0.65 0
## 198 4310 2 1 55 1966 2.10 0
## 199 4390 2 0 26 1965 1.94 1
## 200 4479 2 0 19 1965 1.13 1
## 201 4492 2 1 29 1965 7.06 1
## 202 4668 2 0 40 1965 6.12 0
## 203 4688 2 0 42 1965 0.48 0
## 204 4926 2 0 50 1964 2.26 0
## 205 5565 2 0 41 1962 2.90 0

Use glimpse to examine the structure of the data:

glimpse(Melanoma)

## Rows: 205
## Columns: 7
## $ time <int> 10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386,~
## $ status <int> 3, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, ~
## $ sex <int> 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, ~
## $ age <int> 76, 56, 41, 71, 52, 28, 77, 60, 49, 68, 53, 64, 68, 63, 14, ~
## $ year <int> 1972, 1968, 1977, 1968, 1965, 1971, 1972, 1974, 1968, 1971, ~
## $ thickness <dbl> 6.76, 0.65, 1.34, 2.90, 12.08, 4.84, 5.16, 3.22, 12.88, 7.41~
## $ ulcer <int> 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~

11.4.2 Prepare the data for analysis.

It appears that sex is coded as an integer. You will recall that we need to
convert it to a factor variable since it is categorical, not numerical.

Exercise 2 According to the help file, which number corresponds to which
sex?

Please write up your answer here.
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We can convert a numerical variable a couple of different ways. In Chapter 3,
we used the as_factor command. That command works fine, but it doesn’t
give you a way to change the levels of the variable. In other words, if we used
as_factor here, we would get a factor variable that still contained zeroes and
ones.

Instead, we will use the factor command. It allows us to manually relabel the
levels. The levels argument requires a vector (with c) of the current levels,
and the labels argument requires a vector listing the new names you want to
assign, as follows:

Melanoma <- Melanoma %>%
mutate(sex_fct = factor(sex, levels = c(0, 1), labels = c("female", "male")))

glimpse(Melanoma)

## Rows: 205
## Columns: 8
## $ time <int> 10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386,~
## $ status <int> 3, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, ~
## $ sex <int> 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, ~
## $ age <int> 76, 56, 41, 71, 52, 28, 77, 60, 49, 68, 53, 64, 68, 63, 14, ~
## $ year <int> 1972, 1968, 1977, 1968, 1965, 1971, 1972, 1974, 1968, 1971, ~
## $ thickness <dbl> 6.76, 0.65, 1.34, 2.90, 12.08, 4.84, 5.16, 3.22, 12.88, 7.41~
## $ ulcer <int> 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ sex_fct <fct> male, male, male, female, male, male, male, female, male, fe~

You should check to make sure the first few entries of sex_fct agree with the
numbers in the sex variable according to the labels explained in the help file.
(If not, it means that you put the levels in one order and the labels in a
different order.)

11.4.3 Make tables or plots to explore the data visually.

We only have one categorical variable, so we only need a frequency table. Since
we are concerned with proportions, we’ll also look at a relative frequency table
which the tabyl command provides for free.

tabyl(Melanoma, sex_fct) %>%
adorn_totals()

## sex_fct n percent
## female 126 0.6146341
## male 79 0.3853659
## Total 205 1.0000000
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11.5 The logic of inference and randomization

This is a good place to pause and remember why statistical inference is impor-
tant. There are certainly more females than males in this data set. So why don’t
we just show the table above, declare females are more likely to have malignant
melanoma, and then go home?
Think back to coin flips. Even though there was a 50% chance of seeing heads,
did that mean that exactly half of our flips came up heads? No. We have to
acknowledge sampling variability: even if the truth were 50%, when w sample,
we could accidentally get more or less than 50%, just by pure chance alone.
Perhaps these 205 patients just happen to have more females than average.
The key, then, is to figure out if 61.5% is significantly larger than 50%, or if a
number like 61.5% (or one even more extreme) could easily come about from
random chance.
As we know from the last chapter, we can run a formal hypothesis test to find
out. As we do so, make note of the things that are the same and the things that
have changed from the last hypothesis tests you ran. For example, we are not
comparing two groups anymore. We have one group of patients, and all we’re
doing is measuring the percentage of this group that is female. It’s tempting to
think that we’re comparing males and females, but that’s not the case. We are
not using sex to divide our data into two groups for the purpose of exploring
whether some other variable differs between men and women. We just have
one sample. “Female” and “Male” are simply categories in a single categorical
variable. Also, because we are only asking about one variable (sex_fct), the
mathematical form of the hypotheses will look a little different.
Because this is no longer a question about two variables being independent or
associated, the “permuting” idea we’ve been using no longer makes sense. So
what does make sense?
It helps to start by figuring out what our null hypothesis is. Remember, our
question of interest is whether there is a sex bias in malignant melanoma.
In other words, are there more or fewer females than males with malignant
melanoma? As this is our research question, it will be the alternative hypoth-
esis. So what is the null? What is the “default” situation in which nothing
interesting is going on? Well, there would be no sex bias. In other words, there
would be the same number of females and males with malignant melanoma. Or
another way of saying that—with respect to the “success” condition of being
female that we discussed earlier—is that females comprise 50% of all patients
with malignant melanoma.
Okay, given our philosophy about the null hypothesis, let’s take the skeptical
position and assume that, indeed, 50% of all malignant melanoma patients in
our population are female. Then let’s take a sample of 205 patients. We can’t
get exactly 50% females from a sample of 205 (that would be 102.5 females!),
so what numbers can we get?
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Randomization will tell us. What kind of randomization? As we come across
each patient in our sample, there is a 50% chance of them being female. So
instead of sampling real patients, what if we just flipped a coin? A simulated
coin flip will come up heads just as often as our patients will be female under
the assumption of the null.

This brings us full circle, back to the first randomization idea we explored.
We can simulate coin flips, graph our results, and calculate a P-value. More
specifically, we’ll flip a coin 205 times to represent sampling 205 patients. Then
we’ll repeat this procedure a bunch of times and establish a range of plausible
percentages that can come about by chance from this procedure. Instead of
doing coin flips with the rflip command as we did then, however, we’ll use our
new favorite friend, the infer package.

Let’s dive back into the remaining steps of the formal hypothesis test.

11.6 Hypotheses

11.6.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample consists of 205 patients from Denmark with malignant melanoma.
Our population is presumably all patients with malignant melanoma, although
in checking conditions below, we’ll take care to discuss whether patients in
Denmark are representative of patients elsewhere.

11.6.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ Half of malignant melanoma patients are female.

𝐻𝐴 ∶ There is a sex bias among patients with malignant melanoma (meaning
that females are either over-represented or under-represented).

11.6.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝑝𝑓𝑒𝑚𝑎𝑙𝑒 = 0.5

𝐻𝐴 ∶ 𝑝𝑓𝑒𝑚𝑎𝑙𝑒 ≠ 0.5
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11.7 Model

11.7.1 Identify the sampling distribution model.

We will randomize to simulate the sampling distribution.

11.7.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random

– As mentioned above, these 205 patients are not a random sam-
ple of all people with malignant melanoma. We don’t even have
any evidence that they are a random sample of melanoma patients
in Denmark. Without such evidence, we have to hope that these
205 patients are representative of all patients who have malignant
melanoma. Unless there’s something special about Danes in terms
of their genetics or diet or something like that, one could imagine
that their physiology makes them just as susceptible to melanoma
as anyone else. More specifically, though, our question is about fe-
males and males getting malignant melanoma. Perhaps there are
more female sunbathers in Denmark than in other countries. That
might make Danes unrepresentative in terms of the gender balance
among melanoma patients. We should be cautious in interpreting
any conclusion we might reach in light of these doubts.

• 10%

– Whether in Denmark or not, given that melanoma is a fairly common
form of cancer, I assume 205 is less than 10% of all patients with
malignant melanoma.

11.8 Mechanics

11.8.1 Compute the test statistic.

female_prop <- Melanoma %>%
observe(response = sex_fct, success = "female",

stat = "prop")
female_prop

## Response: sex_fct (factor)
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## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.615

Note: Pay close attention to the difference in the observe command above.
Unlike in the last chapter, we don’t have any tildes. That’s because there are not
two variables involved. There is only one variable, which observe needs to see as
the “response” variable. (Don’t forget to use the factor version sex_fct and not
sex!) We still have to specify a “success” condition. Since the hypotheses are
about measuring females, we have to tell observe to calculate the proportion
of females. Finally, the stat is no longer “diff in props” There are not two
proportions with which to find a difference. There is just one proportion, hence,
“prop”.

11.8.2 Report the test statistic in context (when possible).

The observed percentage of females with melanoma in our sample is
61.4634146%.

Note: As explained in the last chapter, we have to use pull to pull out the
number from the female_prop tibble.

11.8.3 Plot the null distribution.

Since this is the first step for which we need the simulated values, it will be
convenient to run the simulation here. We’ll need to set the seed as well.

set.seed(42)
melanoma_test <- Melanoma %>%

specify(response = sex_fct, success = "female") %>%
hypothesize(null = "point", p = 0.5) %>%
generate(reps = 1000, type = "draw") %>%
calculate(stat = "prop")

melanoma_test

## Response: sex_fct (factor)
## Null Hypothesis: point
## # A tibble: 1,000 x 2
## replicate stat
## <fct> <dbl>
## 1 1 0.444
## 2 2 0.585
## 3 3 0.551
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## 4 4 0.502
## 5 5 0.561
## 6 6 0.493
## 7 7 0.527
## 8 8 0.488
## 9 9 0.512
## 10 10 0.454
## # i 990 more rows

This list of proportions is the sampling distribution. It represents possible sam-
ple proportions of females with melanoma under the assumption that the
null is true. In other words, even if the “true” proportion of female melanoma
patients were 0.5, these are all values that can result from random samples.
In the hypothesize command, we use “point” to tell infer that we want the
null to be centered at the point 0.5. In the generate command, we need to
specify the type as “draw” instead of “permute”. We are not shuffling any
values here; we are “drawing” values from a probability distribution like coin
flips. Everything else in the command is pretty self-explanatory.
The value of our test statistic, female_prop, is 0.6146341. It appears in the
right tail:

melanoma_test %>%
visualize() +
shade_p_value(obs_stat = female_prop, direction = "two-sided")
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Although the line only appears on the right, keep in mind that we are conducting
a two-sided test, so we are interested in values more extreme than the red line
on the right, but also more extreme than a similarly placed line on the left.

Exercise 3 The red line sits at about 0.615. If you were to draw a red line
on the above histogram that represented a value equally distant from 0.5, but
on the left instead of the right, where would that line be? Do a little arithmetic
to figure it out and show your work.
Please write up your answer here.

11.8.4 Calculate the P-value.

melanoma_test %>%
get_p_value(obs_stat = female_prop, direction = "two-sided")

## Warning: Please be cautious in reporting a p-value of 0. This result is an
## approximation based on the number of `reps` chosen in the `generate()` step.
## See `?get_p_value()` for more information.

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0

The P-value appears to be zero. Indeed, among the 1000 simulated values, we
saw none that exceeded 0.615 and none that were less than 0.385. However, a
true P-value can never be zero. If you did millions or billions of simulations
(please don’t try!), surely there would be one or two with even more extreme
values. In cases when the P-value is really, really tiny, it is traditional to report
𝑃 < 0.001. It is incorrect to say 𝑃 = 0.

11.8.5 Interpret the P-value as a probability given the
null.

𝑃 < 0.001. If there were no sex bias in malignant melanoma patients, there
would be less than a 0.1% chance of seeing a percentage of females at least as
extreme as the one we saw in our data.
Note: Don’t forget to interpret the P-value in a contextually meaningful way.
The P-value is the probability under the assumption of the null hypothesis of
seeing data at least as extreme as the data we saw. In this context, that means
that if we assume 50% of patients are female, it would be extremely rare to see
more than 61.5% or less than 38.5% females in a sample of size 205.
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11.9 Conclusion

11.9.1 State the statistical conclusion.

We reject the null hypothesis.

11.9.2 State (but do not overstate) a contextually mean-
ingful conclusion.

There is sufficient evidence that there is a sex bias in patients who suffer from
malignant melanoma.

11.9.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

We have no idea how these patients were sampled. Are these all the patients in
Denmark with malignant melanoma over a certain period of time? Were they
part of a convenience sample? As a result of our uncertainly about the sampling
process, we can’t be sure if the results generalize to a larger population, either
in Denmark or especially outside of Denmark.

Exercise 4 Can you find on the internet any evidence that females do indeed
suffer from malignant melanoma more often than males (not just in Denmark,
but anywhere)?
Please write up your answer here.

11.9.4 Identify the possibility of either a Type I or Type II
error and state what making such an error means
in the context of the hypotheses.

As we rejected the null, we run the risk of making a Type I error. If we have
made such an error, that would mean that patients with malignant melanoma
are equally likely to be male or female, but that we got a sample with an unusual
number of female patients.

11.10 Your turn

Determine if the percentage of patients in Denmark with malignant melanoma
who also have an ulcerated tumor (measured with the ulcer variable) is signif-
icantly different from 50%.
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As before, you have the outline of the rubric for inference below. Some of the
steps will be the same or similar to steps in the example above. It is perfectly
okay to copy and paste R code, making the necessary changes. It is not okay
to copy and paste text. You need to put everything into your own words.

The template below is exactly the same as in the appendix (Rubric for inference)
up to the part about confidence intervals which we haven’t learned yet.

Exploratory data analysis

# Add code here to understand the data.

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.
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Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

set.seed(42)
# Add code here to simulate the null distribution.
# Run 1000 simulations like in the earlier example.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.
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Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

11.11 Conclusion

Now you have seen two fully-worked examples of hypothesis tests using ran-
domization, and you have created two more examples on your own. Hopefully,
the logic of inference and the process of running a formal hypothesis test are
starting to make sense.

Keep in mind that the outline of steps will not change. However, the way each
step is carried out will vary from problem to problem. Not only does the context
change (one example involved sex discrimination, the other melanoma patients),
but the statistics you compute also change (one example compared proportions
from two samples and the other only had one proportion from a single sample).
Pay close attention to the research question and the data that will be used to
answer that question. That will be the only information you have to help you
know which hypothesis test applies.

11.11.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
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4. Hit the “Preview” button one last time to generate the final draft of the
.nb.html file.

5. Proofread the HTML file carefully. If there are errors, go back and fix
them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 12

Confidence intervals

2.0

Functions introduced in this chapter

get_confidence_interval, shade_confidence_interval, fct_collapse

12.1 Introduction

Sampling variability means that we can never trust a single sample to identify a
population parameter exactly. Instead of simply trusting a point estimate, we
can look at the entire sampling distribution to create an interval of plausible
values called a confidence interval. By making our intervals wide enough, we
hope to have some chance of capturing the true population value. Like hypoth-
esis tests, confidence intervals are a form of inference because they use a sample
to deduce something about the population. Along the way, we will also learn
about a new form of randomization called bootstrapping.

12.1.1 Install new packages

There are no new packages used in this chapter.

12.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

351
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https://vectorposse.github.io/intro_stats/chapter_downloads/12-confidence_intervals.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

12.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

12.2 Load packages

We load the standard tidyverse, janitor, and infer packages. We’ll also
need the openintro package later in the chapter for the hsb2 and the smoking
data set.

library(tidyverse)
library(janitor)
library(infer)
library(openintro)

12.3 Bootstrapping

Imagine you obtain a random sample of 200 high school seniors from across the
U.S. Suppose 32 of them attend private school. As a sample statistic, we have

̂𝑝 = 32/200 = 0.16
In other words, 16% of the students in the sample attended private school.

If our sample is representative, we might guess that the true population param-
eter 𝑝 is also close to 0.16, but we’re not really sure:

𝑝 ≈ 0.16?

And what about the sampling variability? A few chapters ago, we flipped coins.
A “weighted” coin flipped 200 times can give us a “new” (fake) sample, and
doing that a thousand times (or even more) can give us a lot of new samples to
see what range of values is possible. But what would we use as the probability
of heads for the weighted coin? It would be a bad idea to use 0.16 because
that would assume that the population proportion agreed exactly with the one
sample we happen to have. It worked in a hypothesis test because we had a
value of 𝑝 we assumed was true in the guise of a null hypothesis. But in general,
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if I simply want to estimate a population parameter with a sample statistic, I
have no such information to use. So coin flipping is out.

An alternative that is available to us is a procedure called bootstrapping. The
idea sounds weird, but it’s pretty simple: instead of building fake samples,
what if we tried to build a fake population? And then, what if we took repeated
samples from it?

How would we build a fake population? Imagine making many, many copies of
our sample until we had thousands or even millions of students. In fact, we can
think of an infinite number of copies of our sample if we want. Sure, this fake
population isn’t exactly like the real population of all high school seniors. But
if our sample is representative, we might hope that lots of copies of our sample
would approximate the population we care about.

Computationally, it’s a lot of work to copy our sample thousands or millions of
times. And we certainly can’t work with an infinite number of copies. Fortu-
nately, we can use a shortcut. It’s called sampling with replacement.

Normal sampling is usually without replacement, meaning that once we have
sampled an individual, they are not eligible to be sampled again. We don’t
want to survey Billy and then later in our study, survey Billy again.

In sampling with replacement, we put Billy back in the pool and make him
eligible to be sampled again. This is the same thing as having access to an
infinite population. Remember that our fake population is just many, many
copies of our sample. So in that fake population, there are many, many Billy
clones that could end up in our sample. So rather than cloning Billy many,
many times, let’s just put Billy back in the group any time he’s sampled.

We need to see this in action. We have a random sample of 200 students
obtained by the National Center of Education Statistics in their “High School
and Beyond” survey. This is stored in the hsb2 data set from the openintro
package. Here are the school types for these students, stored in the variable
schtyp:

hsb2$schtyp

## [1] public public public public public public public public public
## [10] public public public public public public public public private
## [19] public public public public public public public public public
## [28] private private public public public private public private public
## [37] private public public public private private public public public
## [46] public public public private public public public public private
## [55] public public public public private public private public public
## [64] public private public public public public public public public
## [73] public public public public public public public public public
## [82] public private public public public public public public public
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## [91] public public public public public public public public public
## [100] private public public public public public public public public
## [109] private private public public public public private public public
## [118] public public public private public public public public public
## [127] public public public public public public public public public
## [136] public private public public private public public public public
## [145] public private public private public public public public public
## [154] public public public public public public public public public
## [163] private public public public public public private public public
## [172] public public public public public public public public public
## [181] public private public public public public public public private
## [190] public public private private public private private public private
## [199] public public
## Levels: public private

Let’s sample an individual from our sample:

set.seed(6)
sample(hsb2$schtyp, size = 1)

## [1] public
## Levels: public private

That was one of the public school students from among the 200 students in our
sample. Here’s another one:

set.seed(7)
sample(hsb2$schtyp, size = 1)

## [1] private
## Levels: public private

That was one of the private school students.

We can do this 200 times. Now, if we sample without replacement, all we get
back are the original students, just listed in a different order. Think about why:
we’re just picking one student at a time. But since they don’t get replaced,
eventually, every student will get chosen. We’re choosing 200 students, but
there are only 200 students from which to choose.

set.seed(8)
sample_without_replacement1 <- sample(hsb2$schtyp, size = 200)
sample_without_replacement1
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## [1] public public public public public public public public public
## [10] public public public public public public public private public
## [19] public public public public public public public public public
## [28] public public private public public public public public public
## [37] public public public public public public public private public
## [46] public public public public private private private public public
## [55] private private public public public public public public private
## [64] public public private public public public public public public
## [73] public public public public public public public public public
## [82] public public public public public public public public public
## [91] public public public public public public public public public
## [100] public public private public public public public public public
## [109] public public public public public public public public public
## [118] public public public private public public private public public
## [127] private private public public public public private public private
## [136] private public public public public public public public public
## [145] public public public public public public public public private
## [154] public public public public public private public private private
## [163] public public public public private public public private public
## [172] private private public public public public public public public
## [181] public private public private public public public private private
## [190] public public public public public public public public private
## [199] public private
## Levels: public private

tabyl(sample_without_replacement1)

## sample_without_replacement1 n percent
## public 168 0.84
## private 32 0.16

set.seed(9)
sample_without_replacement2 <- sample(hsb2$schtyp, size = 200)
sample_without_replacement2

## [1] public public public private public private public private public
## [10] public public private private private private private public public
## [19] private public public public public public public public public
## [28] public public public public public public public public public
## [37] public public public public public public public private public
## [46] public public public public private public private public public
## [55] public private public public public public public public public
## [64] private public public public public public public public public
## [73] public public public public private public public public public
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## [82] private private public public public public public public private
## [91] public private public public public private public public public
## [100] public public private private public public public public public
## [109] public private public public private public private public public
## [118] public public public public public private public public public
## [127] public public public public public public public public public
## [136] public public public public public public private public public
## [145] public private public public public public public public public
## [154] public public public public public public public public private
## [163] private public public public public public public public public
## [172] public public public public public public public public public
## [181] private public public public public public private public public
## [190] public public public public public public public public public
## [199] public public
## Levels: public private

tabyl(sample_without_replacement2)

## sample_without_replacement2 n percent
## public 168 0.84
## private 32 0.16

The two lists above consist of the same 200 students, just drawn in a different
order.

On the other hand, if we sample with replacement, then students can get chosen
more than once. (Remember, we’re equating “getting chosen more than once”
with “sampling from an infinite population and choosing a clone”.) Now, the
number of private school students we see might not be 32.

Each of the following samples is called a bootstrap sample. Notice that we’ve
added the argument replace = TRUE to the sample function:

set.seed(10)
sample_with_replacement1 <- sample(hsb2$schtyp, size = 200, replace = TRUE)
sample_with_replacement1

## [1] private public public public public private public public public
## [10] public public public public public public public public public
## [19] private public public public public private private private public
## [28] public private public public public private public public public
## [37] public public public public public public private public public
## [46] public public public public public public private public public
## [55] public public public public public public public public public
## [64] public public private public private public public public private
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## [73] public public public public public public public public public
## [82] public public public public private public public public public
## [91] public private public private public private public public public
## [100] public public public private private public public public public
## [109] public public public public public private private public public
## [118] private public public private public public private public public
## [127] public public public private private private public public private
## [136] public public public public public public public public public
## [145] public public public public public public public public public
## [154] public public public public public public public private public
## [163] public public public private private public private private private
## [172] public public public public public public private public public
## [181] public public public public public public private public public
## [190] public public public public public public public public public
## [199] public public
## Levels: public private

tabyl(sample_with_replacement1)

## sample_with_replacement1 n percent
## public 164 0.82
## private 36 0.18

That bootstrap sample proportion is 0.18, not 0.16.

set.seed(11)
sample_with_replacement2 <- sample(hsb2$schtyp, size = 200, replace = TRUE)
sample_with_replacement2

## [1] public public public public public private public public private
## [10] public public private public public public public public public
## [19] public public public public public public public public public
## [28] public public public public public public public public public
## [37] public public public public public public public public public
## [46] public public public public public public public private public
## [55] public public public public public public public public public
## [64] public public public public public public public public public
## [73] public public public public private public public public public
## [82] public private private public public private public public public
## [91] public private public public public public private public private
## [100] public public private public public public public public public
## [109] public public private public public private public public public
## [118] private private public public public public private public private
## [127] public private public private public public public private public



358 CHAPTER 12. CONFIDENCE INTERVALS

## [136] private public public public private private private public private
## [145] public public private public public private public public public
## [154] private private public public public public public public private
## [163] private public public public public public private public private
## [172] public public public private private public private public public
## [181] public public public public public public public public public
## [190] public private public private public public public private public
## [199] public public
## Levels: public private

tabyl(sample_with_replacement2)

## sample_with_replacement2 n percent
## public 160 0.8
## private 40 0.2

That bootstrap sample proportion is 0.2.

Now we’re getting some sampling variability!

If we do this many, many times, we get a whole collection of sample propor-
tions. The distribution of all those sample proportions, obtained with bootstrap
samples (samples drawn with replacement), is called the bootstrap sampling dis-
tribution.

12.4 Computing a bootstrap sampling distribu-
tion

The infer package can compute bootstrap samples and, hence, produce a boot-
strap sampling distribution. The code looks a whole like the code you already
know for hypothesis testing:

private_boot <- hsb2 %>%
specify(response = schtyp, success = "private") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop")

private_boot

## Response: schtyp (factor)
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 0.185
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## 2 2 0.185
## 3 3 0.15
## 4 4 0.135
## 5 5 0.145
## 6 6 0.175
## 7 7 0.15
## 8 8 0.195
## 9 9 0.18
## 10 10 0.185
## # i 990 more rows

We simply changed the type to “bootstrap”.
Now we visualize like normal:

private_boot %>%
visualize()
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Simulation−Based Bootstrap Distribution

(We can change the number of bins if we want, but this number looks pretty
good.)

12.5 Confidence intervals

The histogram above simulates what might happen if we took many samples
from our infinite “fake” population consisting of many copies of our original,
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actual sample data. On the lower end, we might see something like 8% private
school students. On the upper end, we could see 25% or more private school
students.

In the chapter about numerical data, we computed the IQR (interquartile
range), which was the difference between the 25th percentile and the 75th per-
centile. The IQR was then the range of the middle 50% of the data. Let’s use
infer tools to calculate the middle 50% of the above distribution:

private_50 <- private_boot %>%
get_confidence_interval(level = 0.5)

private_50

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.14 0.175

The middle 50% ranges from 14% up to 17.5%. We can also visualize this:

private_boot %>%
visualise() +
shade_confidence_interval(endpoints = private_50)
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In other words, when we go out to gather a sample from our (fake infinite) pop-
ulation of high school seniors, about half of the time, we expect the percentage
of private students to be somewhere between 14% and 17.5%. The other half of
the time, we will sample a value outside that range.

This is a confidence interval. More specifically, this is a 50% confidence interval.
This is the range of values we expect sample proportions to be in approximately
half of the samples we might gather from our (fake infinite) population.

Now don’t forget the goal. What we are really trying to find is the value 𝑝, the
true population parameter. We want to know what proportion of high school
seniors attend private school in the whole population of all high school seniors
in the U.S.

For mathematical reasons that are outside the scope of this course, it turns
out that the sampling variability in the bootstrap distribution around ̂𝑝 is very
similar to the sampling variability of the sample proportion ̂𝑝 around the true
value 𝑝. We bootstrapped our way to the picture above using one actual sample
with about 16% private school students. A different sample of high school
seniors would give us different bootstrap samples, producing a slightly different
bootstrap distribution from the one above. But it, too, will have a shaded region
like the histogram above. Every actual sample we might obtain in the real world
would give us a bootstrap distribution with a different shaded region. But the
amazing fact is this: about half of those shaded regions will actually contain
the true population parameter 𝑝.

Think about the value 𝑝 like a fish hidden in a murky lake. The sample propor-
tion ̂𝑝 is our attempt at fishing. We drop a hook down at the value ̂𝑝 and pull
it right back up. It’s not very likely that we caught the fish, although we hope
that we were close. Alas, the sample proportion is almost never exactly equal
to the true proportion 𝑝. But what if we cast a net instead? That net is the
shaded range of values in our confidence interval. That range of values might
catch the fish.

The difference between statistics and fishing is that, in the latter, when we pull
up the net, we can see if we successfully caught the fish. In the former, all we
can say is that there is some probability that the net caught the fish, but you’re
not able to look inside the net to know for sure.

So the confidence interval we created above might have caught the true value
𝑝. But then again, it might not have. There’s only a 50% chance we captured
the true value in the range 14% to 17.5% that we computed from our specific
sample with its accompanying bootstrap samples. Most researchers would be
displeased with only a 50% success rate. So can we do better?

How much better do we want to do? This is a subjective question with no
definitive answer. Many people say they want to be 95% confident that the
confidence interval they build will capture the true population parameter. Let’s
modify our code to do that:
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private_95 <- private_boot %>%
get_confidence_interval(level = 0.95)

private_95

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.11 0.215

The middle 95% ranges from 11% up to 21.5%. We can also visualize this:

private_boot %>%
visualise() +
shade_confidence_interval(endpoints = private_95)
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The interpretation is that when you go collect many samples, the confidence in-
tervals you produce using the bootstrap procedure described above will capture
the true population proportion 95% of the time.

Exercise 1 Why is a 95% confidence interval wider than a 50% confidence
interval? In other words, why should our desire to be 95% confident in capturing
the true value of 𝑝 result in an interval that is wider than if we only wanted to
be 50% confident?
Please write up your answer here.
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Exercise 2 Being more confident seems like a good thing. In fact, we might
want a 99% confidence interval. Compute and visualize a 99% confidence inter-
val for proportion of private school students.

# Add code here to compute a 99% confidence interval

# Add code here to visualize a 99% confidence interval

Exercise 3 Can you think of any downside to using higher and higher con-
fidence levels? As a hint, think about the following completely true sentence:
“I am 100% confident that the true proportion of high school seniors attending
private school is somewhere between 0% and 100%.”
Please write up your answer here.

While 50% is clearly too low for a confidence level, as seen above, there is no
particular reason that we need to compute a 95% confidence interval either.
There is some consensus in the scientific community here: 95% has evolved
to become a generally agreed-upon standard. But we could compute a 90%
confidence interval or a 99% confidence interval (as you did above), or any
other type of interval. Having said that, if you choose other intervals besides
these three, people might wonder if you’re up to something.1

12.6 Conditions

Don’t forget that there are always assumptions we make when relying on any
kind of statistical inference. Before computing a confidence interval for a propor-
tion, we must verify that certain conditions are satisfied. But these conditions
are not new. We already know from hypothesis testing what is required for good
inference from a sample. These are the “Random” and the “10%” conditions.

• Random
– The sample must be random (or hopefully representative).

• 10%
– The sample size must be less than 10% of the size of the population.

Both conditions are met for the data in the High School and Beyond survey.
1A contrary position is proffered by Richard McElreath, an evolutionary ecologist and

author of the amazing book Statistical Rethinking. He uses 89% and 97% intervals to highlight
the absurdity of regarding 95% as a magic number that has some kind of deep, special meaning.
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12.7 Rubric for confidence intervals

Typically, you will be asked to report a confidence interval after performing
a hypothesis test. Whereas a hypothesis test gives you a “decision criterion”
(using data to make a decision to reject the null or fail to reject the null), a
confidence interval gives you an estimate of the “effect size” (a range of plausible
values for the population parameter).

As such, there is a section in the Rubric for inference that shows the steps of
calculating and reporting a confidence interval. They are as follows:

1. Check the relevant conditions to ensure that model assumptions are met.
2. Calculate and graph the confidence interval.
3. State (but do not overstate) a contextually meaningful interpretation.
4. If running a two-sided test, explain how the confidence interval reinforces

the conclusion of the hypothesis test.
5. When comparing two groups, comment on the effect size and the practical

significance of the result.

12.8 Example

Here is a worked example. (Unless otherwise stated, we always use a 95%
confidence level.)

Some of the students in the “High School and Beyond” survey attended voca-
tional programs. This data is stored in the prog variable. Using a confidence
interval, estimate what percentage of all high school seniors attend vocational
programs.

We will need to do a little data cleaning before we can address this question.
There are actually three types of programs: “general”, “academic”, and “voca-
tional”. The infer commands will only work when a categorical variable has
two levels. We are thinking of “general” and “academic” together as more like
a combined “other” category. We can fix this by creating a new factor variable
with mutate. Inside that mutate, we will use the fct_collapse function to
collapse two of the levels into one as follows:

hsb2 <- hsb2 %>%
mutate(prog2 = fct_collapse(prog,

vocational = "vocational",
other = c("general", "academic")))

glimpse(hsb2)

## Rows: 200
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## Columns: 12
## $ id <int> 70, 121, 86, 141, 172, 113, 50, 11, 84, 48, 75, 60, 95, 104, 3~
## $ gender <chr> "male", "female", "male", "male", "male", "male", "male", "mal~
## $ race <chr> "white", "white", "white", "white", "white", "white", "african~
## $ ses <fct> low, middle, high, high, middle, middle, middle, middle, middl~
## $ schtyp <fct> public, public, public, public, public, public, public, public~
## $ prog <fct> general, vocational, general, vocational, academic, academic, ~
## $ read <int> 57, 68, 44, 63, 47, 44, 50, 34, 63, 57, 60, 57, 73, 54, 45, 42~
## $ write <int> 52, 59, 33, 44, 52, 52, 59, 46, 57, 55, 46, 65, 60, 63, 57, 49~
## $ math <int> 41, 53, 54, 47, 57, 51, 42, 45, 54, 52, 51, 51, 71, 57, 50, 43~
## $ science <int> 47, 63, 58, 53, 53, 63, 53, 39, 58, 50, 53, 63, 61, 55, 31, 50~
## $ socst <int> 57, 61, 31, 56, 61, 61, 61, 36, 51, 51, 61, 61, 71, 46, 56, 56~
## $ prog2 <fct> other, vocational, other, vocational, other, other, other, oth~

Inspect the variables prog and prog2 above to make sure that the recoding was
successful. Then be sure to use prog2 and not prog everywhere.

12.8.1 Check the relevant conditions to ensure that model
assumptions are met.

• Random

– The sample is a random sample of high school seniors from the U.S.
as the survey was conducted by the National Center of Education
Statistics, a reputable government organization.

• 10%

– The sample size is 200, which is much less than 10% of the population
of all U.S. high school seniors.

12.8.2 Calculate and graph the confidence interval.

vocational_boot <- hsb2 %>%
specify(response = prog2, success = "vocational") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop")

vocational_boot

## Response: prog2 (factor)
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
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## 1 1 0.335
## 2 2 0.25
## 3 3 0.17
## 4 4 0.24
## 5 5 0.245
## 6 6 0.245
## 7 7 0.2
## 8 8 0.24
## 9 9 0.265
## 10 10 0.25
## # i 990 more rows

vocational_ci <- vocational_boot %>%
get_confidence_interval(level = 0.95)

vocational_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.19 0.31

vocational_boot %>%
visualize() +
shade_confidence_interval(endpoints = vocational_ci)
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12.8.3 State (but do not overstate) a contextually mean-
ingful interpretation.

We are 95% confident that the true percentage of U.S. high school seniors who
attend a vocational program is captured in the interval (19%, 31%).

Note: we use inline code to grab the values of the endpoints of the confidence
interval. We also multiply by 100 to report percentages instead of proportions.

12.8.4 If running a two-sided test, explain how the confi-
dence interval reinforces the conclusion of the hy-
pothesis test.

In this chapter, we haven’t run a hypothesis test, so this step is irrelevant for us
here. However, in future chapters, we will incorporate this step into the rubric
and see how the confidence interval relates to the conclusion of a hypothesis
test.

12.8.5 When comparing two groups, comment on the ef-
fect size and the practical significance of the result.

This step will also become more clear in future chapters. It only applies to situ-
ations where you are attempting to find a difference between two groups. In this
example, we’re simply using a sample statistic to estimate a single population
parameter.

12.9 Your turn

Use the smoking data set from the openintro package. What percentage of the
population of the U.K. smokes tobacco? (The information you need is in the
smoke variable.) Use a 95% confidence interval.

Check the relevant conditions to ensure that model assumptions are
met.

• Random

– [Check condition here.]

• 10%

– [Check condition here.]
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# Add code here to create the bootstrap sampling distribution.

# Add code here to calculate the confidence interval.

# Add code here to graph the confidence interval.

Calculate and graph the confidence interval.

State (but do not overstate) a contextually meaningful interpretation.
Please write up your answer here.

(We will ignore the last two last steps in the rubric. We haven’t run a hypothesis
test and we’re not comparing smoking between two groups.)

12.10 Interpreting confidence intervals

Confidence intervals are notoriously difficult to interpret.2

Here are several wrong interpretations of a 95% confidence interval:

• 95% of the data lies in the interval.

• There is a 95% chance that the sample proportion lies in the interval.

• There is a 95% chance that the population parameter lies in the interval.

We’ll take a closer look at these incorrect claims in a moment. First, let’s see
how confidence intervals work using simulation.

In order to simulate, we’ll have to pretend temporarily that we know a true
population parameter. Let’s use the example of a candidate who has the support
of 64% of voters. In other words, 𝑝 = 0.64. We go out and get a sample of
voters, let’s say 50. From that sample we construct a 95% confidence interval

2Several studies have given surveys to statistics students, teachers, and researchers, and
find that even these people often misinterpret confidence intervals. See, for example, this
paper: http://www.ejwagenmakers.com/inpress/HoekstraEtAlPBR.pdf

http://www.ejwagenmakers.com/inpress/HoekstraEtAlPBR.pdf
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by bootstrapping. Most of the time, 64% (the true value!) should be in our
interval. But sometimes it won’t be. We can get an unusual sample that is far
away from 64%, just by pure chance alone. (Perhaps we accidentally run into a
bunch of people who oppose our candidate.)
Okay, let’s do it again. Get a new sample and calculate a new confidence
interval. This sample will likely result in a different sample proportion than
the first sample. Therefore, the confidence interval will be located in a different
place. Does it contain 64%? Most of the time, we expect it to. Occasionally, it
will not.
We can do this over and over again through the magic of simulation! Here’s what
this simulation looks like in R. The following code is quite technical, although
you will recognize bits and pieces of it. Don’t worry about it. You won’t need
to generate code like this on your own. Just look at the pretty picture in the
output below below the code.

set.seed(11111)

# The true population proportion is 0.64
true_val <- 0.64
# The sample size is 50
sample_size <- 50
# Set confidence level
our_level <- 0.95
# Set number of intervals to simulate
sim_num <- 100

# Get a random sample of size n.
# Compute the test statistic and the bootstrap confidence interval.
# Put both into a single tibble.
simulate_ci <- function(n, level = 0.95) {

sample_data <-
factor(rbinom(n , size = 1, prob = true_val)) %>%
tibble(data = .)

stat <- sample_data %>%
observe(response = data, success = "1", stat = "prop")

ci <- sample_data %>%
specify(response = data, success = "1") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_confidence_interval(level = our_level)

bind_cols(stat, ci) %>%
return()

}

# Simulate 100 random samples (each of size 50)
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# Assign a color based on whether the intervals contain the true proportion
ci <- map_dfr(rep(sample_size, times = sim_num), simulate_ci, level = our_level) %>%

mutate(row_num = row_number()) %>%
mutate(color = ifelse(lower_ci <= true_val & true_val <= upper_ci,

"black", "red"),
alpha = ifelse(color == "black", 0.5, 1))

# Plot all the simulated intervals
ggplot(ci, aes(x = stat, y = row_num,

color = color, alpha = alpha)) +
geom_point() +
scale_color_manual(values = c("black", "red"), guide = "none") +
geom_segment(aes(x = lower_ci, xend = upper_ci, yend = row_num)) +
geom_vline(xintercept = true_val, color = "blue") +
scale_alpha_identity() +
labs(y = "Simulation", x = "Estimates with confidence intervals")
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Each sample gives us a slightly different estimate, and therefore, a different
confidence interval as well.
For each of the 100 simulated intervals, most of them (the black ones) do capture
the true value of 0.64 (the blue vertical line). Occasionally they don’t (the red
ones). We expect 5 red intervals, but since randomness is involved, it won’t
necessarily be exactly 5. (Here there were only 3 bad intervals.)
This is the key to interpreting confidence intervals. The “95%” in a 95% con-
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fidence interval means that if we were to collect many random samples, about
95% of them would contain the true population parameter and about 5% would
not.

So let’s revisit the erroneous statements from the beginning of this section and
correct the misconceptions.

• 95% of the data lies in the interval.

– This doesn’t even make sense. Our data is categorical. The con-
fidence interval is a range of plausible values for the proportion of
successes in the sample.

• There is a 95% chance that the sample proportion lies in the interval.

– No. There is essentially a 100% chance that the sample proportion
lies in the interval. Most of the time, the sample proportion is very
close to the center of the interval. When we bootstrap, the “infinite
population” we are simulating has the same population proportion
as the sample we started with. (After all, the infinite population is
just many copies of the sample we started with.) Therefore, samples
from that infinite population should be more or less centered around
the sample proportion.

• There is a 95% chance that the population parameter lies in the interval.

– This is wrong in a more subtle way. The problem here as that it
takes our interval as being fixed and special, and then tries to declare
that of all possible population parameters, we have a 95% chance of
the true one landing in our interval. The logic is backwards. The
population parameter is the fixed truth. It doesn’t wander around
and land in our interval sometimes and not at other times. It is our
confidence interval that wanders; it is just one of many intervals we
could have obtained from random sampling. When we say, “We are
95% confident that…,” we are just using a convenient shorthand for,
“If we were to repeat the process of sampling and creating confidence
intervals many times, about 95% of those times would produce an
interval that happens to capture the actual population proportion.”
But we’re lazy and we don’t want to say that every time.

12.11 Conclusion

A confidence interval is a form of statistical inference that gives us a range of
numbers in which we hope to capture the true population parameter. Of course,
we can’t be certain of that. If we repeatedly collect samples, the expectation
is that 95% of those samples will produce confidence intervals that capture the
true population parameter, but that also means that 5% will not. We’ll never
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know if our sample was one of the 95% that worked, or one of the 5% that
did not. And even if we get one of the intervals that worked, all we have is
a range of values and it’s impossible to determine which of those values is the
true population parameter. Because it’s statistics, we just have to live with that
uncertainty.

12.11.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 13

Normal models

2.0

Functions introduced in this chapter

pdist, diff, qdist, scale, geom_qq

13.1 Introduction

In this chapter we will learn how to work with normal models. In addition to
learning about theoretical normal distributions, we will also develop QQ plots
to assess the normality of data.

13.1.1 Install new packages

There are no new packages used in this chapter.

13.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/13-normal_models.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

373
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13.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

13.2 Load packages

In addition to tidyverse, we return to the mosaic package to produce some
nice visualizations of normal models.

library(tidyverse)
library(mosaic)

13.3 The Central Limit Theorem

An important aspect of all the simulations that we’ve done so far—assuming
that we’ve run a large enough number of them—is that their histograms all look
like bell curves. This fact is known as the “Central Limit Theorem”. Under some
basic assumptions that we’ll discuss in a later chapter, this will be typical of
many of our simulated null distributions.

So rather than running a simulation each time we want to conduct a hypothesis
test, we could also assume that the null distribution is a bell curve. The rest of
this chapter will teach you how to work with the “normal distribution,” which
is just the mathematically correct term for a bell curve.

13.4 Normal models

The normal distribution looks like this:

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(data.frame(x = c(-4, 4)), aes(x)) +

stat_function(fun = dnorm) +
scale_x_continuous(breaks = -3:3)
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The curve pictured above is called the standard normal distribution. It has a
mean of 0 and a standard deviation of 1. Mathematically, this is written as

𝑁(𝜇 = 0, 𝜎 = 1),

or usually just

𝑁(0, 1).

We use this bell curve shape to model data that is unimodal, symmetric, and
without outliers. A statistical “model” is a simplification or an idealization.
Reality is, of course, never perfectly bell-shaped. Real data is not exactly sym-
metric with one clear peak in the middle. Nevertheless, an abstract model can
give us good answers if used properly.

As an example of this, systolic blood pressure (SBP, measured in millimeters of
mercury, or mmHg) is more-or-less normally distributed in women ages 30–44
in the U.S. and Canada, with a mean of 114 and a standard deviation of 14.1

If we were to plot a histogram with the SBP of every woman between the ages
of 30 and 44 in the U.S. and Canada, it would have the shape of a normal
distribution, but instead of being centered at 0 like the graph above, this one
would be centered at 114. Mathematically, we write

1Statistics from the World Health Organization: http://www.who.int/publications/cra/
chapters/volume1/0281-0390.pdf

http://www.who.int/publications/cra/chapters/volume1/0281-0390.pdf
http://www.who.int/publications/cra/chapters/volume1/0281-0390.pdf
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𝑁(𝜇 = 114, 𝜎 = 14),

or

𝑁(114, 14).

The graph now looks like this:

# Again, don't worry about the syntax here.
ggplot(data.frame(x = c(58, 170)), aes(x)) +

stat_function(fun = dnorm, args = list(mean = 114, sd = 14)) +
scale_x_continuous(breaks = c(72, 86, 100, 114, 128, 142, 156))
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13.5 Predictions using normal models

Using this information, we can estimate the percentage of such women who are
expected to have any range of SBP without having access to all such data.

For example, what percentage of women ages 30–44 in the U.S. and Canada are
expected to have SBP under 130 mmHg? The pdist command from the mosaic
package will not only help us with this calculation, but it also offers a nice visual
representation depending on the arguments we supply to the function:
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pdist("norm", q = 130, mean = 114, sd = 14)
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## [1] 0.873451

In the notebook view, you have to switch back and forth between the two boxes
below the code chunk (above the graph) to see the number versus the graph. In
the HTML output, however, both the number and the plot are visible.

For situations where we really just want to see the number, we can always add
plot = FALSE to the function:

pdist("norm", q = 130, mean = 114, sd = 14, plot = FALSE)

## [1] 0.873451

The other pieces of the pdist function are pretty intuitive: "norm" (and it has
to be in quotes) indicates that we want a normal model, q is the value of interest
to us, and mean and sd are self-evident. The numerical output gives the area
under the curve to the left of our value of interest. This area is 0.873451; in
other words, about 87.3% of women are expected to have SBP less than 130.

If you use this command inline, the pretty picture is not generated, just the
value. For example, look at the following sentence (remembering that you can
click anywhere inside the inline R code and hit Ctrl-Enter or Cmd-Enter):
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The model predicts that 87.3451046% of women ages 30–44 in the
U.S. and Canada will have systolic blood pressure under 130 mmHg.

Note that the above code multiplied the result of the pdist command by 100.
This is important because the full sentence interpretation is meant to be read
by human beings, and human beings tend to report these kinds of numbers as
percentages and not decimals.2

It’s also important that you include the phrase, “The model predicts…” or some-
thing like that. Without that part, the claim is likely false. It would be too
definitive. Remember that a model is just an approximation or simplification
of reality. We’re not claiming we’ve found the “True” number. All we know is
that if the model is roughly correct, we can predict the true value.

Here’s another question: how many women are predicted to have SBP greater
than 130? If 87.3% of women have SBP under 130, then 12.7% must have SBP
over 130. Why? Because all women have to add up to 100%!

Therefore, all we have to do to solve this problem is subtract the number we
obtained in the previous question from 1. (Remember that 1 = 100%.)

The model predicts that 12.6548954% of women ages 30–44 in the
U.S. and Canada will have systolic blood pressure over 130 mmHg.

Don’t forget to include parentheses. We need to multiply the whole expression
by 100.

Now, here’s a more complicated question: what percentage of women are pre-
dicted to have SBP between 110 mmHg and 130 mmHg?

Recall that the proportion of women predicted to have SBP less than 130 mmHg
was 0.873. But this is also counting women with SBP under 110 mmHg, whom
we now want to exclude. The proportion of women with SBP under 110 is found
with the following code:

pdist("norm", q = 110, mean = 114, sd = 14, plot = FALSE)

## [1] 0.3875485

Therefore, all we have to do is calculate 0.873 minus 0.388:

The model predicts that 48.5902564% of women ages 30–44 in the
U.S. and Canada will have systolic blood pressure between 110
mmHg and 130 mmHg.

2When you preview this in HTML, you’ll see a ridiculous number of decimal places that R
reports. It’s a bit of a hassle to try to change it, so we’ll just ignore the issue.
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(Again, don’t forget the parentheses.)

What about the pretty picture? Unfortunately, this doesn’t work so well:

pdist("norm", q = 130, mean = 114, sd = 14) -
pdist("norm", q = 110, mean = 114, sd = 14)
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## [1] 0.4859026

The code is bulky and it prints two pictures, neither of which are quite right for
our question.

Instead, let’s observe that the pdist command can include both values (110
and 130) using the vector notation c:

pdist("norm", q = c(110, 130), mean = 114, sd = 14)
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## [1] 0.3875485 0.8734510

Now the picture looks great and you can see the proportion you desire in the
area between the two lines at 110 and 130.

This doesn’t work so well for the numerical output though. Observe:

pdist("norm", q = c(110, 130), mean = 114, sd = 14, plot = FALSE)

## [1] 0.3875485 0.8734510

There are two numbers shown, but neither is the correct answer. This command
shows the percentages below 110 and below 130, respectively, but not the area
in between 110 and 130. We still have to subtract. However, R can do this for
us easily with the diff command:

pdist("norm", q = c(110, 130), mean = 114, sd = 14, plot = FALSE) %>%
diff()

## [1] 0.4859026

Again, for inline R code, you don’t need to specify plot = FALSE:
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The model predicts that 48.5902564% of women ages 30–44 in the
U.S. and Canada will have systolic blood pressure between 110
mmHg and 130 mmHg.

For the following exercises, we’ll use a running example of IQ scores. Keep in
mind that, at best, IQ scores fail to measure anything like “intelligence” (https:
//www.sciencedaily.com/releases/2012/12/121219133334.htm). At worse, IQ
tests (and other forms of standardized testing) have been used to perpetuate
systemic racism and inequality (https://www.nea.org/advocating-for-change/
new-from-nea/racist-beginnings-standardized-testing).
IQ scores—whatever they actually measure—are standardized so that they have
a mean of 100 and a standard deviation of 16. For each exercise, use the pdist to
draw the right picture and then state your answer in a contextually meaningful
full sentence using inline R code. Don’t forget to use the phrase “The model
predicts…” and report numbers as percentages, not decimals.

Exercise 1(a) What percentage of people would you expect to have IQ scores
over 80?

# Add code here to draw the model.

Please write up your answer here.

Exercise 1(b) What percentage of people would you expect to have IQ scores
under 90?

# Add code here to draw the model.

Please write up your answer here.

Exercise 1(c) What percentage of people would you expect to have IQ scores
between 112 and 132?

# Add code here to draw the model.

Please write up your answer here.

13.6 Percentiles

Often, the question is reversed: instead of getting a value and being asked what
percentage of the population falls above or below it, we are given a percentile
and asked about the value to which it corresponds.

https://www.sciencedaily.com/releases/2012/12/121219133334.htm
https://www.sciencedaily.com/releases/2012/12/121219133334.htm
https://www.nea.org/advocating-for-change/new-from-nea/racist-beginnings-standardized-testing
https://www.nea.org/advocating-for-change/new-from-nea/racist-beginnings-standardized-testing
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Here is an example using systolic blood pressure: what is the cutoff value of
SBP for the lowest 25% of women ages 30–44 in the U.S. and Canada? In other
words, what is the 25th percentile of SBP for this group of women?

The command we need is qdist. It looks a lot like pdist. Observe:

qdist("norm", p = 0.25, mean = 114, sd = 14)
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## [1] 104.5571

The only change here is that one of the arguments is p instead of q, and the
value of p is a proportion (between 0 and 1) instead of a value of SBP. The
output is now an SBP value.

Here it is inline:

The model predicts that the 25th percentile for SBP in women ages
30–44 in the U.S. and Canada is 104.5571435 mmHg.

What if we asked about the highest 10% of women? All you have to do is
remember that the top 10% is actually the 90th percentile.
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qdist("norm", p = 0.9, mean = 114, sd = 14)
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## [1] 131.9417

The model predicts that the top 10% of SBP in women ages 30–44
in the U.S. and Canada have SBP higher than 131.9417219 mmHg.

Finally, what if we want the middle 50%? This is trickier. The middle 50% lies
between the 25th percentile and the 75th percentile. Observe the syntax below:

qdist("norm", p = c(0.25, 0.75), mean = 114, sd = 14)
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## [1] 104.5571 123.4429

Therefore, the model predicts that the middle 50% of SBP for women
ages 30–44 in the U.S. and Canada lies between 104.5571435 mmHg
and 123.4428565 mmHg.

We did something tricky in the inline code above. Because the qdist command
produces two values (one at the 25th percentile and one at the 75th percentile),
we can grab each value separately by appending [1] or [2] to the end of the
command.

For the exercises below, we’ll continue to use IQ scores (mean of 100 and stan-
dard deviation of 16). Use the qdist command to draw the right picture and
then state your answer in a contextually meaningful full sentence. Don’t forget
to use the phrase “The model predicts…”

Exercise 2(a) What cutoff value bounds the highest 5% of IQ scores?

# Add code here to draw the model.

Please write up your answer here.
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Exercise 2(b) What cutoff value bounds the lowest 30% of IQ scores?

# Add code here to draw the model.

Please write up your answer here.

Exercise 2(c) What cutoff values bound the middle 80% of IQ scores?

# Add code here to draw the model.

Please write up your answer here.

13.7 Z scores

Sometimes it is easier to refer to a value in terms of how many standard devi-
ations it lies from the mean. For example, a systolic blood pressure of 100 is
14 mmHg below the mean, but since the standard deviation is 14 mmHg, this
means that 100 is one standard deviation below the mean. This distance from
the mean in terms of standard deviations is called a z score.

We calculate z scores using the following formula:

𝑧 = 𝑥 − 𝜇
𝜎 .

In our example, if we wanted to know the z score for an SBP of 100, we just
plug all the numbers into the formula above:

𝑧 = 100 − 114
14 = −1.

What is the z score for an SBP of 132? Look at the graph of the normal model
𝑁(114, 14):

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(data.frame(x = c(58, 170)), aes(x)) +

stat_function(fun = dnorm, args = list(mean = 114, sd = 14)) +
scale_x_continuous(breaks = c(72, 86, 100, 114, 128, 142, 156)) +
geom_vline(xintercept = 132, color = "blue")
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We can see that 132 lies between 128 and 142, which are 1 and 2 standard
deviations above the mean, respectively. The exact z score is

𝑧 = 132 − 114
14 = 1.285714.

The scale function from R also computes z scores. Just note that the function
takes arguments center and scale, not mean and sd.

scale(x = 100, center = 114, scale = 14)

## [,1]
## [1,] -1
## attr(,"scaled:center")
## [1] 114
## attr(,"scaled:scale")
## [1] 14

scale(x = 132, center = 114, scale = 14)

## [,1]
## [1,] 1.285714
## attr(,"scaled:center")
## [1] 114
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## attr(,"scaled:scale")
## [1] 14

Also note that the function spits about a bunch of extra crap we don’t care
about. This goes away for inline code. Go ahead and preview the HTML file
now so you can see the effect in the following sentence:

The z score for 100 is -1 and the z score for 132 is 1.2857143.

Exercise 3 If IQ scores have a mean of 100 and a standard deviation of 16,
what are the z scores for the following IQ scores? Write up your answers as full
sentences using inline R code.

• 80

Please write up your answer here.

• 102

Please write up your answer here.

• 130

Please write up your answer here.

Working with z scores also makes it easier to work with normal models. The
default settings for pdist and qdist are mean = 0 and sd = 1. That saves you
some typing. So, for example, we calculated above that an SBP of 100 has a z
score of -1. What percentage of women are expected to have SBP lower than
100?

pdist("norm", q = -1)
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## [1] 0.1586553

The model predicts that 15.8655254% of women ages 30–44 in the
U.S. and Canada will have SBP less than 100.

Exercise 4 Albert Einstein supposedly had an IQ of 160. Calculate the z
score for his IQ and then use that z score to figure out what percentage of the
population is predicted to have higher IQ than Einstein. Use full sentences and
inline R code to express your answer.

Please write up your answer here.

13.8 QQ plots

All of the work we do with normal models assumes that a normal model is
appropriate. When we want to summarize data using a normal model, this
means that the data distribution should be reasonably unimodal, symmetric,
and with no serious outliers.

We can, of course, use a histogram to check this. But a histogram can be highly
sensitive to the choice of bins. Furthermore, for small sample sizes, histograms
look “chunky”, making it hard to test this assumption.
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An easier way to check normality is to use a quantile-quantile plot, typically
called a QQ plot or sometimes a normal probability plot. We won’t get into the
technicalities of how this plot works. Suffice it to say that if data is normally
distributed, the points of a QQ plot should lie along a diagonal line.
Here is an example. The total snowfall in Grand Rapids, Michigan has been
recorded every year since 1893. This data is included with the mosaic package
in the data frame SnowGR. A histogram (with reasonable binning) shows that
the data is nearly normal.

ggplot(SnowGR, aes(x = Total)) +
geom_histogram(binwidth = 10, boundary = 50)

## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).
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Here is the QQ plot for the same data. Notice that the aesthetics are a little
different; instead of x, we have to use sample.

ggplot(SnowGR, aes(sample = Total)) +
geom_qq() +
geom_qq_line()

## Warning: Removed 1 rows containing non-finite values (`stat_qq()`).

## Warning: Removed 1 rows containing non-finite values (`stat_qq_line()`).
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(The warning is because there is one missing value in the data.)

The geom_qq() layer plots the dots and the geom_qq_line() layer plots a di-
agonal line that the dots should more or less follow.

Other than a few points here and there, the bulk of the data is lined up nicely.
There’s a minor outlier, and that can be seen in both the histogram and the
QQ plot.

Contrast that with skewed data. For example, the Alcohol data set contains
per capita consumption (in liters) of alcohol for various countries over several
years. The alcohol consumption variable is highly skewed, as one can see in the
histogram.

ggplot(Alcohol, aes(x = alcohol)) +
geom_histogram(binwidth = 2, boundary = 0)
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It is also apparent in the QQ plot that the data is not normally distributed.

ggplot(Alcohol, aes(sample = alcohol)) +
geom_qq() +
geom_qq_line()
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The path of dots is sharply curved, indicating a lack of normality.

Exercise 5(a) Find a data set with a numerical variable that is nearly normal
in its distribution. (It can be something we’ve already seen in a past chapter,
or if you’re really ambitious, you’re welcome to find a new data set.) Plot both
a histogram and a QQ plot to demonstrate that the data is nearly normal. No
need for a written response. Just plot the graphs.

Be aware that if you use a data set from a package, you may have to add
library(PACKAGE) to your code. (You replace the word PACKAGE with whatever
package you need.)

# Add code here to plot a histogram.

# Add code here to plot a QQ plot.

Exercise 5(b) Now find a data set with a numerical variable that is skewed
in its distribution. Plot both a histogram and a QQ plot to demonstrate that
the data is not normal. Again, no need for a written response. Just plot the
graphs.

# Add code here to plot a histogram.
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# Add code here to plot a QQ plot.

13.9 Conclusion

The normal model is ubiquitous in statistics, so understanding how to use it to
make predictions is critical. When certain assumptions are met (that will be
discussed in a future chapter), we can use the normal model to make predictions.
The use of z scores allows us to measure distances from the mean in terms of
standard deviations, giving us a scale in which data from different contexts are
comparable as long as such measurements are normally distributed. A QQ plot
helps us check that assumption.

13.9.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 14

Sampling distribution
models

2.0

Functions introduced in this chapter

No new R functions are introduced here.

14.1 Introduction

In this chapter, we’ll revisit the idea of a sampling distribution model. We’ve
already seen how useful it can be to simulate the process of simulating samples
from a population and looking at the distribution of values that can occur by
chance (i.e., sampling variability). We’ve also had some experience working
with normal models. Under certain assumptions, we can use normal models to
approximate our simulated sampling distributions.

14.1.1 Install new packages

There are no new packages used in this chapter.

14.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

395
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https://vectorposse.github.io/intro_stats/chapter_downloads/14-sampling_distribution_models.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

14.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

14.2 Load packages

We load the standard tidyvese package. The mosaic package will provide coin
flips.

library(tidyverse)
library(mosaic)

14.3 Sampling variability and sample size

We know that when we sample from a population, our sample is “wrong”: even
when the sample is representative of the population, we don’t actually expect
our sample statistic to agree exactly with the population parameter of interest.
Our prior simulations have demonstrated this. They are centered on the “true”
value (for example, in a hypothesis test, the “true” value is the assumed null
value), but there is some spread due to sampling variability.

Let’s explore this idea a little further, this time considering how sample size
plays a role in sampling variability.

Suppose that a certain candidate in an election actually has 64% of the sup-
port of registered voters. We conduct a poll of 10 random people, gathering a
representative (though not very large) sample of voters.

We can simulate this task in R by using the rflip command from the mosaic
package. Remember that the default for a coin flip is a 50% probability of heads,
so we have to change that if we want to model a candidate with 64% support.

set.seed(13579)
rflip(10, prob = 0.64)

##
## Flipping 10 coins [ Prob(Heads) = 0.64 ] ...
##
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## H T H T H H H T T H
##
## Number of Heads: 6 [Proportion Heads: 0.6]

You can think of the above command as taking one random sample of size 10 and
getting a certain number of “successes”, where a “success” is a person who votes
for our candidate—here encoded as “heads”. In other words, of the 10 people in
this particular sample, we surveyed 6 people who said they were voting for our
candidate and 4 people who were not.
Using the do command, we can simulate many samples, all of size 10. Let’s take
1000 samples and store them in a variable called sims_1000_10.

set.seed(13579)
sims_1000_10 <- do(1000) * rflip(10, prob = 0.64)
sims_1000_10

## n heads tails prop
## 1 10 5 5 0.5
## 2 10 6 4 0.6
## 3 10 8 2 0.8
## 4 10 7 3 0.7
## 5 10 8 2 0.8
## 6 10 7 3 0.7
## 7 10 5 5 0.5
## 8 10 7 3 0.7
## 9 10 6 4 0.6
## 10 10 6 4 0.6
## 11 10 6 4 0.6
## 12 10 7 3 0.7
## 13 10 6 4 0.6
## 14 10 8 2 0.8
## 15 10 6 4 0.6
## 16 10 9 1 0.9
## 17 10 5 5 0.5
## 18 10 6 4 0.6
## 19 10 9 1 0.9
## 20 10 5 5 0.5
## 21 10 5 5 0.5
## 22 10 5 5 0.5
## 23 10 4 6 0.4
## 24 10 6 4 0.6
## 25 10 9 1 0.9
## 26 10 4 6 0.4
## 27 10 8 2 0.8
## 28 10 8 2 0.8
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## 29 10 8 2 0.8
## 30 10 3 7 0.3
## 31 10 8 2 0.8
## 32 10 8 2 0.8
## 33 10 5 5 0.5
## 34 10 4 6 0.4
## 35 10 7 3 0.7
## 36 10 6 4 0.6
## 37 10 5 5 0.5
## 38 10 5 5 0.5
## 39 10 6 4 0.6
## 40 10 8 2 0.8
## 41 10 7 3 0.7
## 42 10 6 4 0.6
## 43 10 8 2 0.8
## 44 10 7 3 0.7
## 45 10 5 5 0.5
## 46 10 9 1 0.9
## 47 10 8 2 0.8
## 48 10 9 1 0.9
## 49 10 8 2 0.8
## 50 10 6 4 0.6
## 51 10 5 5 0.5
## 52 10 7 3 0.7
## 53 10 9 1 0.9
## 54 10 7 3 0.7
## 55 10 7 3 0.7
## 56 10 7 3 0.7
## 57 10 5 5 0.5
## 58 10 8 2 0.8
## 59 10 4 6 0.4
## 60 10 7 3 0.7
## 61 10 5 5 0.5
## 62 10 6 4 0.6
## 63 10 5 5 0.5
## 64 10 8 2 0.8
## 65 10 6 4 0.6
## 66 10 7 3 0.7
## 67 10 7 3 0.7
## 68 10 4 6 0.4
## 69 10 7 3 0.7
## 70 10 7 3 0.7
## 71 10 7 3 0.7
## 72 10 3 7 0.3
## 73 10 6 4 0.6
## 74 10 6 4 0.6
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## 75 10 5 5 0.5
## 76 10 7 3 0.7
## 77 10 6 4 0.6
## 78 10 5 5 0.5
## 79 10 4 6 0.4
## 80 10 9 1 0.9
## 81 10 5 5 0.5
## 82 10 8 2 0.8
## 83 10 5 5 0.5
## 84 10 7 3 0.7
## 85 10 8 2 0.8
## 86 10 4 6 0.4
## 87 10 6 4 0.6
## 88 10 6 4 0.6
## 89 10 8 2 0.8
## 90 10 8 2 0.8
## 91 10 6 4 0.6
## 92 10 8 2 0.8
## 93 10 8 2 0.8
## 94 10 5 5 0.5
## 95 10 7 3 0.7
## 96 10 9 1 0.9
## 97 10 8 2 0.8
## 98 10 5 5 0.5
## 99 10 8 2 0.8
## 100 10 8 2 0.8
## 101 10 6 4 0.6
## 102 10 6 4 0.6
## 103 10 5 5 0.5
## 104 10 5 5 0.5
## 105 10 8 2 0.8
## 106 10 5 5 0.5
## 107 10 6 4 0.6
## 108 10 8 2 0.8
## 109 10 5 5 0.5
## 110 10 6 4 0.6
## 111 10 7 3 0.7
## 112 10 9 1 0.9
## 113 10 8 2 0.8
## 114 10 6 4 0.6
## 115 10 9 1 0.9
## 116 10 7 3 0.7
## 117 10 8 2 0.8
## 118 10 4 6 0.4
## 119 10 9 1 0.9
## 120 10 6 4 0.6
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## 121 10 6 4 0.6
## 122 10 8 2 0.8
## 123 10 5 5 0.5
## 124 10 6 4 0.6
## 125 10 7 3 0.7
## 126 10 7 3 0.7
## 127 10 5 5 0.5
## 128 10 4 6 0.4
## 129 10 4 6 0.4
## 130 10 4 6 0.4
## 131 10 5 5 0.5
## 132 10 5 5 0.5
## 133 10 7 3 0.7
## 134 10 5 5 0.5
## 135 10 8 2 0.8
## 136 10 7 3 0.7
## 137 10 6 4 0.6
## 138 10 5 5 0.5
## 139 10 8 2 0.8
## 140 10 5 5 0.5
## 141 10 8 2 0.8
## 142 10 6 4 0.6
## 143 10 3 7 0.3
## 144 10 5 5 0.5
## 145 10 5 5 0.5
## 146 10 7 3 0.7
## 147 10 7 3 0.7
## 148 10 8 2 0.8
## 149 10 7 3 0.7
## 150 10 6 4 0.6
## 151 10 10 0 1.0
## 152 10 8 2 0.8
## 153 10 7 3 0.7
## 154 10 4 6 0.4
## 155 10 5 5 0.5
## 156 10 9 1 0.9
## 157 10 6 4 0.6
## 158 10 10 0 1.0
## 159 10 6 4 0.6
## 160 10 7 3 0.7
## 161 10 8 2 0.8
## 162 10 7 3 0.7
## 163 10 6 4 0.6
## 164 10 7 3 0.7
## 165 10 6 4 0.6
## 166 10 8 2 0.8
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## 167 10 4 6 0.4
## 168 10 7 3 0.7
## 169 10 6 4 0.6
## 170 10 8 2 0.8
## 171 10 6 4 0.6
## 172 10 7 3 0.7
## 173 10 4 6 0.4
## 174 10 5 5 0.5
## 175 10 6 4 0.6
## 176 10 7 3 0.7
## 177 10 4 6 0.4
## 178 10 4 6 0.4
## 179 10 7 3 0.7
## 180 10 8 2 0.8
## 181 10 7 3 0.7
## 182 10 4 6 0.4
## 183 10 7 3 0.7
## 184 10 5 5 0.5
## 185 10 4 6 0.4
## 186 10 3 7 0.3
## 187 10 5 5 0.5
## 188 10 6 4 0.6
## 189 10 6 4 0.6
## 190 10 7 3 0.7
## 191 10 7 3 0.7
## 192 10 6 4 0.6
## 193 10 6 4 0.6
## 194 10 6 4 0.6
## 195 10 8 2 0.8
## 196 10 9 1 0.9
## 197 10 7 3 0.7
## 198 10 4 6 0.4
## 199 10 6 4 0.6
## 200 10 8 2 0.8
## 201 10 5 5 0.5
## 202 10 8 2 0.8
## 203 10 5 5 0.5
## 204 10 6 4 0.6
## 205 10 9 1 0.9
## 206 10 6 4 0.6
## 207 10 6 4 0.6
## 208 10 3 7 0.3
## 209 10 4 6 0.4
## 210 10 5 5 0.5
## 211 10 6 4 0.6
## 212 10 8 2 0.8
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## 213 10 7 3 0.7
## 214 10 6 4 0.6
## 215 10 7 3 0.7
## 216 10 6 4 0.6
## 217 10 6 4 0.6
## 218 10 7 3 0.7
## 219 10 5 5 0.5
## 220 10 6 4 0.6
## 221 10 7 3 0.7
## 222 10 9 1 0.9
## 223 10 6 4 0.6
## 224 10 9 1 0.9
## 225 10 4 6 0.4
## 226 10 7 3 0.7
## 227 10 5 5 0.5
## 228 10 6 4 0.6
## 229 10 6 4 0.6
## 230 10 7 3 0.7
## 231 10 6 4 0.6
## 232 10 6 4 0.6
## 233 10 8 2 0.8
## 234 10 6 4 0.6
## 235 10 7 3 0.7
## 236 10 6 4 0.6
## 237 10 8 2 0.8
## 238 10 5 5 0.5
## 239 10 7 3 0.7
## 240 10 6 4 0.6
## 241 10 4 6 0.4
## 242 10 4 6 0.4
## 243 10 7 3 0.7
## 244 10 7 3 0.7
## 245 10 6 4 0.6
## 246 10 2 8 0.2
## 247 10 7 3 0.7
## 248 10 7 3 0.7
## 249 10 6 4 0.6
## 250 10 7 3 0.7
## 251 10 8 2 0.8
## 252 10 7 3 0.7
## 253 10 7 3 0.7
## 254 10 8 2 0.8
## 255 10 7 3 0.7
## 256 10 6 4 0.6
## 257 10 8 2 0.8
## 258 10 7 3 0.7
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## 259 10 7 3 0.7
## 260 10 5 5 0.5
## 261 10 7 3 0.7
## 262 10 5 5 0.5
## 263 10 5 5 0.5
## 264 10 7 3 0.7
## 265 10 5 5 0.5
## 266 10 4 6 0.4
## 267 10 7 3 0.7
## 268 10 8 2 0.8
## 269 10 8 2 0.8
## 270 10 4 6 0.4
## 271 10 8 2 0.8
## 272 10 6 4 0.6
## 273 10 7 3 0.7
## 274 10 9 1 0.9
## 275 10 8 2 0.8
## 276 10 4 6 0.4
## 277 10 8 2 0.8
## 278 10 6 4 0.6
## 279 10 6 4 0.6
## 280 10 7 3 0.7
## 281 10 9 1 0.9
## 282 10 10 0 1.0
## 283 10 8 2 0.8
## 284 10 9 1 0.9
## 285 10 9 1 0.9
## 286 10 7 3 0.7
## 287 10 6 4 0.6
## 288 10 8 2 0.8
## 289 10 6 4 0.6
## 290 10 5 5 0.5
## 291 10 7 3 0.7
## 292 10 7 3 0.7
## 293 10 5 5 0.5
## 294 10 6 4 0.6
## 295 10 5 5 0.5
## 296 10 5 5 0.5
## 297 10 4 6 0.4
## 298 10 8 2 0.8
## 299 10 9 1 0.9
## 300 10 6 4 0.6
## 301 10 5 5 0.5
## 302 10 5 5 0.5
## 303 10 9 1 0.9
## 304 10 5 5 0.5
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## 305 10 5 5 0.5
## 306 10 6 4 0.6
## 307 10 6 4 0.6
## 308 10 9 1 0.9
## 309 10 9 1 0.9
## 310 10 6 4 0.6
## 311 10 7 3 0.7
## 312 10 8 2 0.8
## 313 10 7 3 0.7
## 314 10 8 2 0.8
## 315 10 3 7 0.3
## 316 10 7 3 0.7
## 317 10 6 4 0.6
## 318 10 7 3 0.7
## 319 10 7 3 0.7
## 320 10 8 2 0.8
## 321 10 8 2 0.8
## 322 10 9 1 0.9
## 323 10 8 2 0.8
## 324 10 7 3 0.7
## 325 10 7 3 0.7
## 326 10 8 2 0.8
## 327 10 7 3 0.7
## 328 10 7 3 0.7
## 329 10 4 6 0.4
## 330 10 5 5 0.5
## 331 10 7 3 0.7
## 332 10 7 3 0.7
## 333 10 5 5 0.5
## 334 10 6 4 0.6
## 335 10 8 2 0.8
## 336 10 5 5 0.5
## 337 10 6 4 0.6
## 338 10 7 3 0.7
## 339 10 9 1 0.9
## 340 10 7 3 0.7
## 341 10 6 4 0.6
## 342 10 4 6 0.4
## 343 10 5 5 0.5
## 344 10 7 3 0.7
## 345 10 7 3 0.7
## 346 10 7 3 0.7
## 347 10 6 4 0.6
## 348 10 7 3 0.7
## 349 10 6 4 0.6
## 350 10 8 2 0.8
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## 351 10 5 5 0.5
## 352 10 10 0 1.0
## 353 10 5 5 0.5
## 354 10 7 3 0.7
## 355 10 7 3 0.7
## 356 10 5 5 0.5
## 357 10 7 3 0.7
## 358 10 7 3 0.7
## 359 10 5 5 0.5
## 360 10 8 2 0.8
## 361 10 8 2 0.8
## 362 10 6 4 0.6
## 363 10 6 4 0.6
## 364 10 6 4 0.6
## 365 10 5 5 0.5
## 366 10 6 4 0.6
## 367 10 5 5 0.5
## 368 10 7 3 0.7
## 369 10 8 2 0.8
## 370 10 4 6 0.4
## 371 10 4 6 0.4
## 372 10 6 4 0.6
## 373 10 7 3 0.7
## 374 10 6 4 0.6
## 375 10 6 4 0.6
## 376 10 8 2 0.8
## 377 10 5 5 0.5
## 378 10 7 3 0.7
## 379 10 6 4 0.6
## 380 10 6 4 0.6
## 381 10 4 6 0.4
## 382 10 4 6 0.4
## 383 10 6 4 0.6
## 384 10 8 2 0.8
## 385 10 5 5 0.5
## 386 10 6 4 0.6
## 387 10 7 3 0.7
## 388 10 6 4 0.6
## 389 10 8 2 0.8
## 390 10 8 2 0.8
## 391 10 6 4 0.6
## 392 10 5 5 0.5
## 393 10 8 2 0.8
## 394 10 5 5 0.5
## 395 10 6 4 0.6
## 396 10 6 4 0.6
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## 397 10 5 5 0.5
## 398 10 4 6 0.4
## 399 10 7 3 0.7
## 400 10 7 3 0.7
## 401 10 9 1 0.9
## 402 10 6 4 0.6
## 403 10 6 4 0.6
## 404 10 5 5 0.5
## 405 10 8 2 0.8
## 406 10 5 5 0.5
## 407 10 9 1 0.9
## 408 10 7 3 0.7
## 409 10 6 4 0.6
## 410 10 6 4 0.6
## 411 10 9 1 0.9
## 412 10 4 6 0.4
## 413 10 4 6 0.4
## 414 10 7 3 0.7
## 415 10 7 3 0.7
## 416 10 6 4 0.6
## 417 10 5 5 0.5
## 418 10 6 4 0.6
## 419 10 6 4 0.6
## 420 10 6 4 0.6
## 421 10 7 3 0.7
## 422 10 8 2 0.8
## 423 10 6 4 0.6
## 424 10 7 3 0.7
## 425 10 8 2 0.8
## 426 10 5 5 0.5
## 427 10 8 2 0.8
## 428 10 8 2 0.8
## 429 10 6 4 0.6
## 430 10 5 5 0.5
## 431 10 4 6 0.4
## 432 10 7 3 0.7
## 433 10 6 4 0.6
## 434 10 6 4 0.6
## 435 10 9 1 0.9
## 436 10 5 5 0.5
## 437 10 5 5 0.5
## 438 10 6 4 0.6
## 439 10 6 4 0.6
## 440 10 7 3 0.7
## 441 10 6 4 0.6
## 442 10 8 2 0.8
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## 443 10 6 4 0.6
## 444 10 5 5 0.5
## 445 10 7 3 0.7
## 446 10 6 4 0.6
## 447 10 5 5 0.5
## 448 10 7 3 0.7
## 449 10 6 4 0.6
## 450 10 5 5 0.5
## 451 10 9 1 0.9
## 452 10 8 2 0.8
## 453 10 8 2 0.8
## 454 10 5 5 0.5
## 455 10 6 4 0.6
## 456 10 5 5 0.5
## 457 10 8 2 0.8
## 458 10 8 2 0.8
## 459 10 8 2 0.8
## 460 10 5 5 0.5
## 461 10 7 3 0.7
## 462 10 5 5 0.5
## 463 10 5 5 0.5
## 464 10 8 2 0.8
## 465 10 4 6 0.4
## 466 10 6 4 0.6
## 467 10 6 4 0.6
## 468 10 8 2 0.8
## 469 10 8 2 0.8
## 470 10 6 4 0.6
## 471 10 6 4 0.6
## 472 10 10 0 1.0
## 473 10 4 6 0.4
## 474 10 8 2 0.8
## 475 10 6 4 0.6
## 476 10 6 4 0.6
## 477 10 9 1 0.9
## 478 10 7 3 0.7
## 479 10 7 3 0.7
## 480 10 5 5 0.5
## 481 10 7 3 0.7
## 482 10 5 5 0.5
## 483 10 5 5 0.5
## 484 10 8 2 0.8
## 485 10 7 3 0.7
## 486 10 7 3 0.7
## 487 10 6 4 0.6
## 488 10 6 4 0.6
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## 489 10 6 4 0.6
## 490 10 8 2 0.8
## 491 10 8 2 0.8
## 492 10 2 8 0.2
## 493 10 5 5 0.5
## 494 10 8 2 0.8
## 495 10 7 3 0.7
## 496 10 8 2 0.8
## 497 10 5 5 0.5
## 498 10 7 3 0.7
## 499 10 7 3 0.7
## 500 10 9 1 0.9
## 501 10 6 4 0.6
## 502 10 4 6 0.4
## 503 10 6 4 0.6
## 504 10 5 5 0.5
## 505 10 4 6 0.4
## 506 10 7 3 0.7
## 507 10 7 3 0.7
## 508 10 5 5 0.5
## 509 10 6 4 0.6
## 510 10 6 4 0.6
## 511 10 7 3 0.7
## 512 10 6 4 0.6
## 513 10 3 7 0.3
## 514 10 7 3 0.7
## 515 10 7 3 0.7
## 516 10 6 4 0.6
## 517 10 6 4 0.6
## 518 10 6 4 0.6
## 519 10 6 4 0.6
## 520 10 8 2 0.8
## 521 10 6 4 0.6
## 522 10 8 2 0.8
## 523 10 8 2 0.8
## 524 10 7 3 0.7
## 525 10 8 2 0.8
## 526 10 7 3 0.7
## 527 10 7 3 0.7
## 528 10 5 5 0.5
## 529 10 6 4 0.6
## 530 10 8 2 0.8
## 531 10 6 4 0.6
## 532 10 4 6 0.4
## 533 10 5 5 0.5
## 534 10 5 5 0.5
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## 535 10 4 6 0.4
## 536 10 7 3 0.7
## 537 10 6 4 0.6
## 538 10 9 1 0.9
## 539 10 7 3 0.7
## 540 10 4 6 0.4
## 541 10 7 3 0.7
## 542 10 3 7 0.3
## 543 10 10 0 1.0
## 544 10 5 5 0.5
## 545 10 7 3 0.7
## 546 10 8 2 0.8
## 547 10 5 5 0.5
## 548 10 6 4 0.6
## 549 10 7 3 0.7
## 550 10 7 3 0.7
## 551 10 5 5 0.5
## 552 10 7 3 0.7
## 553 10 5 5 0.5
## 554 10 7 3 0.7
## 555 10 6 4 0.6
## 556 10 7 3 0.7
## 557 10 6 4 0.6
## 558 10 5 5 0.5
## 559 10 6 4 0.6
## 560 10 7 3 0.7
## 561 10 5 5 0.5
## 562 10 6 4 0.6
## 563 10 5 5 0.5
## 564 10 7 3 0.7
## 565 10 7 3 0.7
## 566 10 6 4 0.6
## 567 10 4 6 0.4
## 568 10 5 5 0.5
## 569 10 6 4 0.6
## 570 10 4 6 0.4
## 571 10 8 2 0.8
## 572 10 7 3 0.7
## 573 10 7 3 0.7
## 574 10 7 3 0.7
## 575 10 8 2 0.8
## 576 10 6 4 0.6
## 577 10 5 5 0.5
## 578 10 8 2 0.8
## 579 10 5 5 0.5
## 580 10 6 4 0.6
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## 581 10 6 4 0.6
## 582 10 7 3 0.7
## 583 10 7 3 0.7
## 584 10 8 2 0.8
## 585 10 7 3 0.7
## 586 10 7 3 0.7
## 587 10 6 4 0.6
## 588 10 5 5 0.5
## 589 10 8 2 0.8
## 590 10 8 2 0.8
## 591 10 8 2 0.8
## 592 10 6 4 0.6
## 593 10 7 3 0.7
## 594 10 6 4 0.6
## 595 10 7 3 0.7
## 596 10 5 5 0.5
## 597 10 6 4 0.6
## 598 10 6 4 0.6
## 599 10 8 2 0.8
## 600 10 10 0 1.0
## 601 10 5 5 0.5
## 602 10 4 6 0.4
## 603 10 9 1 0.9
## 604 10 7 3 0.7
## 605 10 8 2 0.8
## 606 10 7 3 0.7
## 607 10 5 5 0.5
## 608 10 4 6 0.4
## 609 10 7 3 0.7
## 610 10 7 3 0.7
## 611 10 7 3 0.7
## 612 10 8 2 0.8
## 613 10 6 4 0.6
## 614 10 7 3 0.7
## 615 10 7 3 0.7
## 616 10 7 3 0.7
## 617 10 7 3 0.7
## 618 10 5 5 0.5
## 619 10 6 4 0.6
## 620 10 7 3 0.7
## 621 10 6 4 0.6
## 622 10 6 4 0.6
## 623 10 6 4 0.6
## 624 10 6 4 0.6
## 625 10 8 2 0.8
## 626 10 7 3 0.7
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## 627 10 4 6 0.4
## 628 10 6 4 0.6
## 629 10 5 5 0.5
## 630 10 4 6 0.4
## 631 10 8 2 0.8
## 632 10 5 5 0.5
## 633 10 7 3 0.7
## 634 10 6 4 0.6
## 635 10 5 5 0.5
## 636 10 6 4 0.6
## 637 10 7 3 0.7
## 638 10 8 2 0.8
## 639 10 6 4 0.6
## 640 10 5 5 0.5
## 641 10 6 4 0.6
## 642 10 9 1 0.9
## 643 10 9 1 0.9
## 644 10 4 6 0.4
## 645 10 8 2 0.8
## 646 10 8 2 0.8
## 647 10 7 3 0.7
## 648 10 8 2 0.8
## 649 10 9 1 0.9
## 650 10 7 3 0.7
## 651 10 5 5 0.5
## 652 10 5 5 0.5
## 653 10 6 4 0.6
## 654 10 8 2 0.8
## 655 10 5 5 0.5
## 656 10 8 2 0.8
## 657 10 9 1 0.9
## 658 10 8 2 0.8
## 659 10 9 1 0.9
## 660 10 7 3 0.7
## 661 10 6 4 0.6
## 662 10 8 2 0.8
## 663 10 6 4 0.6
## 664 10 7 3 0.7
## 665 10 7 3 0.7
## 666 10 8 2 0.8
## 667 10 6 4 0.6
## 668 10 7 3 0.7
## 669 10 6 4 0.6
## 670 10 10 0 1.0
## 671 10 5 5 0.5
## 672 10 7 3 0.7
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## 673 10 7 3 0.7
## 674 10 8 2 0.8
## 675 10 7 3 0.7
## 676 10 4 6 0.4
## 677 10 5 5 0.5
## 678 10 7 3 0.7
## 679 10 3 7 0.3
## 680 10 6 4 0.6
## 681 10 6 4 0.6
## 682 10 6 4 0.6
## 683 10 6 4 0.6
## 684 10 7 3 0.7
## 685 10 7 3 0.7
## 686 10 4 6 0.4
## 687 10 6 4 0.6
## 688 10 6 4 0.6
## 689 10 6 4 0.6
## 690 10 6 4 0.6
## 691 10 8 2 0.8
## 692 10 8 2 0.8
## 693 10 7 3 0.7
## 694 10 6 4 0.6
## 695 10 8 2 0.8
## 696 10 7 3 0.7
## 697 10 8 2 0.8
## 698 10 8 2 0.8
## 699 10 5 5 0.5
## 700 10 9 1 0.9
## 701 10 6 4 0.6
## 702 10 7 3 0.7
## 703 10 7 3 0.7
## 704 10 6 4 0.6
## 705 10 7 3 0.7
## 706 10 8 2 0.8
## 707 10 5 5 0.5
## 708 10 7 3 0.7
## 709 10 6 4 0.6
## 710 10 6 4 0.6
## 711 10 7 3 0.7
## 712 10 7 3 0.7
## 713 10 8 2 0.8
## 714 10 4 6 0.4
## 715 10 6 4 0.6
## 716 10 5 5 0.5
## 717 10 8 2 0.8
## 718 10 6 4 0.6
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## 719 10 6 4 0.6
## 720 10 4 6 0.4
## 721 10 7 3 0.7
## 722 10 6 4 0.6
## 723 10 9 1 0.9
## 724 10 7 3 0.7
## 725 10 5 5 0.5
## 726 10 7 3 0.7
## 727 10 6 4 0.6
## 728 10 6 4 0.6
## 729 10 5 5 0.5
## 730 10 8 2 0.8
## 731 10 7 3 0.7
## 732 10 6 4 0.6
## 733 10 5 5 0.5
## 734 10 6 4 0.6
## 735 10 5 5 0.5
## 736 10 4 6 0.4
## 737 10 7 3 0.7
## 738 10 7 3 0.7
## 739 10 4 6 0.4
## 740 10 7 3 0.7
## 741 10 8 2 0.8
## 742 10 6 4 0.6
## 743 10 6 4 0.6
## 744 10 7 3 0.7
## 745 10 10 0 1.0
## 746 10 4 6 0.4
## 747 10 8 2 0.8
## 748 10 7 3 0.7
## 749 10 7 3 0.7
## 750 10 4 6 0.4
## 751 10 9 1 0.9
## 752 10 7 3 0.7
## 753 10 7 3 0.7
## 754 10 9 1 0.9
## 755 10 5 5 0.5
## 756 10 8 2 0.8
## 757 10 5 5 0.5
## 758 10 8 2 0.8
## 759 10 4 6 0.4
## 760 10 8 2 0.8
## 761 10 7 3 0.7
## 762 10 8 2 0.8
## 763 10 6 4 0.6
## 764 10 8 2 0.8
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## 765 10 3 7 0.3
## 766 10 9 1 0.9
## 767 10 7 3 0.7
## 768 10 6 4 0.6
## 769 10 3 7 0.3
## 770 10 4 6 0.4
## 771 10 6 4 0.6
## 772 10 6 4 0.6
## 773 10 5 5 0.5
## 774 10 4 6 0.4
## 775 10 5 5 0.5
## 776 10 7 3 0.7
## 777 10 5 5 0.5
## 778 10 8 2 0.8
## 779 10 8 2 0.8
## 780 10 6 4 0.6
## 781 10 7 3 0.7
## 782 10 6 4 0.6
## 783 10 6 4 0.6
## 784 10 6 4 0.6
## 785 10 7 3 0.7
## 786 10 7 3 0.7
## 787 10 6 4 0.6
## 788 10 6 4 0.6
## 789 10 8 2 0.8
## 790 10 6 4 0.6
## 791 10 9 1 0.9
## 792 10 5 5 0.5
## 793 10 8 2 0.8
## 794 10 4 6 0.4
## 795 10 6 4 0.6
## 796 10 5 5 0.5
## 797 10 6 4 0.6
## 798 10 6 4 0.6
## 799 10 7 3 0.7
## 800 10 3 7 0.3
## 801 10 4 6 0.4
## 802 10 6 4 0.6
## 803 10 5 5 0.5
## 804 10 7 3 0.7
## 805 10 8 2 0.8
## 806 10 7 3 0.7
## 807 10 7 3 0.7
## 808 10 4 6 0.4
## 809 10 6 4 0.6
## 810 10 8 2 0.8
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## 811 10 4 6 0.4
## 812 10 7 3 0.7
## 813 10 9 1 0.9
## 814 10 7 3 0.7
## 815 10 7 3 0.7
## 816 10 6 4 0.6
## 817 10 5 5 0.5
## 818 10 8 2 0.8
## 819 10 6 4 0.6
## 820 10 6 4 0.6
## 821 10 5 5 0.5
## 822 10 8 2 0.8
## 823 10 6 4 0.6
## 824 10 4 6 0.4
## 825 10 5 5 0.5
## 826 10 3 7 0.3
## 827 10 7 3 0.7
## 828 10 9 1 0.9
## 829 10 8 2 0.8
## 830 10 7 3 0.7
## 831 10 6 4 0.6
## 832 10 5 5 0.5
## 833 10 8 2 0.8
## 834 10 6 4 0.6
## 835 10 8 2 0.8
## 836 10 5 5 0.5
## 837 10 10 0 1.0
## 838 10 5 5 0.5
## 839 10 4 6 0.4
## 840 10 7 3 0.7
## 841 10 7 3 0.7
## 842 10 7 3 0.7
## 843 10 4 6 0.4
## 844 10 7 3 0.7
## 845 10 7 3 0.7
## 846 10 7 3 0.7
## 847 10 6 4 0.6
## 848 10 8 2 0.8
## 849 10 6 4 0.6
## 850 10 5 5 0.5
## 851 10 7 3 0.7
## 852 10 7 3 0.7
## 853 10 4 6 0.4
## 854 10 7 3 0.7
## 855 10 8 2 0.8
## 856 10 2 8 0.2
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## 857 10 9 1 0.9
## 858 10 6 4 0.6
## 859 10 7 3 0.7
## 860 10 5 5 0.5
## 861 10 7 3 0.7
## 862 10 6 4 0.6
## 863 10 5 5 0.5
## 864 10 7 3 0.7
## 865 10 8 2 0.8
## 866 10 4 6 0.4
## 867 10 4 6 0.4
## 868 10 5 5 0.5
## 869 10 4 6 0.4
## 870 10 4 6 0.4
## 871 10 5 5 0.5
## 872 10 6 4 0.6
## 873 10 4 6 0.4
## 874 10 5 5 0.5
## 875 10 7 3 0.7
## 876 10 10 0 1.0
## 877 10 6 4 0.6
## 878 10 7 3 0.7
## 879 10 5 5 0.5
## 880 10 9 1 0.9
## 881 10 7 3 0.7
## 882 10 5 5 0.5
## 883 10 5 5 0.5
## 884 10 8 2 0.8
## 885 10 6 4 0.6
## 886 10 5 5 0.5
## 887 10 7 3 0.7
## 888 10 7 3 0.7
## 889 10 6 4 0.6
## 890 10 7 3 0.7
## 891 10 9 1 0.9
## 892 10 7 3 0.7
## 893 10 5 5 0.5
## 894 10 8 2 0.8
## 895 10 6 4 0.6
## 896 10 5 5 0.5
## 897 10 6 4 0.6
## 898 10 6 4 0.6
## 899 10 6 4 0.6
## 900 10 8 2 0.8
## 901 10 8 2 0.8
## 902 10 7 3 0.7
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## 903 10 7 3 0.7
## 904 10 3 7 0.3
## 905 10 9 1 0.9
## 906 10 4 6 0.4
## 907 10 6 4 0.6
## 908 10 9 1 0.9
## 909 10 7 3 0.7
## 910 10 7 3 0.7
## 911 10 8 2 0.8
## 912 10 4 6 0.4
## 913 10 6 4 0.6
## 914 10 7 3 0.7
## 915 10 8 2 0.8
## 916 10 5 5 0.5
## 917 10 7 3 0.7
## 918 10 5 5 0.5
## 919 10 9 1 0.9
## 920 10 7 3 0.7
## 921 10 6 4 0.6
## 922 10 6 4 0.6
## 923 10 8 2 0.8
## 924 10 6 4 0.6
## 925 10 7 3 0.7
## 926 10 5 5 0.5
## 927 10 5 5 0.5
## 928 10 5 5 0.5
## 929 10 4 6 0.4
## 930 10 6 4 0.6
## 931 10 3 7 0.3
## 932 10 5 5 0.5
## 933 10 7 3 0.7
## 934 10 7 3 0.7
## 935 10 9 1 0.9
## 936 10 7 3 0.7
## 937 10 6 4 0.6
## 938 10 6 4 0.6
## 939 10 7 3 0.7
## 940 10 7 3 0.7
## 941 10 7 3 0.7
## 942 10 7 3 0.7
## 943 10 9 1 0.9
## 944 10 8 2 0.8
## 945 10 7 3 0.7
## 946 10 7 3 0.7
## 947 10 5 5 0.5
## 948 10 5 5 0.5
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## 949 10 7 3 0.7
## 950 10 7 3 0.7
## 951 10 6 4 0.6
## 952 10 4 6 0.4
## 953 10 7 3 0.7
## 954 10 5 5 0.5
## 955 10 8 2 0.8
## 956 10 6 4 0.6
## 957 10 8 2 0.8
## 958 10 6 4 0.6
## 959 10 7 3 0.7
## 960 10 6 4 0.6
## 961 10 9 1 0.9
## 962 10 6 4 0.6
## 963 10 5 5 0.5
## 964 10 5 5 0.5
## 965 10 6 4 0.6
## 966 10 7 3 0.7
## 967 10 7 3 0.7
## 968 10 8 2 0.8
## 969 10 7 3 0.7
## 970 10 7 3 0.7
## 971 10 7 3 0.7
## 972 10 4 6 0.4
## 973 10 9 1 0.9
## 974 10 6 4 0.6
## 975 10 6 4 0.6
## 976 10 8 2 0.8
## 977 10 7 3 0.7
## 978 10 7 3 0.7
## 979 10 8 2 0.8
## 980 10 3 7 0.3
## 981 10 9 1 0.9
## 982 10 4 6 0.4
## 983 10 5 5 0.5
## 984 10 6 4 0.6
## 985 10 9 1 0.9
## 986 10 5 5 0.5
## 987 10 4 6 0.4
## 988 10 8 2 0.8
## 989 10 6 4 0.6
## 990 10 5 5 0.5
## 991 10 9 1 0.9
## 992 10 7 3 0.7
## 993 10 6 4 0.6
## 994 10 5 5 0.5
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## 995 10 6 4 0.6
## 996 10 6 4 0.6
## 997 10 5 5 0.5
## 998 10 10 0 1.0
## 999 10 6 4 0.6
## 1000 10 7 3 0.7

Note that with 10 people, it is impossible to get a 64% success rate in any given
sample. (That would be 6.4 people!) Nevertheless, we can see that many of the
samples gave us around 5–8 successes, as we’d expect when the true population
rate is 64%. Also, the mean number of successes across all simulations is 6.414,
which is very close to 6.4.
Instead of focusing on the total number of successes, let’s use the proportion
of successes in each sample. We can graph our simulated proportions, just as
we’ve done in previous chapters. (The fancy stuff in scale_x_continuous is
just making sure that the x-axis goes from 0 to 1 and that the tick marks appear
as multiples of 0.1.)

ggplot(sims_1000_10, aes(x = prop)) +
geom_histogram(binwidth = 0.05) +
scale_x_continuous(limits = c(0, 1.1),

breaks = seq(0, 1, 0.1))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Because each sample has size 10, the proportion of successes can only be mul-
tiples of 0.1. Although the distribution is somewhat normally shaped, it is
discrete (no values in between the bars) and there is an appreciable left skew.

What happens if we increase the sample size to 20? (The binwidth has to change
to see the discrete bars.)

set.seed(13579)
sims_1000_20 <- do(1000) * rflip(20, prob = 0.64)

ggplot(sims_1000_20, aes(x = prop)) +
geom_histogram(binwidth = 0.025) +
scale_x_continuous(limits = c(0, 1.1),

breaks = seq(0, 1, 0.1))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Exercise 1 Explain how the distribution of simulations has changed going
from a sample size of 10 to a sample size of 20.

Please write up your answer here.
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Exercise 2(a) Run a set of simulations yourself, this time with samples of
size 50. Use the same number of simulations (1000) and the same ggplot code
from above (especially the scale_x_continuous option) so that the x-axis is
scaled identically to the previous cases, but change the binwidth to 0.01.

set.seed(13579)
# Add code here to simulate 1000 random samples of size 50 and plot them.

Exercise 2(b) Explain how the distribution of simulations has changed going
from a sample size of 10 to 20 to 50.

Please write up your answer here.

14.4 The sampling distribution model and the
standard error

In the last chapter on normal models, we mentioned briefly the Central Limit
Theorem and the fact that under certain assumptions, our simulations would
look normally distributed. More concretely, the Central Limit Theorem tells us
that as our sample size increases, the distribution of sample proportions looks
more and more like a normal model. This model is called the sampling distribu-
tion model because it describes how many different samples from a population
should be distributed.

Which normal model do we use? In other words, what is the mean and standard
deviation of a normal model that describes a simulation of repeated samples?

The simulations above are all centered at the same place, 0.64. This is no
surprise. If the true population proportion is 0.64, then we expect most of our
samples to be around 64% (even if, as above, it is actually impossible to get
exactly 64% in any given sample).

But what about the standard deviation? It seems to be changing with each
sample size.

Exercise 3 Looking at your simulations above, how does the standard devi-
ation appear to change as the sample size increases? Intuitively, why do you
think this happens? (Hint: think about the relationship between larger sample
sizes and accuracy.)

Please write up your answer here.



422 CHAPTER 14. SAMPLING DISTRIBUTION MODELS

The standard deviation of a sampling distribution is usually called the standard
error. (The use of the word “error” in statistics does not mean that anyone
made a mistake. A better word for error would be “uncertainty” or even just
“variability”.)

There is some complicated mathematics involved in figuring out the standard
error, so I’ll just tell you what it is. If 𝑝 is the true population proportion, then
the standard error is

√𝑝(1 − 𝑝)
𝑛 .

Therefore, if the sample size is large enough, the sampling distribution model is
nearly normal, and the correct normal model is

𝑁 (𝑝,√𝑝(1 − 𝑝)
𝑛 ) .

In our election example, we can calculate the standard error for a sample of size
10:

√𝑝(1 − 𝑝)
𝑛 = √0.64(1 − 0.64)

10 = 0.152.

We can do this easily using inline R code. (Remember that R is nothing more
than a glorified calculator.) If a candidate has 64% of the vote and we take a
sample of size 10, the standard error is 0.1517893. In other words, the sampling
distribution model is

𝑁(0.64, 0.152).

For a sample of size 20, the standard error is 0.1073313 and the sampling dis-
tribution model is

𝑁(0.64, 0.107).

Exercise 4 Calculate the standard error for the example above, but this time
using a sample size of 50. Give your answer as a contextually meaningful full
sentence using inline R code.

Please write up your answer here.



14.5. CONDITIONS 423

14.5 Conditions

Like anything in statistics, there are assumptions that have to be met before
applying any technique. We must check that certain conditions are true before
we can reasonably make the necessary assumptions required by our model.
When we want to use a normal model, we have to make sure the sampling
distribution model is truly normal (or nearly normal).
First, we need our samples to be random. Clearly, when samples are not random,
there is a danger of bias, and then all bets are off. Of course, in real life hardly
any sample will be truly random, so being representative is the most we can
usually hope for.
Second, our sample size must be less than 10% of the population size. The
reasons for this are somewhat technical, and 10% is a rough guideline. The idea
is that if we are sampling, we need our sample not to be a significant chunk of
the population.
These two conditions are always important when sampling. Together, they help
ensure that the mathematical assumption of independence is met. In other
words, when these two conditions are met, there is a better chance that the
data from one member of our sample will not influence nor be influenced by the
data from another member.
For applying normal models, there is one more condition. It is called the “suc-
cess/failure” condition. We need for the total number of successes to be at least
10 and, similarly, for the total number of failures to be at least 10.
Go back and consider our first simulated sample. The true rate of success in
the population was presumed to be 64%. Given that we were sampling only
10 individuals, this implies that, on average, we would expect 6.4 people out of
10 to vote for the candidate. And likewise, that means that we would expect
3.6 people to vote against the candidate. (Clearly, it is impossible in any given
sample to get 6.4 votes for, or 3.6 votes against. But on average, this is what we
expect.) In fact, since the sample size was 10, there was no way that we could
meet the success/failure condition. When we plotted the histogram of simulated
proportions, we saw the problem: with such small numbers, the histogram was
skewed, and not normal.
We check the success/failure condition by calculating 𝑛𝑝 and 𝑛(1 − 𝑝): 𝑛 is
the sample size and 𝑝 is the proportion of successes. Therefore, 𝑛𝑝 is the total
number of successes. Since 1 − 𝑝 is the proportion of failures, 𝑛(1 − 𝑝) is the
total number of failures. Each of the numbers 𝑛𝑝 and 𝑛(1−𝑝) needs to be bigger
than 10.
In our example, 𝑛 = 10 (the sample size), and 𝑝 = 0.64 (the probability of
success). So

𝑛𝑝 = 10(0.64) = 6.4
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and

𝑛(1 − 𝑝) = 10(1 − 0.64) = 10(0.36) = 3.6.

Neither of these numbers is bigger than 10.
Notice that when 𝑛 is large, the quantities 𝑛𝑝 and 𝑛(1 − 𝑝) will also tend to
be large. This is the content of the Central Limit Theorem: when sample sizes
grow, the sampling distribution model becomes more and more normal.
There is something else going on too. Suppose that 𝑛 = 100 but 𝑝 = 0.01. The
sample seems quite large, but let’s look at the sampling distribution through a
simulation.

set.seed(13579)
sims_1000_100 <- do(1000) * rflip(100, prob = 0.01)

ggplot(sims_1000_100, aes(x = prop)) +
geom_histogram(binwidth = 0.005) +
scale_x_continuous(limits = c(-0.01, 0.1),

breaks = seq(0, 0.1, 0.01))

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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(Note that the x-axis scale is much smaller than it was before.)
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Exercise 5 What’s the problem here? Despite having a fairly large sample
size, why is this distribution so skewed?

Please write up your answer here.

In this scenario, the success/failure condition fails because

𝑛𝑝 = (100)(0.01) = 1 ≱ 10.

In other words, in a typical sample, we expect 1 success and 99 failures.

Exercise 6 Going back to the election example (in which the candidate has
64% of the vote), check that a sample size of 50 does satisfy the success/failure
condition.

Please write up your answer here.

14.6 Using the model to make predictions

Once we know that a normal model is appropriate, we can employ all the tools
we’ve previously developed to work with normal models, notably pdist and
qdist.

For example, we know that samples can be “wrong” due to sampling variability.
Even though we know the candidate has 64% support, most surveys are not
going to give us back that exact number.

Could a survey of 50 random voters accidentally predict defeat for the candidate
even though the candidate will actually win with 64% support?

Let’s simulate:

set.seed(13579)
survey_sim <- do(1000) * rflip(50, prob = 0.64)

ggplot(survey_sim, aes(x = prop)) +
geom_histogram(binwidth = 0.01) +
geom_vline(xintercept = 0.5, color = "blue")



426 CHAPTER 14. SAMPLING DISTRIBUTION MODELS

0

50

100

0.5 0.6 0.7 0.8
prop

co
un

t

It looks like there are at least a few simulated samples that could come in less
than 50% by chance.

Let’s check the conditions to see if we can use a normal model:

• Random

– We are told that our 50 voters are a random sample.

• 10%

– It is safe to assume there are more than 500 voters for this election.

• Success/failure

– The number of expected successes is 32 and the expected number of
failures is 18. These are both greater than 10.

Since the conditions are satisfied, our sampling distribution model can be ap-
proximated with a normal model. The standard error is 0.0678823. Therefore,
our normal model is

𝑁(0.64, 0.068).

Back to our original question. How likely is it that a random survey of 50 voters
predicts defeat for the candidate? Well, any survey that comes in less than 50%
will make it look like the candidate is going to lose. So we simply need to figure
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out how much of the sampling distribution lies below 50%. This is made simple
with the pdist command. Note that we’ll get a more accurate answer if we
include the formula for the standard error, rather than rounding it off as 0.068.

pdist("norm", q = 0.5,
mean = 0.64, sd = sqrt(0.64 * (1 - 0.64) / 50))
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A:0.020

B:0.980

## [1] 0.01958508

From the picture, we can see that there is only about a 2% chance that one of
our surveys of 50 voters could predict defeat. Using inline code, we calculate it
as 1.9585083%. The vast majority of the time, then, when we go out and take
such a survey, the results will show the candidate in the lead. It will likely not
say exactly 64%; there is still a relatively wide range of values that seem to be
possible outcomes of such surveys. Nevertheless, this range of values is mostly
above 50%. Nevertheless, there is a small chance that the survey will give us
the “wrong” answer and predict defeat for the candidate.1

Exercise 7(a) Suppose we are testing a new drug that is intended to reduce
cholesterol levels in patients with high cholesterol. Also suppose that the drug

1Most polls in the 2016 presidential election predicted a win for Hillary Clinton, so they
also gave the wrong answer. It’s possible that some of them were accidentally wrong due to
sampling variability, but a much more likely explanation for their overall failure was bias.
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works for 83% of such patients. When testing our drug, we use a suitably
random sample of 143 individuals with high cholesterol.

First, simulate the sampling distribution using 1000 samples, each of size 143.
Plot the resulting sampling distribution.

set.seed(13579)
# Add code here to simulate 1000 samples of size 143
# and plot the resulting distribution.

Exercise 7(b) Next, check the conditions that would allow you to use a nor-
mal model as a sampling distribution model. I’ve given you an outline below:

• Random

– [Check condition here.]

• 10%

– [Check condition here.]

• Success/failure

– [Check condition here.]

Exercise 7(c) If the conditions are met, we can use a normal model as the
sampling distribution model. What are the mean and standard error of this
model? (You should use inline R code to calculate and report the standard
error.)

Please write up your answer here.

Exercise 7(d) Market analysis shows that unless the drug is effective in more
than 85% of patients, doctors won’t prescribe it. Secretly, we know that the
true rate of effectiveness is 83%, but the manufacturer doesn’t know that yet.
They only have access to their drug trial data in which they had 143 patients
with high cholesterol.

Using the normal model you just developed, determine how likely the drug trial
data will be to show the drug as “effective” according to the 85% standard. In
other words, how often will our sample give us a result that is 85% or higher
(even though secretly we know the true effectiveness is only 83%)? Report your
answer in a contextually-meaningful full sentence using inline R code. (Hint:
you’ll need to use the pdist command.)

Please write up your answer here.
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14.7 Conclusion

It is very easy to work with normal models. Therefore, when we want to study
sampling variability, it is useful to have a normal model as a sampling distribu-
tion model. The standard error is a measure of how variable random samples
can be. Such variability naturally decreases as our sample size grows. (This
makes sense: larger samples give us more precise estimates of the true popula-
tion, so they should be “closer” to the true population value.) Once conditions
are checked, we can use normal models to make predictions about what we are
likely to see when we sample from the population.

14.7.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 15

Inference for one proportion

2.0

Functions introduced in this chapter

No new R functions are introduced here.

15.1 Introduction

Our earlier work with simulations showed us that when the number of suc-
cesses and failures is large enough, we can use a normal model as our sampling
distribution model.
We revisit hypothesis tests for a single proportion, but now, instead of running
a simulation to compute the P-value, we take the shortcut of computing the
P-value directly from a normal model.
There are no new concepts here. All we are doing is revisiting the rubric for
inference and making the necessary changes.

15.1.1 Install new packages

There are no new packages used in this chapter.

15.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
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as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/15-inference_for_one_proportion.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

15.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

15.2 Load packages

We load the standard tidyverse, janitor and infer packages as well as the
openintro package to access data on heart transplant candidates. We’ll include
mosaic for one spot below when we compare the results of infer to the results
of graphing a normal distribution using qdist.

library(tidyverse)
library(janitor)
library(infer)
library(openintro)
library(mosaic)

15.3 Revisiting the rubric for inference

Instead of running a simulation, we are going to assume that the sampling
distribution can be modeled with a normal model as long as the conditions for
using a normal model are met.

Although the rubric has not changed, the use of a normal model changes quite
a bit about the way we go through the other steps. For example, we won’t
have simulated values to give us a histogram of the null model. Instead, we’ll
go straight to graphing a normal model. We won’t compute the percent of our
simulated samples that are at least as extreme as our test statistic to get the
P-value. The P-value from a normal model is found directly from shading the
model.

What follows is a fully-worked example of inference for one proportion. After
the hypothesis test (sometimes called a one-proportion z-test for reasons that
will become clear), we also follow up by computing a confidence interval. From
now on, we will consider inference to consist of a hypothesis test
and a confidence interval. Whenever you’re asked a question that requires
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statistical inference, you should follow both the rubric steps for a hypothesis
test and for a confidence interval.

The example below will pause frequently for commentary on the steps, especially
where their execution will be different from what you’ve seen before when you
used simulation. When it’s your turn to work through another example on your
own, you should follow the outline of the rubric, but you should not copy and
paste the commentary that accompanies it.

15.4 Research question

Data from the Stanford University Heart Transplant Study is located in the
openintro package in a data frame called heart_transplant. From the help
file we learn, “Each patient entering the program was designated officially a
heart transplant candidate, meaning that he was gravely ill and would most
likely benefit from a new heart.” Survival rates are not good for this population,
although they are better for those who receive a heart transplant. Do heart
transplant recipients still have less than a 50% chance of survival?

15.5 Exploratory data analysis

15.5.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

Start by typing ?heart_transplant at the Console or searching for
heart_translplant in the Help tab to read the help file.

Exercise 1 Click on the link under “Source” in the help file. Why is this not
helpful for determining the provenance of the data?

Now try to do an internet search to find the original research article from 1974.
Why is this search process also not likely to help you determine the provenance
of the data?

Please write up your answer here.

Now that we have learned everything we can reasonably learn about the data,
we print it out and look at the variables.
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heart_transplant

## # A tibble: 103 x 8
## id acceptyear age survived survtime prior transplant wait
## <int> <int> <int> <fct> <int> <fct> <fct> <int>
## 1 15 68 53 dead 1 no control NA
## 2 43 70 43 dead 2 no control NA
## 3 61 71 52 dead 2 no control NA
## 4 75 72 52 dead 2 no control NA
## 5 6 68 54 dead 3 no control NA
## 6 42 70 36 dead 3 no control NA
## 7 54 71 47 dead 3 no control NA
## 8 38 70 41 dead 5 no treatment 5
## 9 85 73 47 dead 5 no control NA
## 10 2 68 51 dead 6 no control NA
## # i 93 more rows

glimpse(heart_transplant)

## Rows: 103
## Columns: 8
## $ id <int> 15, 43, 61, 75, 6, 42, 54, 38, 85, 2, 103, 12, 48, 102, 35,~
## $ acceptyear <int> 68, 70, 71, 72, 68, 70, 71, 70, 73, 68, 67, 68, 71, 74, 70,~
## $ age <int> 53, 43, 52, 52, 54, 36, 47, 41, 47, 51, 39, 53, 56, 40, 43,~
## $ survived <fct> dead, dead, dead, dead, dead, dead, dead, dead, dead, dead,~
## $ survtime <int> 1, 2, 2, 2, 3, 3, 3, 5, 5, 6, 6, 8, 9, 11, 12, 16, 16, 16, ~
## $ prior <fct> no, no, no, no, no, no, no, no, no, no, no, no, no, no, no,~
## $ transplant <fct> control, control, control, control, control, control, contr~
## $ wait <int> NA, NA, NA, NA, NA, NA, NA, 5, NA, NA, NA, NA, NA, NA, NA, ~

Commentary: The variable of interest is survived, which is coded as a factor
variable with two categories, “alive” and “dead”. Keep in mind that because
we are interested in survival rates, the “alive” condition will be considered the
“success” condition.

There are 103 patients, but we are not considering all these patients. Our sam-
ple should consist of only those patients who actually received the transplant.
The following table shows that only 69 patients were in the “treatment” group
(meaning that they received a heart transplant).

tabyl(heart_transplant, transplant) %>%
adorn_totals()

## transplant n percent



15.5. EXPLORATORY DATA ANALYSIS 435

## control 34 0.3300971
## treatment 69 0.6699029
## Total 103 1.0000000

15.5.2 Prepare the data for analysis.

CAUTION: If you are copying and pasting from this example to use
for another research question, the following code chunk is specific to
this research question and not applicable in other contexts.
We need to use filter so we get only the patients who actually received the
heart transplant.

# Do not copy and paste this code for future work
heart_transplant2 <- heart_transplant %>%

filter(transplant == "treatment")
heart_transplant2

## # A tibble: 69 x 8
## id acceptyear age survived survtime prior transplant wait
## <int> <int> <int> <fct> <int> <fct> <fct> <int>
## 1 38 70 41 dead 5 no treatment 5
## 2 95 73 40 dead 16 no treatment 2
## 3 3 68 54 dead 16 no treatment 1
## 4 74 72 29 dead 17 no treatment 5
## 5 20 69 55 dead 28 no treatment 1
## 6 70 72 52 dead 30 no treatment 5
## 7 4 68 40 dead 39 no treatment 36
## 8 100 74 35 alive 39 yes treatment 38
## 9 16 68 56 dead 43 no treatment 20
## 10 45 71 36 dead 45 no treatment 1
## # i 59 more rows

Commentary: don’t forget the double equal sign (==) that checks whether the
treatment variable is equal to the value “treatment”. (See the Chapter 5 if
you’ve forgotten how to use filter.)
Again, this step isn’t something you need to do for other research questions.
This question is peculiar because it asks only about patients who received a
heart transplant, and that only involves a subset of the data we have in the
heart_transplant data frame.

15.5.3 Make tables or plots to explore the data visually.

Making sure that we refer from now on to the heart_transplant2 data frame
and not the original heart_transplant data frame:



436 CHAPTER 15. INFERENCE FOR ONE PROPORTION

tabyl(heart_transplant2, survived) %>%
adorn_totals()

## survived n percent
## alive 24 0.3478261
## dead 45 0.6521739
## Total 69 1.0000000

15.6 Hypotheses

15.6.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample consists of 69 heart transplant recipients in a study at Stanford
University. The population of interest is presumably all heart transplants re-
cipients.

15.6.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ Heart transplant recipients have a 50% chance of survival.

𝐻𝐴 ∶ Heart transplant recipients have less than a 50% chance of survival.

Commentary: It is slightly unusual that we are conducting a one-sided test.
The standard default is typically a two-sided test. However, it is not for us
to choose: the proposed research question is unequivocal in hypothesizing “less
than 50%” survival.

15.6.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝑝𝑎𝑙𝑖𝑣𝑒 = 0.5
𝐻𝐴 ∶ 𝑝𝑎𝑙𝑖𝑣𝑒 < 0.5

15.7 Model

15.7.1 Identify the sampling distribution model.

We will use a normal model.
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Commentary: In past chapters, we have simulated the sampling distribution
or applied some kind of randomization to simulate the effect of the null hy-
pothesis. The point of this chapter is that we can—when the conditions are
met—substitute a normal model to replace the unimodal and symmetric his-
togram that resulted from randomization and simulation.

15.7.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random
– Since the 69 patients are from a study at Stanford, we do not have a

random sample of all heart transplant recipients. We hope that the
patients recruited to this study were physiologically similar to other
heart patients so that they are a representative sample. Without
more information, we have no real way of knowing.

• 10%
– 69 patients are definitely less than 10% of all heart transplant recip-

ients.
• Success/failure

𝑛𝑝𝑎𝑙𝑖𝑣𝑒 = 69(0.5) = 34.5 ≥ 10

𝑛(1 − 𝑝𝑎𝑙𝑖𝑣𝑒) = 69(0.5) = 34.5 ≥ 10

Commentary: Notice something interesting here. Why did we not use the 24
patients who survived and the 45 who died as the successes and failures? In
other words, why did we use 𝑛𝑝𝑎𝑙𝑖𝑣𝑒 and 𝑛(1 − 𝑝𝑎𝑙𝑖𝑣𝑒) instead of 𝑛 ̂𝑝𝑎𝑙𝑖𝑣𝑒 and
𝑛(1 − ̂𝑝𝑎𝑙𝑖𝑣𝑒)?
Remember the logic of inference and the philosophy of the null hypothesis.
To convince the skeptics, we must assume the null hypothesis throughout the
process. It’s only after we present sufficient evidence that can we reject the
null and fall back on the alternative hypothesis that encapsulates our research
question.
Therefore, under the assumption of the null, the sampling distribution is the null
distribution, meaning that it’s centered at 0.5. All work we do with the normal
model, including checking conditions, must use the null model with 𝑝𝑎𝑙𝑖𝑣𝑒 = 0.5.
That’s also why the numbers don’t have to be whole numbers. If the null states
that of the 69 patients, 50% are expected to survive, then we expect 50% of 69,
or 34.5, to survive. Of course, you can’t have half of a survivor. But these are
not actual survivors. Rather, they are the expected number of survivors in a
group of 69 patients on average under the assumption of the null.
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15.8 Mechanics

15.8.1 Compute the test statistic.

alive_prop <- heart_transplant2 %>%
specify(response = survived, succes = "alive") %>%
calculate(stat = "prop")

alive_prop

## Response: survived (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.348

We’ll also compute the corresponding z score.

alive_z <- heart_transplant2 %>%
specify(response = survived, success = "alive") %>%
hypothesize(null = "point", p = 0.5) %>%
calculate(stat = "z")

alive_z

## Response: survived (factor)
## Null Hypothesis: point
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 -2.53

Commentary: The sample proportion code is straightforward and we’ve seen it
before. To get the z score, we also have to tell infer what the null hypothesis
is so that it knows where the center of our normal distribution will be. In the
hypothesize function, we tell infer to use a “point” null hypothesis with p =
0.5. All this means is that the null is a specific point: 0.5. (Contrast this to
hypothesis tests with two variables when we had null = "independence".)

We can confirm the calculation of the z score manually. It’s easiest to compute
the standard error first. Recall that the standard error is

𝑆𝐸 = √𝑝𝑎𝑙𝑖𝑣𝑒(1 − 𝑝𝑎𝑙𝑖𝑣𝑒)
𝑛 = √0.5(1 − 0.5)

69
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Remember that are working under the assumption of the null hy-
pothesis. This means that we use 𝑝𝑎𝑙𝑖𝑣𝑒 = 0.5 everywhere in the formula for
the standard error.

We can do the math in R and store our result as SE.

SE <- sqrt(0.5*(1 - 0.5)/69)
SE

## [1] 0.06019293

Then our z score is

𝑧 = ( ̂𝑝𝑎𝑙𝑖𝑣𝑒 − 𝑝𝑎𝑙𝑖𝑣𝑒)
𝑆𝐸 = ( ̂𝑝𝑎𝑙𝑖𝑣𝑒 − 𝑝𝑎𝑙𝑖𝑣𝑒)

√𝑝𝑎𝑙𝑖𝑣𝑒(1−𝑝𝑎𝑙𝑖𝑣𝑒)
𝑛

= (0.348 − 0.5)
√ 0.5(1−0.5)

69

= −2.53.

Using the values of alive_prop and SE:

z <- (alive_prop - 0.5)/SE
z

## stat
## 1 -2.528103

Both the sample proportion ̂𝑝𝑎𝑙𝑖𝑣𝑒 (stored above as alive_prop) and the cor-
responding z-score can be considered the “test statistic”. If we use ̂𝑝𝑎𝑙𝑖𝑣𝑒 as the
test statistic, then we’re considering the null model to be

𝑁 (0.5,√0.5(1 − 0.5)
69 ) .

If we use z as the test statistic, then we’re considering the null model to be the
standard normal model:

𝑁(0, 1).

The standard normal model is more intuitive and easier to work with, both
conceptually and in R. Generally, then, we will consider z as the test statistic
so that we can consider our null model to be the standard normal model. For
example, knowing that our test statistic is two and a half standard deviations
to the left of the null value already tells us a lot. We can anticipate a small
P-value leading to rejection of the null. Nevertheless, for this type of hypothesis
test, we’ll compute both in this section of the rubric.
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15.8.2 Report the test statistic in context (when possible).

The test statistic is 0.3478261. In other words, 34.7826087% of heart transplant
recipients were alive at the end of the study.

The z score is -2.5281029. The proportion of survivors is about 2.5 standard
errors below the null value.

15.8.3 Plot the null distribution.

alive_test <- heart_transplant2 %>%
specify(response = survived, success = "alive") %>%
hypothesize(null = "point", p = 0.5) %>%
assume(distribution = "z")

alive_test

## A Z distribution.

alive_test %>%
visualize() +
shade_p_value(obs_stat = alive_z, direction = "less")
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Commentary: In past chapters, we have used the generate verb to get many
repetitions (usually 1000) of some kind of random process to simulate the sam-
pling distribution model. In this chapter, we have used the verb assume instead
to assume that the sampling distribution is a normal model. As long as the
conditions hold, this is a reasonable assumption. This also means that we don’t
have to use set.seed as there is no random process to reproduce.

Compare the graph above to what we would see if we simulated the sampling
distribution. (Now we do need set.seed!)

set.seed(6789)
alive_test_draw <- heart_transplant2 %>%

specify(response = survived, success = "alive") %>%
hypothesize(null = "point", p = 0.5) %>%
generate(reps = 1000, type = "draw") %>%
calculate(stat = "prop")

alive_test_draw

## Response: survived (factor)
## Null Hypothesis: point
## # A tibble: 1,000 x 2
## replicate stat
## <fct> <dbl>
## 1 1 0.493
## 2 2 0.406
## 3 3 0.435
## 4 4 0.580
## 5 5 0.522
## 6 6 0.507
## 7 7 0.580
## 8 8 0.435
## 9 9 0.551
## 10 10 0.435
## # i 990 more rows

alive_test_draw %>%
visualize() +
shade_p_value(obs_stat = alive_prop, direction = "less")
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This is essentially the same picture, although the model above is centered on
the null value 0.5 instead of the z score of 0. This also means that the obs_stat
had to be the sample proportion alive_prop and not the z score alive_z.

15.8.4 Calculate the P-value.

alive_test_p <- alive_test %>%
get_p_value(obs_stat = alive_z, direction = "less")

alive_test_p

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.00573

Commentary: compare this to the P-value we get from simulating random
draws:

alive_test_draw %>%
get_p_value(obs_stat = alive_prop, direction = "less")

## # A tibble: 1 x 1
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## p_value
## <dbl>
## 1 0.007

The values are not exactly the same. And a new simulation with a different
seed would likely give another slightly different P-value. The takeaway here is
that the P-value itself has some uncertainty, so you should never take the value
too seriously.

15.8.5 Interpret the P-value as a probability given the
null.

The P-value is 0.005734. If there were truly a 50% chance of survival among
heart transplant patients, there would only be a 0.5734037% chance of seeing
data at least as extreme as we saw.

15.9 Conclusion

15.9.1 State the statistical conclusion.

We reject the null hypothesis.

15.9.2 State (but do not overstate) a contextually mean-
ingful conclusion.

We have sufficient evidence that heart transplant recipients have less than a
50% chance of survival.

15.9.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

Because we know nearly nothing about the provenance of the data, it’s hard
to generalize the conclusion. We know the data is from 1974, so it’s also very
likely that survival rates for heart transplant patients then are not the same
as they are today. The most we could hope for is that the Stanford data was
representative for heart transplant patients in 1974. Our sample size (69) is also
quite small.
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15.9.4 Identify the possibility of either a Type I or Type II
error and state what making such an error means
in the context of the hypotheses.

As we rejected the null, we run the risk of making a Type I error. It is possible
that the null is true and that there is a 50% chance of survival for these patients,
but we got an unusual sample that appears to have a much smaller chance of
survival.

15.10 Confidence interval

15.10.1 Check the relevant conditions to ensure that
model assumptions are met.

• Random

– Same as above.

• 10%

– Same as above.

• Success/failure

– There were 24 patients who survived and 45 who died in our sample.
Both are larger than 10.

Commentary: In the “Confidence interval” section of the rubric, there is no
need to recheck conditions that have already been checked. The sample has
not changed; if it met the “Random” and “10%” conditions before, it will meet
them now.

So why recheck the success/failure condition?

Keep in mind that in a hypothesis test, we temporarily assume the null is true.
The null states that 𝑝 = 0.5 and the resulting null distribution is, therefore,
centered at 𝑝 = 0.5. The success/failure condition is a condition that applies to
the normal model we’re using, and for a hypothesis test, that’s the null model.

By contrast, a confidence interval is making no assumption about the “true”
value of 𝑝. The inferential goal of a confidence interval is to try to capture
the true value of 𝑝, so we certainly cannot make any assumptions about it.
Therefore, we go back to the original way we learned about the success/failure
condition. That is, we check the actual number of successes and failures.
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15.10.2 Calculate and graph the confidence interval.

alive_ci <- alive_test %>%
get_confidence_interval(point_estimate = alive_prop, level = 0.95)

alive_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.235 0.460

alive_test %>%
visualize() +
shade_confidence_interval(endpoints = alive_ci)
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Commentary: when we use a theoretical normal distribution, we have to com-
pute the confidence interval a different way.

When we bootstrapped, we had many repetitions of a process that resulted in
a sampling distribution. From all those, we could find the 2.5th percentile and
the 97.5th percentile. Although we let the computer do it for us, the process is
straightforward enough that we could do it by hand if we needed to. Just put
all 1000 bootstrapped values in order, then go to the 25th and 975th position
in the list.
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We don’t have a list of 1000 values when we use an abstract curve to represent
our sampling distribution. Nevertheless, we can find the 2.5th percentile and
the 97.5th percentile using the area under the normal curve as we saw in the
last two chapters. We can do this “manually” with the qdist command, but
we need the standard error first.
Didn’t we calculate this earlier?

𝑆𝐸 = √𝑝𝑎𝑙𝑖𝑣𝑒(1 − 𝑝𝑎𝑙𝑖𝑣𝑒)
𝑛 = √0.5(1 − 0.5)

69
Well…sort of. The value of 𝑝𝑎𝑙𝑖𝑣𝑒 here is the value of the null hypothesis from
the hypothesis test above. However, the hypothesis test is done. For a confi-
dence interval, we have no information about any “null” value. There is no null
anymore. It’s irrelevant.
So what is the standard error for a confidence interval? Since we don’t have
𝑝𝑎𝑙𝑖𝑣𝑒, the best we can do is replace it with ̂𝑝𝑎𝑙𝑖𝑣𝑒:

𝑆𝐸 = √ ̂𝑝𝑎𝑙𝑖𝑣𝑒(1 − ̂𝑝𝑎𝑙𝑖𝑣𝑒)
𝑛 = √0.3478261(1 − 0.3478261)

69 .

We can let R do the heavy lifting here:

SE2 <- sqrt(alive_prop * (1 - alive_prop) / 69)
SE2

## stat
## 1 0.05733743

And now this number can go into qdist as our standard deviation:

qdist("norm", p = c(0.025, 0.975), mean = 0.3478261, sd = 0.05733743, plot = FALSE)

## [1] 0.2354468 0.4602054

The numbers above are identical to the ones computed by the infer commands.

15.10.3 State (but do not overstate) a contextually mean-
ingful interpretation.

We are 95% confident that the true percentage of heart transplant recipients
who survive is captured in the interval (23.5446784%, 46.020539%).
Commentary: Note that when we state our contextually meaningful conclusion,
we also convert the decimal proportions to percentages. Humans like percent-
ages a lot better.
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15.10.4 If running a two-sided test, explain how the con-
fidence interval reinforces the conclusion of the
hypothesis test.

We are not running a two-sided test, so this step is not applicable.

15.10.5 When comparing two groups, comment on the ef-
fect size and the practical significance of the re-
sult.

This is not applicable here because we are not comparing two groups. We are
looking at the survival percentage in only one group of patients, those who had
a heart transplant.

15.11 Your turn

Follow the rubric to answer the following research question:

Some heart transplant candidates have already had a prior surgery. Use the
variable prior in the heart_transplant data set to determine if fewer than
50% of patients have had a prior surgery. (To be clear, you are being asked to
perform a one-sided test again.) Be sure to use the full heart_transplant
data, not the modified heart_transplant2 from the previous example.
The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the tibbles
and variables to adapt the worked examples to your own work. For example,
if you run a two-sided test instead of a one-sided test, there are a few places
that have to be adjusted accordingly. Understanding the sampling distribution
model and the computation of the P-value goes a long way toward understanding
the changes that must be made. Do not blindly copy and paste code without
understanding what it does. And you should never copy and paste text. All
the sentences and paragraphs you write are expressions of your own analysis.
They must reflect your own understanding of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere. In particular, you should use
prior_test(instead of alive_test) to store the results of your hy-
pothesis test. Make other corresponding changes as necessary, like
prior_test_p instead of alive_test_p, for example.
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Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here.

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population
(or populations) of interest. [Remember that you are using the full
heart_transplant data, so your sample size should be larger here than in the
example above.]

Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ
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Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. [Remember that you are using the full heart_transplant data, so the
number of successes and failures will be different here than in the example
above.]

Please write up your answer here. (Some conditions may require R code as
well.)

Mechanics [Be sure to use heart_transplant everywhere and not
heart_transplant2!]

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.
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Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

Confidence interval

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

# Add code here to calculate the confidence interval.

Calculate the confidence interval.

State (but do not overstate) a contextually meaningful interpretation.
Please write up your answer here.

If running a two-sided test, explain how the confidence interval rein-
forces the conclusion of the hypothesis test. [Not always applicable.]
Please write up your answer here.

When comparing two groups, comment on the effect size and the
practical significance of the result. [Not always applicable.] Please
write up your answer here.
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15.12 Conclusion

When certain conditions are met, we can use a theoretical normal model—a
perfectly symmetric bell curve—as a sampling distribution model in hypothesis
testing. Because this does not require drawing many samples, it is faster and
cleaner than simulation. Of course, on modern computing devices, drawing even
thousands of simulated samples is not very time consuming, and the code we
write doesn’t really change much. Given the additional success/failure condition
that has to met, it’s worth considering the pros and cons of using a normal model
instead of simulating the sampling distribution. Similarly, confidence intervals
can be obtained directly from the percentiles of the normal model without the
need to obtain bootstrapped samples.

15.12.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 16

Inference for two
proportions

2.0

Functions introduced in this chapter

No new R functions are introduced here.

16.1 Introduction

In this chapter, we revisit the idea of inference for two proportions, but this
time using a normal model as the sampling distribution model.

16.1.1 Install new packages

There are no new packages used in this chapter.

16.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).
https://vectorposse.github.io/intro_stats/chapter_downloads/16-inference_for_two_proportions.Rmd
Once the file is downloaded, move it to your project folder in RStudio and open
it there.

453
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16.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

16.2 Load packages

We load the standard tidyverse, janitor and infer packages as well as the
MASS package for the Melanoma data.

library(tidyverse)
library(janitor)
library(infer)
library(MASS)

16.3 Research question

In an earlier chapter, we used the data set Melanoma from the MASS package to
explore the possibility of a sex bias among patients with melanoma. A related
question is whether male or females are more likely to die from melanoma. In
this case, we are thinking of status as the response variable and sex as the
predictor variable.

16.4 The sampling distribution model for two
proportions

When we simulated a sampling distribution using randomization (shuffling the
values of the predictor variable), it looked like the simulated sampling distribu-
tion was roughly normal. Therefore, we should be able to use a normal model
in place of randomization when we want to perform statistical inference.

The question is, “Which normal model?” In other words, what is the mean and
standard deviation we should use?

Since we have two groups, let’s call the true proportion of success 𝑝1 for group
1 and 𝑝2 for group 2. Therefore, the true difference between groups 1 and 2 in
the population is 𝑝1−𝑝2. If we sample repeatedly from groups 1 and 2 and form
many sample differences ̂𝑝1 − ̂𝑝2, we should expect most of the values ̂𝑝1 − ̂𝑝2 to
be close to the true difference 𝑝1−𝑝2. In other words, the sampling distribution
is centered at a mean of 𝑝1 − 𝑝2.

What about the standard error? This is much more technical and complicated.
Here is the formula, whose derivation is outside the scope of the course:
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√𝑝1(1 − 𝑝1)
𝑛1

+ 𝑝2(1 − 𝑝2)
𝑛2

.

So the somewhat complicated normal model is

𝑁 (𝑝1 − 𝑝2,√
𝑝1(1 − 𝑝1)

𝑛1
+ 𝑝2(1 − 𝑝2)

𝑛2
).

When we ran hypothesis tests for one proportion, the true proportion 𝑝 was
assumed to be known, set equal to some null value. Therefore, we could calculate
the standard error √𝑝(1−𝑝)

𝑛 under the assumption of the null.

We also have a null hypothesis for two proportions. When comparing two
groups, the default assumption is that the two groups are the same. This trans-
lates into the mathematical statement 𝑝1 − 𝑝2 = 0 (i.e., there is no difference
between 𝑝1 and 𝑝2).

But there is a problem here. Although we are assuming something about the
difference 𝑝1 − 𝑝2, we are not assuming anything about the actual values of 𝑝1
and 𝑝2. For example, both groups could be 0.3, or 0.6, or 0.92, or whatever,
and the difference between the groups would still be zero.

Without values of 𝑝1 and 𝑝2, we cannot plug anything into the standard error
formula above. One easy “cheat” is to just use the sample values ̂𝑝1 and ̂𝑝2:

𝑆𝐸 = √ ̂𝑝1(1 − ̂𝑝1)
𝑛1

+ ̂𝑝2(1 − ̂𝑝2)
𝑛2

.

There is a more sophisticated way to address this called “pooling”. This more
advanced concept is covered in an optional appendix to this chapter.

16.5 Inference for two proportions

Below is a fully-worked example of inference (hypothesis test and confidence
interval) for two proportions. When you work your own example, you can
thoughtfully copy and paste the R code, making changes as necessary.

The example below will pause frequently for commentary on the steps, especially
where their execution will be different from what you’ve seen before when you
used randomization. When it’s your turn to work through another example on
your own, you should follow the outline of the rubric, but you should not copy
and paste the commentary that accompanies it.
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16.6 Exploratory data analysis

16.6.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

Type ?Melanoma at the Console to read the help file. We discussed this data
back in Chapter 11 and determined that it was difficult, if not impossible, to
discover anything useful about the true provenance of the data. We can, at
least, print the data out and examine the variables

Melanoma

## time status sex age year thickness ulcer sex_fct
## 1 10 3 1 76 1972 6.76 1 male
## 2 30 3 1 56 1968 0.65 0 male
## 3 35 2 1 41 1977 1.34 0 male
## 4 99 3 0 71 1968 2.90 0 female
## 5 185 1 1 52 1965 12.08 1 male
## 6 204 1 1 28 1971 4.84 1 male
## 7 210 1 1 77 1972 5.16 1 male
## 8 232 3 0 60 1974 3.22 1 female
## 9 232 1 1 49 1968 12.88 1 male
## 10 279 1 0 68 1971 7.41 1 female
## 11 295 1 0 53 1969 4.19 1 female
## 12 355 3 0 64 1972 0.16 1 female
## 13 386 1 0 68 1965 3.87 1 female
## 14 426 1 1 63 1970 4.84 1 male
## 15 469 1 0 14 1969 2.42 1 female
## 16 493 3 1 72 1971 12.56 1 male
## 17 529 1 1 46 1971 5.80 1 male
## 18 621 1 1 72 1972 7.06 1 male
## 19 629 1 1 95 1968 5.48 1 male
## 20 659 1 1 54 1972 7.73 1 male
## 21 667 1 0 89 1968 13.85 1 female
## 22 718 1 1 25 1967 2.34 1 male
## 23 752 1 1 37 1973 4.19 1 male
## 24 779 1 1 43 1967 4.04 1 male
## 25 793 1 1 68 1970 4.84 1 male
## 26 817 1 0 67 1966 0.32 0 female
## 27 826 3 0 86 1965 8.54 1 female
## 28 833 1 0 56 1971 2.58 1 female
## 29 858 1 0 16 1967 3.56 0 female
## 30 869 1 0 42 1965 3.54 0 female
## 31 872 1 0 65 1968 0.97 0 female
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## 32 967 1 1 52 1970 4.83 1 male
## 33 977 1 1 58 1967 1.62 1 male
## 34 982 1 0 60 1970 6.44 1 female
## 35 1041 1 1 68 1967 14.66 0 male
## 36 1055 1 0 75 1967 2.58 1 female
## 37 1062 1 1 19 1966 3.87 1 male
## 38 1075 1 1 66 1971 3.54 1 male
## 39 1156 1 0 56 1970 1.34 1 female
## 40 1228 1 1 46 1973 2.24 1 male
## 41 1252 1 0 58 1971 3.87 1 female
## 42 1271 1 0 74 1971 3.54 1 female
## 43 1312 1 0 65 1970 17.42 1 female
## 44 1427 3 1 64 1972 1.29 0 male
## 45 1435 1 1 27 1969 3.22 0 male
## 46 1499 2 1 73 1973 1.29 0 male
## 47 1506 1 1 56 1970 4.51 1 male
## 48 1508 2 1 63 1973 8.38 1 male
## 49 1510 2 0 69 1973 1.94 0 female
## 50 1512 2 0 77 1973 0.16 0 female
## 51 1516 1 1 80 1968 2.58 1 male
## 52 1525 3 0 76 1970 1.29 1 female
## 53 1542 2 0 65 1973 0.16 0 female
## 54 1548 1 0 61 1972 1.62 0 female
## 55 1557 2 0 26 1973 1.29 0 female
## 56 1560 1 0 57 1973 2.10 0 female
## 57 1563 2 0 45 1973 0.32 0 female
## 58 1584 1 1 31 1970 0.81 0 male
## 59 1605 2 0 36 1973 1.13 0 female
## 60 1621 1 0 46 1972 5.16 1 female
## 61 1627 2 0 43 1973 1.62 0 female
## 62 1634 2 0 68 1973 1.37 0 female
## 63 1641 2 1 57 1973 0.24 0 male
## 64 1641 2 0 57 1973 0.81 0 female
## 65 1648 2 0 55 1973 1.29 0 female
## 66 1652 2 0 58 1973 1.29 0 female
## 67 1654 2 1 20 1973 0.97 0 male
## 68 1654 2 0 67 1973 1.13 0 female
## 69 1667 1 0 44 1971 5.80 1 female
## 70 1678 2 0 59 1973 1.29 0 female
## 71 1685 2 0 32 1973 0.48 0 female
## 72 1690 1 1 83 1971 1.62 0 male
## 73 1710 2 0 55 1973 2.26 0 female
## 74 1710 2 1 15 1973 0.58 0 male
## 75 1726 1 0 58 1970 0.97 1 female
## 76 1745 2 0 47 1973 2.58 1 female
## 77 1762 2 0 54 1973 0.81 0 female
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## 78 1779 2 1 55 1973 3.54 1 male
## 79 1787 2 1 38 1973 0.97 0 male
## 80 1787 2 0 41 1973 1.78 1 female
## 81 1793 2 0 56 1973 1.94 0 female
## 82 1804 2 0 48 1973 1.29 0 female
## 83 1812 2 1 44 1973 3.22 1 male
## 84 1836 2 0 70 1972 1.53 0 female
## 85 1839 2 0 40 1972 1.29 0 female
## 86 1839 2 1 53 1972 1.62 1 male
## 87 1854 2 0 65 1972 1.62 1 female
## 88 1856 2 1 54 1972 0.32 0 male
## 89 1860 3 1 71 1969 4.84 1 male
## 90 1864 2 0 49 1972 1.29 0 female
## 91 1899 2 0 55 1972 0.97 0 female
## 92 1914 2 0 69 1972 3.06 0 female
## 93 1919 2 1 83 1972 3.54 0 male
## 94 1920 2 1 60 1972 1.62 1 male
## 95 1927 2 1 40 1972 2.58 1 male
## 96 1933 1 0 77 1972 1.94 0 female
## 97 1942 2 0 35 1972 0.81 0 female
## 98 1955 2 0 46 1972 7.73 1 female
## 99 1956 2 0 34 1972 0.97 0 female
## 100 1958 2 0 69 1972 12.88 0 female
## 101 1963 2 0 60 1972 2.58 0 female
## 102 1970 2 1 84 1972 4.09 1 male
## 103 2005 2 0 66 1972 0.64 0 female
## 104 2007 2 1 56 1972 0.97 0 male
## 105 2011 2 0 75 1972 3.22 1 female
## 106 2024 2 0 36 1972 1.62 0 female
## 107 2028 2 1 52 1972 3.87 1 male
## 108 2038 2 0 58 1972 0.32 1 female
## 109 2056 2 0 39 1972 0.32 0 female
## 110 2059 2 1 68 1972 3.22 1 male
## 111 2061 1 1 71 1968 2.26 0 male
## 112 2062 1 0 52 1965 3.06 0 female
## 113 2075 2 1 55 1972 2.58 1 male
## 114 2085 3 0 66 1970 0.65 0 female
## 115 2102 2 1 35 1972 1.13 0 male
## 116 2103 1 1 44 1966 0.81 0 male
## 117 2104 2 0 72 1972 0.97 0 female
## 118 2108 1 0 58 1969 1.76 1 female
## 119 2112 2 0 54 1972 1.94 1 female
## 120 2150 2 0 33 1972 0.65 0 female
## 121 2156 2 0 45 1972 0.97 0 female
## 122 2165 2 1 62 1972 5.64 0 male
## 123 2209 2 0 72 1971 9.66 0 female
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## 124 2227 2 0 51 1971 0.10 0 female
## 125 2227 2 1 77 1971 5.48 1 male
## 126 2256 1 0 43 1971 2.26 1 female
## 127 2264 2 0 65 1971 4.83 1 female
## 128 2339 2 0 63 1971 0.97 0 female
## 129 2361 2 1 60 1971 0.97 0 male
## 130 2387 2 0 50 1971 5.16 1 female
## 131 2388 1 1 40 1966 0.81 0 male
## 132 2403 2 0 67 1971 2.90 1 female
## 133 2426 2 0 69 1971 3.87 0 female
## 134 2426 2 0 74 1971 1.94 1 female
## 135 2431 2 0 49 1971 0.16 0 female
## 136 2460 2 0 47 1971 0.64 0 female
## 137 2467 1 0 42 1965 2.26 1 female
## 138 2492 2 0 54 1971 1.45 0 female
## 139 2493 2 1 72 1971 4.82 1 male
## 140 2521 2 0 45 1971 1.29 1 female
## 141 2542 2 1 67 1971 7.89 1 male
## 142 2559 2 0 48 1970 0.81 1 female
## 143 2565 1 1 34 1970 3.54 1 male
## 144 2570 2 0 44 1970 1.29 0 female
## 145 2660 2 0 31 1970 0.64 0 female
## 146 2666 2 0 42 1970 3.22 1 female
## 147 2676 2 0 24 1970 1.45 1 female
## 148 2738 2 0 58 1970 0.48 0 female
## 149 2782 1 1 78 1969 1.94 0 male
## 150 2787 2 1 62 1970 0.16 0 male
## 151 2984 2 1 70 1969 0.16 0 male
## 152 3032 2 0 35 1969 1.29 0 female
## 153 3040 2 0 61 1969 1.94 0 female
## 154 3042 1 0 54 1967 3.54 1 female
## 155 3067 2 0 29 1969 0.81 0 female
## 156 3079 2 1 64 1969 0.65 0 male
## 157 3101 2 1 47 1969 7.09 0 male
## 158 3144 2 1 62 1969 0.16 0 male
## 159 3152 2 0 32 1969 1.62 0 female
## 160 3154 3 1 49 1969 1.62 0 male
## 161 3180 2 0 25 1969 1.29 0 female
## 162 3182 3 1 49 1966 6.12 0 male
## 163 3185 2 0 64 1969 0.48 0 female
## 164 3199 2 0 36 1969 0.64 0 female
## 165 3228 2 0 58 1969 3.22 1 female
## 166 3229 2 0 37 1969 1.94 0 female
## 167 3278 2 1 54 1969 2.58 0 male
## 168 3297 2 0 61 1968 2.58 1 female
## 169 3328 2 1 31 1968 0.81 0 male
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## 170 3330 2 1 61 1968 0.81 1 male
## 171 3338 1 0 60 1967 3.22 1 female
## 172 3383 2 0 43 1968 0.32 0 female
## 173 3384 2 0 68 1968 3.22 1 female
## 174 3385 2 0 4 1968 2.74 0 female
## 175 3388 2 1 60 1968 4.84 1 male
## 176 3402 2 1 50 1968 1.62 0 male
## 177 3441 2 0 20 1968 0.65 0 female
## 178 3458 3 0 54 1967 1.45 0 female
## 179 3459 2 0 29 1968 0.65 0 female
## 180 3459 2 1 56 1968 1.29 1 male
## 181 3476 2 0 60 1968 1.62 0 female
## 182 3523 2 0 46 1968 3.54 0 female
## 183 3667 2 0 42 1967 3.22 0 female
## 184 3695 2 0 34 1967 0.65 0 female
## 185 3695 2 0 56 1967 1.03 0 female
## 186 3776 2 1 12 1967 7.09 1 male
## 187 3776 2 0 21 1967 1.29 1 female
## 188 3830 2 1 46 1967 0.65 0 male
## 189 3856 2 0 49 1967 1.78 0 female
## 190 3872 2 0 35 1967 12.24 1 female
## 191 3909 2 1 42 1967 8.06 1 male
## 192 3968 2 0 47 1967 0.81 0 female
## 193 4001 2 0 69 1967 2.10 0 female
## 194 4103 2 0 52 1966 3.87 0 female
## 195 4119 2 1 52 1966 0.65 0 male
## 196 4124 2 0 30 1966 1.94 1 female
## 197 4207 2 1 22 1966 0.65 0 male
## 198 4310 2 1 55 1966 2.10 0 male
## 199 4390 2 0 26 1965 1.94 1 female
## 200 4479 2 0 19 1965 1.13 1 female
## 201 4492 2 1 29 1965 7.06 1 male
## 202 4668 2 0 40 1965 6.12 0 female
## 203 4688 2 0 42 1965 0.48 0 female
## 204 4926 2 0 50 1964 2.26 0 female
## 205 5565 2 0 41 1962 2.90 0 female

glimpse(Melanoma)

## Rows: 205
## Columns: 8
## $ time <int> 10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386,~
## $ status <int> 3, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, ~
## $ sex <int> 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, ~
## $ age <int> 76, 56, 41, 71, 52, 28, 77, 60, 49, 68, 53, 64, 68, 63, 14, ~
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## $ year <int> 1972, 1968, 1977, 1968, 1965, 1971, 1972, 1974, 1968, 1971, ~
## $ thickness <dbl> 6.76, 0.65, 1.34, 2.90, 12.08, 4.84, 5.16, 3.22, 12.88, 7.41~
## $ ulcer <int> 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ sex_fct <fct> male, male, male, female, male, male, male, female, male, fe~

16.6.2 Prepare the data for analysis.

The two variables of interest are status and sex. We are considering them as
categorical variables, but they are recorded numerically in the data frame. We
convert them to proper factor variables and put them in their own data frame
using the help file to identify the levels and labels we need.

There is a minor hitch with status. The help file shows three categories: 1.
died from melanoma, 2. alive, 3. dead from other causes. For two-proportion
inference, it would be better to have two categories only, a success category
and a failure category. Since our research question asks about deaths due to
melanoma, the “success” condition is the one numbered 1 in the help file, “died
from melanoma”. That means we need to combine the other two categories into
a single failure category. Perhaps we should call it “other”. You can accom-
plish this by simply repeating the “other” label more than once in the factor
command:

Melanoma <- Melanoma %>%
mutate(sex_fct = factor(sex,

levels = c(0, 1),
labels = c("female", "male")),

status_fct = factor(status,
levels = c(1, 2, 3),
labels = c("died from melanoma", "other", "other")))

glimpse(Melanoma)

## Rows: 205
## Columns: 9
## $ time <int> 10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386~
## $ status <int> 3, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1,~
## $ sex <int> 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,~
## $ age <int> 76, 56, 41, 71, 52, 28, 77, 60, 49, 68, 53, 64, 68, 63, 14,~
## $ year <int> 1972, 1968, 1977, 1968, 1965, 1971, 1972, 1974, 1968, 1971,~
## $ thickness <dbl> 6.76, 0.65, 1.34, 2.90, 12.08, 4.84, 5.16, 3.22, 12.88, 7.4~
## $ ulcer <int> 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ sex_fct <fct> male, male, male, female, male, male, male, female, male, f~
## $ status_fct <fct> other, other, other, other, died from melanoma, died from m~
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Exercise 1 Observe the new variables sex_fct and status_fct in the
glimpse output above. How can we check that the categories got assigned
correctly and match the original sex and status variables?
Please write up your answer here.

16.6.3 Make tables or plots to explore the data visually.

As these are two categorical variables, we should look at contingency tables
(both counts and percentages). The variable status is the response and sex is
the predictor.

tabyl(Melanoma, status_fct, sex_fct) %>%
adorn_totals()

## status_fct female male
## died from melanoma 28 29
## other 98 50
## Total 126 79

tabyl(Melanoma, status_fct, sex_fct) %>%
adorn_totals() %>%
adorn_percentages("col") %>%
adorn_pct_formatting()

## status_fct female male
## died from melanoma 22.2% 36.7%
## other 77.8% 63.3%
## Total 100.0% 100.0%

Commentary: You can see why column percentages are necessary in a con-
tingency table. There are 28 females and 29 males who died from melanoma,
almost a tie. However, there are more females (126) than there are males (79)
who have melanoma in this data set. So the proportion of males who died from
melanoma is quite a bit larger.

16.7 Hypotheses

16.7.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

There are two samples: 126 female patients and 79 male patients in Denmark
with malignant melanoma. In order for these samples to be representative of
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their respective populations, we should probably restrict our conclusions to the
population of all females and males in Denmark with malignant melanoma,
although we might be able to make the case that these females and males could
be representative of people in other countries who have malignant melanoma.

16.7.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ There is no difference between the rate at which women and men in Den-
mark die from malignant melanoma.

𝐻𝐴 ∶ There is a difference between the rate at which women and men in Denmark
die from malignant melanoma.

OR

𝐻0 ∶ In Denmark, death from malignant melanoma is independent of sex.

𝐻𝐴 ∶ In Denmark, death from malignant melanoma is associated with sex.

Commentary: Either of these forms is correct. The former makes it a little
easier to figure out how to express the hypotheses mathematically in the next
step. The latter reminds us that the hypothesize step of the infer pipeline
will require a null of independence.

16.7.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝑝𝑑𝑖𝑒𝑑,𝐹 − 𝑝𝑑𝑖𝑒𝑑,𝑀 = 0
𝐻𝐴 ∶ 𝑝𝑑𝑖𝑒𝑑,𝐹 − 𝑝𝑑𝑖𝑒𝑑,𝑀 ≠ 0
Commentary: The order in which you subtract is irrelevant to the inferential
process. However, you should be sure that any future steps respect the order
you choose here. To be on the safe side, it’s always best to subtract in the order
in which the factor was created. So in the contingency tables above, females
are listed first, and that’s because “female” was the first label we used when we
created the sex_fct variable. So we’ll subtract females minus males throughout
the remaining steps.

16.8 Model

16.8.1 Identify the sampling distribution model.

We will use a normal model.
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16.8.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random

– As observed in a previous chapter when we used this data set before,
We have no information about how these samples were obtained. We
hope the 126 female patients and 79 male patients are representative
of other Danish patients with malignant melanoma.

• 10%

– We don’t know exactly how many people in Denmark suffer from
malignant melanoma, but we could imagine over time it’s more than
1260 females and 790 males.

• Success/Failure

– Checking the contingency table above (the one with counts), we see
the numbers 28 and 98 (the successes and failures among females),
and 29 and 50 (the successes and failures among males). These are
all larger than 10.

Commentary: Ideally, for the success/failure condition we would like to check
𝑛1𝑝1, 𝑛1(1 − 𝑝1), 𝑛2𝑝2, and 𝑛2(1 − 𝑝2); however, the null makes no claim about
the values of 𝑝1 and 𝑝2. We do the next best thing and estimate these by
substituting the sample proportions ̂𝑝1 and ̂𝑝2. But 𝑛1 ̂𝑝1 and 𝑛2 ̂𝑝2 are just the
raw counts of successes in each group. Likewise, 𝑛1(1 − ̂𝑝1) and 𝑛2(1 − ̂𝑝2) are
just the raw counts of failures in each group. That’s why we can just read them
off the contingency table.

For a more sophisticated approach, one could also use “pooled proportions”. See
the optional appendix to this chapter for more information.

16.9 Mechanics

16.9.1 Compute the test statistic.

obs_diff <- Melanoma %>%
observe(status_fct ~ sex_fct, success = "died from melanoma",

stat = "diff in props", order = c("female", "male"))
obs_diff

## Response: status_fct (factor)
## Explanatory: sex_fct (factor)



16.9. MECHANICS 465

## # A tibble: 1 x 1
## stat
## <dbl>
## 1 -0.145

The test statistic is the difference of proportions in the sample, ̂𝑝𝑑𝑖𝑒𝑑,𝐹 − ̂𝑝𝑑𝑖𝑒𝑑,𝑀 :

̂𝑝𝑑𝑖𝑒𝑑,𝐹 − ̂𝑝𝑑𝑖𝑒𝑑,𝑀 = 0.222 − 0.367 = −0.145

As a z-score:

obs_diff_z <- Melanoma %>%
observe(status_fct ~ sex_fct, success = "died from melanoma",

stat = "z", order = c("female", "male"))
obs_diff_z

## Response: status_fct (factor)
## Explanatory: sex_fct (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 -2.25

Commentary: We can confirm the value of the z-score manually just to make
sure we understand where it comes from.

The standard error looks like the following:

𝑆𝐸 = √ ̂𝑝𝑑𝑖𝑒𝑑,𝐹 (1 − ̂𝑝𝑑𝑖𝑒𝑑,𝐹 )
𝑛𝐹

+ ̂𝑝𝑑𝑖𝑒𝑑,𝑀(1 − ̂𝑝𝑑𝑖𝑒𝑑,𝑀)
𝑛𝑀

Plugging in the numbers from the exploratory data analysis output:

𝑆𝐸 = √0.222(1 − 0.222)
126 + 0.367(1 − 0.367)

79

In R,

sqrt(0.222 * (1 - 0.222) / 126 + 0.367 * (1 - 0.367) / 79)

## [1] 0.06566131
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Now our z-score formula is

𝑧 = ( ̂𝑝𝑑𝑖𝑒𝑑,𝐹 − ̂𝑝𝑑𝑖𝑒𝑑,𝑀) − (𝑝𝑑𝑖𝑒𝑑,𝐹 − 𝑝𝑑𝑖𝑒𝑑,𝑀)
𝑆𝐸

The first term in the numerator ( ̂𝑝𝑑𝑖𝑒𝑑,𝐹 − ̂𝑝𝑑𝑖𝑒𝑑,𝑀) is our test statistic, -0.145.
The second term in the numerator (𝑝𝑑𝑖𝑒𝑑,𝐹 − 𝑝𝑑𝑖𝑒𝑑,𝑀) is zero according to the
null hypothesis. Plugging all that in, along with the value of SE, gives

𝑧 = −0.145 − 0
0.066 ≈ −2.2

Other than a little rounding error (since we rounded everything in sight to three
decimal places instead of keeping more precision), this is what the infer output
also reported.

16.9.2 Report the test statistic in context (when possible).

In our sample, there is a -14.4866385% difference between the rate at which
women and men in Denmark die from malignant melanoma (meaning that males
died at a higher rate).

The test statistic has a z score of -2.2530721. The difference in proportions
between the rate at which women and men in Denmark die from malignant
melanoma lies a bit more than 2 standard errors to the left of the null value.

Commentary: Note the phrase “meaning that males died at a higher rate”. If
you are looking at a difference, you must indicate the direction of the difference.
Without that, we would know that there was a difference, but we would have no
idea whether women or men die more from malignant melanoma. Once we know
that we are subtracting female minus male, then given the values are negative,
we can infer that males die from malignant melanoma more often than females
in these samples.

16.9.3 Plot the null distribution.

status_sex_test <- Melanoma %>%
specify(status_fct ~ sex_fct, success = "died from melanoma") %>%
hypothesize(null = "independence") %>%
assume(distribution = "z")

status_sex_test

## A Z distribution.
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status_sex_test %>%
visualize() +
shade_p_value(obs_stat = obs_diff_z, direction = "two-sided")
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Commentary: Remember that this is a two-sided test.The red line above is the
location of the test statistic, but both tails are shaded and count toward the
P-value.

16.9.4 Calculate the P-value.

status_sex_test_p <- status_sex_test %>%
get_p_value(obs_stat = obs_diff_z, direction = "two-sided")

status_sex_test_p

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0243
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16.9.5 Interpret the P-value as a probability given the
null.

The P-value is 0.0242546. If there were truly no difference between the rate at
which women and men in Denmark die from malignant melanoma, there is only
a 2.4254604% chance of seeing a difference in our data at least as extreme as
what we saw.

16.10 Conclusion

16.10.1 State the statistical conclusion.

We reject the null hypothesis.

16.10.2 State (but do not overstate) a contextually mean-
ingful conclusion.

We have sufficient evidence to suggest that there is a difference between the rate
at which women and men in Denmark die from malignant melanoma.

16.10.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

We echo the same concerns we had back in Chapter 11 when we first saw this
data. We have no idea how these patients were sampled. Are these all the
patients in Denmark with malignant melanoma over a certain period of time?
Were they part of a convenience sample? As a result of our uncertainly about the
sampling process, we can’t be sure if the results generalize to a larger population,
either in Denmark or especially outside of Denmark.

16.10.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

If we have made a Type I error, then there would actually be no difference
between the rate at which women and men in Denmark die from malignant
melanoma, but our samples showed a significant difference.
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16.11 Confidence interval

16.11.1 Check the relevant conditions to ensure that
model assumptions are met.

None of the conditions have changed, so they don’t need to be rechecked.

16.11.2 Calculate and graph the confidence interval.

status_sex_ci <- status_sex_test %>%
get_confidence_interval(point_estimate = obs_diff, level = 0.95)

status_sex_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.274 -0.0162

status_sex_test %>%
visualize() +
shade_confidence_interval(endpoints = status_sex_ci)
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16.11.3 State (but do not overstate) a contextually mean-
ingful interpretation.

We are 95% confident that the true difference between the rate at which
women and men die from malignant melanoma is captured in the interval
(-27.3579265%, -1.6153506%). (This difference is measured by calculating
female minus male.)

Commentary: Note the addition of that last sentence. As we mentioned before,
if you are looking at a difference, you must indicate the direction of the differ-
ence. We know that we are subtracting female minus male, So given that the
values are negative, we can infer that males die from malignant melanoma more
often than females—at least according to this confidence interval.

16.11.4 If running a two-sided test, explain how the con-
fidence interval reinforces the conclusion of the
hypothesis test.

The confidence interval does not contain the null value of zero. Since zero is
not a plausible value for the true difference between the rate at which women
and men die from malignant melanoma, it makes sense that we rejected the null
hypothesis.

16.11.5 When comparing two groups, comment on the ef-
fect size and the practical significance of the re-
sult.

At the most extreme end of the confidence interval, -27.3579265% is a very large
difference between females and males. If this outer value is close to the truth,
males are at much more risk of melanoma than females (at least in Denmark at
the time of the study). The other end of the confidence interval, -1.6153506%,
is a negligible difference. If that number were close to the truth, it’s not clear
that the true difference would have practical significance in the real world.

Commentary: The P-value for the hypothesis test indicated that the results are
statistically significant. But what does that really mean? It means that if the
null were true, the probability of getting samples of females and males whose
melanoma rates differed by -14.4866385%—or something more extreme in either
direction—would be quite small. Our conclusion to reject the null follows as a
logical consequence.

So we can be somewhat confident that there is a difference between females and
males. But how much of a difference? A small difference can be statistically
significant, and yet be completely irrelevant in the real world. A 1% difference
in melanoma rates might not be enough to enact extra preventative measures
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for men, for example. On the other hand, a 27% difference is huge, and might
result in a campaign targeted at men specifically due to the extra risk.

In other words, we cannot just rest on a conclusion of statistical significance.
A difference might exist, but so what? We also need to know if that difference
is practically significant? Are there any practical, real-world consequences due
to the magnitude of the difference? There is no cutoff for practical significance.
This is determined in the context of the problem, preferably using expert guid-
ance. There are policy considerations, cost-benefit analyses, risk assessments,
and a host of other considerations that are made when determining if a result
is practically significant.

A big part of this process that is often neglected is the role of uncertainty.
Our point estimate was -14.4866385%. But that number, by itself, is not that
meaningful. That is but one estimate coming from one set of samples. The
range of plausible values, according to the confidence interval, is -27.3579265%
to -1.6153506% . This is a huge range, and there are very different consequences
to society is the difference is -27.3579265% versus -1.6153506%.

16.12 Your turn

Go through the rubric to determine if females and males in Denmark who are
diagnosed with malignant melanoma suffer from ulcerated tumors at different
rates.

The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere. In particular, you should use
ulcer_sex everywhere instead of status_sex

Exploratory data analysis



472 CHAPTER 16. INFERENCE FOR TWO PROPORTIONS

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.
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Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.
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Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

Confidence interval

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

# Add code here to calculate the confidence interval.

# Add code here to graph the confidence interval.

Calculate and graph the confidence interval.

State (but do not overstate) a contextually meaningful interpretation.
Please write up your answer here.

If running a two-sided test, explain how the confidence interval rein-
forces the conclusion of the hypothesis test. [Not always applicable.]
Please write up your answer here.

When comparing two groups, comment on the effect size and the
practical significance of the result. [Not always applicable.] Please
write up your answer here.

16.13 Conclusion

Just like with one proportion, when certain conditions are met, the difference
between two proportions follow a normal model. Rather than simulating a bunch
of different sample differences under the assumption of independent variables,
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we can just replace all that with a relatively simple normal model with mean
zero and a standard error based on the sample proportions of successes and
failures in the two samples. From that normal model, we obtain P-values and
confidence intervals as before.

16.13.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.

16.14 Optional appendix: Pooling

Earlier, we mentioned that that we cannot calculate the “true” standard error
directly because the null hypothesis does not give us 𝑝1 and 𝑝2. (The null only
addresses the value of the difference 𝑝1 − 𝑝2.) We dealt with this by simply
substituting ̂𝑝1 for 𝑝1 and ̂𝑝2 for 𝑝2.

There is, however, one assumption from the null we can still salvage that will
improve our test. Since the null hypothesis assumes that the two groups are
the same, let’s compute a single overall success rate for both samples together.
In other words, if the two groups aren’t different, let’s just pool them into one
single group and calculate the successes for the whole group.

This is called a pooled proportion. It’s straightforward to compute: just take the
total number of successes in both groups and divide by the total size of both
groups. Here is the formula:

̂𝑝𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠1 + 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠2
𝑛1 + 𝑛2

.

Occasionally, we are not given the raw number of successes in each group, but
rather, the proportion of successes in each group, ̂𝑝1 and ̂𝑝2. The simple fix is
to recompute the raw count of successes as 𝑛1 ̂𝑝1 and 𝑛2 ̂𝑝2. Here is what it looks
like in the formula:
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̂𝑝𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑛1 ̂𝑝1 + 𝑛2 ̂𝑝2
𝑛1 + 𝑛2

.

The normal model can still have a mean of 𝑝1 − 𝑝2. (We usually assume this is
0 in the null hypothesis.) But its standard error will use the pooled proportion:

𝑁 ⎛⎜
⎝
𝑝1 − 𝑝2,√

̂𝑝𝑝𝑜𝑜𝑙𝑒𝑑(1 − ̂𝑝𝑝𝑜𝑜𝑙𝑒𝑑)
𝑛1

+ ̂𝑝𝑝𝑜𝑜𝑙𝑒𝑑(1 − ̂𝑝𝑝𝑜𝑜𝑙𝑒𝑑)
𝑛2

⎞⎟
⎠

.

Not only can we use the pooled proportion in the standard error, but in fact
we can use it anywhere we assume the null. For example, the success/failure
condition is also subject to the assumption of the null, so we could use the
pooled proportion there too.

For a confidence interval, things are different. There is no null hypothesis in
effect while computing a confidence interval, so there is no assumption that
would justify pooling.

The standard error in the one-proportion interval is

√ ̂𝑝(1 − ̂𝑝)
𝑛

which just substitutes ̂𝑝 for 𝑝. We do the same for the standard error in the
two-proportion case:

𝑆𝐸 = √ ̂𝑝1(1 − ̂𝑝1)
𝑛1

+ ̂𝑝2(1 − ̂𝑝2)
𝑛2

.



Chapter 17

Chi-square goodness-of-fit
test

2.0

Functions introduced in this chapter:

chisq.test

17.1 Introduction

In this assignment we will learn how to run the chi-square goodness-of-fit test.
A chi-square goodness-of-fit test is similar to a test for a single proportion
except, instead of two categories (success/failure), we now try to understand
the distribution among three or more categories.

17.1.1 Install new packages

There are no new packages used in this chapter.

17.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

477
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https://vectorposse.github.io/intro_stats/chapter_downloads/17-chi_square_goodness_of_fit.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

17.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

17.2 Load packages

We load the standard tidyverse, janitor, and infer packages and the
openintro package for the hsb2 data.

library(tidyverse)
library(janitor)
library(infer)
library(openintro)

17.3 Research question

We use a classic data set mtcars from a 1974 Motor Trend magazine to examine
the distribution of the number of engine cylinders (with values 4, 6, or 8). We’ll
assume that this data set is representative of all cars from 1974.

In recent years, 4-cylinder vehicles and 6-cylinder vehicles have comprised about
38% of the market each, with nearly all the rest (24%) being 8-cylinder cars.
(This ignores a very small number of cars manufactured with 3- or 5-cylinder
engines.) Were car engines in 1974 manufactured according to the same distri-
bution?

Here is the structure of the data:

glimpse(mtcars)

## Rows: 32
## Columns: 11
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
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## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

Note that the variable of interest cyl is not coded as a factor variable. Let’s
convert cyl to a factor variable first and add it to a new data frame called
mtcars2. (Since the levels are already called 4, 6, and 8, we do not need to
specify levels or labels.) Be sure to remember to use mtcars2 from here on
out, and not the original mtcars.

mtcars2 <- mtcars %>%
mutate(cyl_fct = factor(cyl))

mtcars2

## mpg cyl disp hp drat wt qsec vs am gear carb cyl_fct
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 6
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 6
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 6
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 8
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 4
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 6
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 6
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 8
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 8
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 8
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 8
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 8
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 8
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 4
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 4
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 4
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 8
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 8
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 8
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 8
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 4
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 4
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## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 4
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 8
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 4

glimpse(mtcars2)

## Rows: 32
## Columns: 12
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17~
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4,~
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8,~
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, ~
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.~
## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150,~
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90,~
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,~
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,~
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3,~
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1,~
## $ cyl_fct <fct> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4,~

17.4 Chi-squared

When we have three or more categories in a categorical variable, it is natural
to ask how the observed counts in each category compare to the counts that we
expect to see under the assumption of some null hypothesis. In other words,
we’re assuming that there is some “true” distribution to which we are going to
compare our data. Sometimes, this null comes from substantive expert knowl-
edge. (For example, we will be comparing the 1974 distribution to a known
distribution from recent years.) Sometimes we’re interested to see if our data
deviates from a null distribution that predicts an equal number of observations
in each category.

First of all, what is the actual distribution of cylinders in our data? Here’s a
frequency table.

tabyl(mtcars2, cyl_fct) %>%
adorn_totals() %>%
adorn_pct_formatting()

## cyl_fct n percent
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## 4 11 34.4%
## 6 7 21.9%
## 8 14 43.8%
## Total 32 100.0%

The counts of our frequency table are the “observed” values, usually denoted by
the letter 𝑂 (uppercase “O”, which is a little unfortunate, because it also looks
like a zero).

What are the expected counts? Well, since there are 32 cars, we need to multiply
32 by the percentages listed in the research question. For 4-cylinder and 6-
cylinder cars, if the distribution of engines in 1974 were the same as today,
there would be 32∗0.38 or about 12.2 cars we would expect to see in our sample
that have 4-cylinder engines, and the same for 6-cylinder cars. For 8-cylinder
cars, we expect 32 ∗ 0.24 or about 7.7 cars in our sample to have 8-cylinder
engines. These “expected” counts are usually denoted by the letter 𝐸.

Why aren’t the expected counts whole numbers? In any given data set, of
course, we will see a whole number of cars with 4, 6, or 8 cylinders. However,
since we’re looking only at expected counts, they are the average over lots of
possible sets of 32 cars under the assumption of the null. We don’t need for
these averages to be whole numbers.

How should the deviation between the data and the null distribution be mea-
sured? We could simply look at the difference between the observed counts and
the expected counts 𝑂 − 𝐸. However, there will be some positive values (cells
where we have more than the expected number of cars) and some negative val-
ues (cells where we have fewer than the expected number of cars). These will
all cancel out.

If this sounds vaguely familiar, it is because we encountered the same problem
with the formula for the standard deviation. The differences 𝑦− ̄𝑦 had the same
issue. Do you recall the solution in that case? It was to square these values,
making them all positive.

So instead of 𝑂−𝐸, we will consider (𝑂−𝐸)2. Finally, to make sure that cells
with large expected values don’t dominate, we divide by 𝐸:

(𝑂 − 𝐸)2
𝐸 .

This puts each cell on equal footing. Now that we have a reasonable measure
of the deviation between observed and expected counts for each cell, we define
𝜒2 (“chi-squared”, pronounced “kye-squared”—rhymes with “die-scared”, or if
that’s too dark, how about “pie-shared”1) as the sum of all these fractions, one
for each cell:

1Rhyming is fun!
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𝜒2 = ∑ (𝑂−𝐸)2
𝐸 .

A 𝜒2 value of zero would indicate perfect agreement between observed and
expected values. As the 𝜒2 value gets larger and larger, this indicates more and
more deviation between observed and expected values.

As an example, for our data, we calculate chi-squared as follows:

𝜒2 = (11 − 12.2)2
12.2 + (7 − 12.2)2

12.2 + (14 − 7.7)2
7.7 ≈ 7.5.

Or we could just do it in R with the infer package. To do so, we have to
state explicitly the proportions that correspond to the null hypothesis. In this
case, since the order of entries in the frequency table is 4-cylinder, 6-cylinder,
then 8-cylinder, we need to give infer a vector of entries c("4" = 0.38, "6"
= 0.38, "8" = 0.24) that represents the 38%, 38%, and 24% expected for 4,
6, and 8 cylinders respectively.

obs_chisq <- mtcars2 %>%
specify(response = cyl_fct) %>%
hypothesize(null = "point",

p = c("4" = 0.38,
"6" = 0.38,
"8" = 0.24)) %>%

calculate(stat = "chisq")
obs_chisq

## Response: cyl_fct (factor)
## Null Hypothesis: point
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 7.50

17.5 The chi-square distribution

We know that even if the true distribution were 38%, 38%, 24%, we would not
see exactly 12.2, 12.2, 7.7 in a sample of 32 cars. (In fact, the “true” distribution
is physically impossible because these are not whole numbers!) So what kinds
of numbers could we get?

Let’s do a quick simulation to find out.
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Under the assumption of the null, there should be a 38%, 38%, and 24% chance
of seeing 4, 6, or 8 cylinders, respectively. To get a sense of the extent of
sampling variability, we could use the sample command to see what happens
in a sample of size 32 taken from a population where the true percentages are
38%, 38%, and 24%.

set.seed(99999)
sample1 <- sample(c(4, 6, 8), size = 32, replace = TRUE,

prob = c(0.38, 0.38, 0.24))
sample1

## [1] 6 8 4 8 6 6 8 4 8 6 8 6 6 4 6 8 4 6 6 8 8 6 6 8 4 8 6 4 4 4 6 4

sample1 %>%
table()

## .
## 4 6 8
## 9 13 10

sample2 <- sample(c(4, 6, 8), size = 32, replace = TRUE,
prob = c(0.38, 0.38, 0.24))

sample2

## [1] 6 8 8 8 4 4 8 4 8 6 8 4 4 6 6 6 6 4 4 4 6 4 4 4 8 4 4 8 4 4 4 8

sample2 %>%
table()

## .
## 4 6 8
## 16 7 9

sample3 <- sample(c(4, 6, 8), size = 32, replace = TRUE,
prob = c(0.38, 0.38, 0.24))

sample3

## [1] 8 6 4 6 6 6 6 4 6 6 6 4 6 4 8 8 6 8 8 8 4 6 8 4 8 6 6 6 6 8 4 6

sample3 %>%
table()
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## .
## 4 6 8
## 7 16 9

We can calculate the chi-squared value for each of these samples to get a sense
of the possibilities. The chisq.test command from base R is a little unusual
because it requires a frequency table (generated from the table command) as
input. We will never use the chisq.test command directly because we will
always use infer to do this work. But just to see some examples:

sample1 %>%
table() %>%
chisq.test()

##
## Chi-squared test for given probabilities
##
## data: .
## X-squared = 0.8125, df = 2, p-value = 0.6661

sample2 %>%
table() %>%
chisq.test()

##
## Chi-squared test for given probabilities
##
## data: .
## X-squared = 4.1875, df = 2, p-value = 0.1232

sample3 %>%
table() %>%
chisq.test()

##
## Chi-squared test for given probabilities
##
## data: .
## X-squared = 4.1875, df = 2, p-value = 0.1232

Exercise 1 Look more carefully at the three random samples above. Why
does sample 1 have a chi-squared closer to 0 while samples 2 and 3 have a chi-
squared values that are a little larger? (Hint: look at the counts of 4s, 6s, and
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8s in those samples. How do those counts compare to the expected number of
4s, 6s, and 8s?)

Please write up your answer here.

The infer pipeline below (the generate command specifically) takes the values
“4”, “6”, or “8” and grabs them at random according to the probabilities speci-
fied until it has 32 values. In other words, it will randomly select “4” about 38%
of the time, “6” about 38% of the time, and “8” about 24% of the time, until it
gets a list of 32 total cars. Then it will calculate the chi-squared value for that
simulated set of 32 cars. But because randomness is involved, the simulated
samples are subject to sampling variability and the chi-square values obtained
will differ from each other. This is exactly what we did above with the sample
command and the chisq command, but the benefit now is that we get 1000
random samples very quickly.

set.seed(99999)
cyl_test_sim <- mtcars2 %>%
specify(response = cyl_fct) %>%
hypothesize(null = "point",

p = c("4" = 0.38,
"6" = 0.38,
"8" = 0.24)) %>%

generate(reps = 1000, type = "draw") %>%
calculate(stat = "chisq")

cyl_test_sim

## Response: cyl_fct (factor)
## Null Hypothesis: point
## # A tibble: 1,000 x 2
## replicate stat
## <fct> <dbl>
## 1 1 1.58
## 2 2 3.63
## 3 3 3.63
## 4 4 0.669
## 5 5 2.31
## 6 6 0.648
## 7 7 4.13
## 8 8 7.08
## 9 9 0.648
## 10 10 0.669
## # i 990 more rows
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The “stat” column above contains 1000 random values of 𝜒2. Let’s graph these
values and include the chi-squared value for our actual data in the same graph.

cyl_test_sim %>%
visualize() +
shade_p_value(obs_chisq, direction = "greater")
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A few things are apparent:

1. The values are all positive. (The leftmost bar is sitting at 0, but it rep-
resents values greater than zero.) This makes sense when you remember
that each piece of the 𝜒2 calculation was positive. This is different from
our earlier simulations that looked like normal models. (Z scores can be
positive or negative, but not 𝜒2.)

2. This is a severely right-skewed graph. Although most values are near zero,
the occasional unusual sample can have a large value of 𝜒2.

3. You can see that our sample (the red line) is pretty far to the right. It
is an unusual value given the assumption of the null hypothesis. In fact,
we can count the proportion of sampled values that are to the right of the
red line:
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cyl_test_sim %>%
get_p_value(obs_chisq, direction = "greater")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.021

This is the simulated P-value. Keep this number in mind when we calculate the
P-value using a sampling distribution model below.

17.6 Chi-square as a sampling distribution
model

Just like there was a mathematical model for our simulated data before (the
normal model back then), there is also a mathematical model for this type of
simulated data. It’s called (not surprisingly) the chi-square distribution.

There is one new idea, though. Although all normal models have the same bell
shape, there are many different chi-square models. This is because the number
of cells can change the sampling distribution. Our engine cylinder example has
three cells (corresponding to the categories “4”, “6”, and “8”). But what if there
were 10 categories? The shape of the chi-square model would be different.

The terminology used by statisticians to distinguish these models is degrees of
freedom, abbreviated 𝑑𝑓 . The reason for this name and the mathematics behind
it are somewhat technical. Suffice it to say for now that if there are 𝑐 cells, you
use 𝑐−1 degrees of freedom. For our car example, there are 3 cylinder categories,
so 𝑑𝑓 = 2.

Look at the graph below that shows the theoretical chi-square models for varying
degrees of freedom.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(data.frame(x = c(0, 20)), aes(x)) +

stat_function(fun = dchisq, args = list(df = 2),
aes(color = "2")) +

stat_function(fun = dchisq, args = list(df = 5),
aes(color = "5" )) +

stat_function(fun = dchisq, args = list(df = 10),
aes(color = "10")) +

scale_color_manual(name = "df",
values = c("2" = "red",
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"5" = "blue",
"10" = "green"),

breaks = c("2", "5", "10"))
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The red curve (corresponding to 𝑑𝑓 = 2) looks a lot like our simulation above.
But as the degrees of freedom increase, the mode shifts further to the right.

17.7 Chi-square goodness-of-fit test

The formal inferential procedure for examining whether data from a categorical
variable fits a proposed distribution in the population is called a chi-square
goodness-of-fit test.

We can use the chi-square model as the sampling distribution as long as the
sample size is large enough. This is checked by calculating that the expected
cell counts (not the observed cell counts!) are at least 5 in each cell.

The following infer pipeline will run a hypothesis test using the theoretical
chi-squared distribution with 2 degrees of freedom.

cyl_test <- mtcars2 %>%
specify(response = cyl_fct) %>%
assume(distribution = "chisq")

cyl_test
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## A Chi-squared distribution with 2 degrees of freedom.

Here is the theoretical distribution:

cyl_test %>%
visualize()
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And here it is will our test statistic (the chi-squared value for our observed data)
marked:

cyl_test %>%
visualize() +
shade_p_value(obs_chisq, direction = "greater")
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Finally, here is the P-value associated with the shaded area to the right of the
test statistic:

cyl_test %>%
get_p_value(obs_chisq, direction = "greater")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0235

Note that this P-value is quite similar to the P-value derived from the simulation
earlier.

We’ll walk through the engine cylinder example from top to bottom using the
rubric. Most of this is just repeating work we’ve already done, but showing this
work in the context of the rubric will help you as you take over in the “Your
Turn” section later.
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17.8 Exploratory data analysis

17.8.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

Type ?mtcars at the Console to read the help file. Motor Trend is a reputable
publication and, therefore, we do not doubt the accuracy of the data. It’s not
clear, however, why these specific 32 cars were chosen and if they reflect a
representative sample of cars on the road in 1974.

mtcars

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
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## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

glimpse(mtcars)

## Rows: 32
## Columns: 11
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

17.8.2 Prepare the data for analysis.

# Although we've already done this above,
# we include it here again for completeness.
mtcars2 <- mtcars %>%
mutate(cyl_fct = factor(cyl))

mtcars2

## mpg cyl disp hp drat wt qsec vs am gear carb cyl_fct
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 6
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 6
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 6
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 8
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 4
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 6
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 6
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 8
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 8
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 8
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 8
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 8
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## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 8
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 4
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 4
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 4
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 8
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 8
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 8
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 8
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 4
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 4
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 4
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 8
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 4

glimpse(mtcars2)

## Rows: 32
## Columns: 12
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17~
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4,~
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8,~
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, ~
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.~
## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150,~
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90,~
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,~
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,~
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3,~
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1,~
## $ cyl_fct <fct> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4,~

17.8.3 Make tables or plots to explore the data visually.

tabyl(mtcars2, cyl_fct) %>%
adorn_totals() %>%
adorn_pct_formatting()

## cyl_fct n percent
## 4 11 34.4%
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## 6 7 21.9%
## 8 14 43.8%
## Total 32 100.0%

17.9 Hypotheses

17.9.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample is a set of 32 cars from a 1974 Motor Trends magazine. The popu-
lation is all cars from 1974.

17.9.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ In 1974, the proportion of cars with 4, 6, and 8 cylinders was 38%, 38%,
and 24%, respectively.
𝐻𝐴 ∶ In 1974, the proportion of cars with 4, 6, and 8 cylinders was not 38%,
38%, and 24%.

17.9.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝑝4 = 0.38, 𝑝6 = 0.38, 𝑝8 = 0.24
There is no easy way to express the alternate hypothesis in symbols because any
deviation in any of the categories can lead to rejection of the null. You can’t
just say 𝑝4 ≠ 0.38, 𝑝6 ≠ 0.38, 𝑝8 ≠ 0.24 because one of these categories might
have the correct proportion with the other two different and that would still be
consistent with the alternative hypothesis.
So the only requirement here is to express the null in symbols.

17.10 Model

17.10.1 Identify the sampling distribution model.

We use a 𝜒2 model with 2 degrees of freedom.
Commentary: Unlike the normal model, there are infinitely many different 𝜒2

models, so you have to specify the degrees of freedom when you identify it as
the sampling distribution model.
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17.10.2 Check the relevant conditions to ensure that
model assumptions are met.

• Random
– We do not know how Motor Trends magazine sampled these 32 cars,

so we’re not sure if this list is random or representative of all cars
from 1974. We should be cautious in our conclusions.

• 10%
– As long as there are at least 320 different car models, we are okay.

This sounds like a lot, so this condition might not quite be met.
Again, we need to be careful. (Also note that the population is not
all automobiles manufactured in 1974. It is all types of automobile
manufactured in 1974. There’s a big difference.)

• Expected cell counts
– This condition says that under the null, we should see at least 5

cars in each category. The expected counts are 32(0.38) = 12.2,
32(0.38) = 12.2, and 32(0.24) = 7.7. So this condition is met.

Commentary: The expected counts condition is necessary for using the theoret-
ical chi-squared distribution. If we were using simulation instead, we would not
need this condition.

17.11 Mechanics

17.11.1 Compute the test statistic.

obs_chisq <- mtcars2 %>%
specify(response = cyl_fct) %>%
hypothesize(null = "point",

p = c("4" = 0.38,
"6" = 0.38,
"8" = 0.24)) %>%

calculate(stat = "chisq")
obs_chisq

## Response: cyl_fct (factor)
## Null Hypothesis: point
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 7.50
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17.11.2 Report the test statistic in context (when possi-
ble).

The value of 𝜒2 is 7.5010965.

Commentary: The 𝜒2 test statistic is, of course, the same value we computed
manually by hand earlier. Also, the formula for 𝜒2 is a complicated function
of observed and expected values, making it difficult to say anything about this
number in the context of cars and engine cylinders. So even though the require-
ment is to “report the test statistic in context,” there’s not much one can say
here other than just to report the test statistic.

17.11.3 Plot the null distribution.

cyl_test <- mtcars2 %>%
specify(response = cyl_fct) %>%
assume(distribution = "chisq")

cyl_test

## A Chi-squared distribution with 2 degrees of freedom.

cyl_test %>%
visualize() +
shade_p_value(obs_chisq, direction = "greater")
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Commentary: We will use the theoretical distribution

17.11.4 Calculate the P-value.

cyl_test_p <- cyl_test %>%
get_p_value(obs_chisq, direction = "greater")

cyl_test_p

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0235

17.11.5 Interpret the P-value as a probability given the
null.

The P-value is 0.0235048558887484. If the true distribution of cars in 1974
were 38% 4-cylinder, 38% 6-cylinder, and 24% 8-cylinder, there would be a
2.35048558887484% chance of seeing data at least as extreme as what we saw.
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17.12 Conclusion

17.12.1 State the statistical conclusion.

We reject the null.

17.12.2 State (but do not overstate) a contextually mean-
ingful conclusion.

There is sufficient evidence that in 1974, the distribution of cars was not 38%
4-cylinder, 38% 6-cylinder, and 24% 8-cylinder.

17.12.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

As long as we restrict our attention to cars in 1974, we are pretty safe, although
we are still uncertain if the sample we had was representative of all cars in 1974.

17.12.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

If we made a Type I error, that would mean the true distribution of cars in
1974 was 38% 4-cylinder, 38% 6-cylinder, and 24% 8-cylinder, but our sample
showed otherwise.

17.13 Confidence interval

There is no confidence interval for a chi-square test. Since our test is not about
measuring some parameter of interest (like 𝑝 or 𝑝1 − 𝑝2), there is no interval to
produce.

17.14 Your turn

Use the hsb2 data and determine if the proportion of high school students who
attend general programs, academic programs, and vocational programs is 15%,
60%, and 25% respectively.
The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
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That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere.

Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.
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Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.
𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.
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Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

17.15 Bonus section: residuals

The chi-square test can tell us if there is some difference from the expected
distribution of counts across the categories, but it doesn’t tell us which category
has a higher or lower count than expected. For that, we’ll need to turn to another
tool: residuals.
For technical reasons, the infer package doesn’t provide residuals, so we’ll
have to turn to slightly different tools. Here’s how this works; we’ll return to
the example of distribution of cars across the different categories of number of
cylinders.
The function we’ll use is called chisq.test. It requires us to give it input in
the form of a table of counts, together with the proportions we wish to compare
to:

table(mtcars2$cyl_fct) %>%
chisq.test(p = c(.38, .38, .24)) -> cyl_chisq.test

cyl_chisq.test

##
## Chi-squared test for given probabilities
##
## data: .
## X-squared = 7.5011, df = 2, p-value = 0.0235



502 CHAPTER 17. CHI-SQUARE GOODNESS-OF-FIT TEST

Notice that the chi-squared value 7.5011 and the p-value 0.0235 are the same
as those we calculated using infer tools above.

Here’s how to obtain the table of residuals:

cyl_chisq.test$residuals

##
## 4 6 8
## -0.3326528 -1.4797315 2.2805336

What do these numbers mean in the real world? Not much. (Essentially, they
are the values that were squared to become the individual cell contributions to
the overall chi-squared score of the table.)

What we’ll do with them is look for the most positive and most negative values.
- We see that the 8-cylinder column has the most positive value: this means
that the number of 8-cylinder cars in 1974 was substantially higher than we
expected. - We see that the 6-cylinder column has the most negative value: this
means that the number of 6-cylinder cars in 1974 was substantially lower than
we expected.

17.15.1 Your turn

Determine which of the high school program types is the most substantially
overrepresented and the most substantially underrepresented, according to our
hypothesized distribution.

# Add code here to produce the chisq.test result.

# Add code here to examine the residuals.

Please write your answer here.

17.16 Conclusion

When a categorical variable has three or more categories, we can run a chi-square
goodness-of-fit test to determine if the distribution of counts across those cate-
gories matches some pre-specified null hypothesis. The key new mathematical
tool we need is the chi-square distribution, a way of measuring the deviation
between observed counts and expected counts according to the null.
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17.16.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 18

Chi-square test for
independence

2.0

Functions introduced in this chapter:

No new R functions are introduced here.

18.1 Introduction

In this chapter we will learn how to run the chi-square test for independence.
A chi-square test for independence tests the relationship between two categorical
variables. This is an extension of the test for two proportions, except now
applied in situations where either the predictor or response variables (or both)
have three or more categories.

18.1.1 Install new packages

There are no new packages used in this chapter.

18.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

505
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https://vectorposse.github.io/intro_stats/chapter_downloads/18-chi_square_test_for_independence.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

18.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

18.2 Load packages

We load the standard tideverse, janitor, and infer packages. We also use
the MASS package for the birthwt data, and the openintro package for the
smoking data.

library(tidyverse)
library(janitor)
library(infer)
library(MASS)
library(openintro)

18.3 Research question

Are mothers from certain racial groups more or less likely to have low birth
weight babies? In other words, are low birth weight and race associated?

Let’s look at the data. The birthwt data was collected at Baystate Medical
Center, Springfield, Mass during 1986. In terms of addressing the research
question, we are, of course, limited to conclusions about women in that area of
the country in the mid-1980s.

birthwt

## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
## 91 0 21 124 3 0 0 0 0 0 2622
## 92 0 22 118 1 0 0 0 0 1 2637
## 93 0 17 103 3 0 0 0 0 1 2637
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## 94 0 29 123 1 1 0 0 0 1 2663
## 95 0 26 113 1 1 0 0 0 0 2665
## 96 0 19 95 3 0 0 0 0 0 2722
## 97 0 19 150 3 0 0 0 0 1 2733
## 98 0 22 95 3 0 0 1 0 0 2751
## 99 0 30 107 3 0 1 0 1 2 2750
## 100 0 18 100 1 1 0 0 0 0 2769
## 101 0 18 100 1 1 0 0 0 0 2769
## 102 0 15 98 2 0 0 0 0 0 2778
## 103 0 25 118 1 1 0 0 0 3 2782
## 104 0 20 120 3 0 0 0 1 0 2807
## 105 0 28 120 1 1 0 0 0 1 2821
## 106 0 32 121 3 0 0 0 0 2 2835
## 107 0 31 100 1 0 0 0 1 3 2835
## 108 0 36 202 1 0 0 0 0 1 2836
## 109 0 28 120 3 0 0 0 0 0 2863
## 111 0 25 120 3 0 0 0 1 2 2877
## 112 0 28 167 1 0 0 0 0 0 2877
## 113 0 17 122 1 1 0 0 0 0 2906
## 114 0 29 150 1 0 0 0 0 2 2920
## 115 0 26 168 2 1 0 0 0 0 2920
## 116 0 17 113 2 0 0 0 0 1 2920
## 117 0 17 113 2 0 0 0 0 1 2920
## 118 0 24 90 1 1 1 0 0 1 2948
## 119 0 35 121 2 1 1 0 0 1 2948
## 120 0 25 155 1 0 0 0 0 1 2977
## 121 0 25 125 2 0 0 0 0 0 2977
## 123 0 29 140 1 1 0 0 0 2 2977
## 124 0 19 138 1 1 0 0 0 2 2977
## 125 0 27 124 1 1 0 0 0 0 2922
## 126 0 31 215 1 1 0 0 0 2 3005
## 127 0 33 109 1 1 0 0 0 1 3033
## 128 0 21 185 2 1 0 0 0 2 3042
## 129 0 19 189 1 0 0 0 0 2 3062
## 130 0 23 130 2 0 0 0 0 1 3062
## 131 0 21 160 1 0 0 0 0 0 3062
## 132 0 18 90 1 1 0 0 1 0 3062
## 133 0 18 90 1 1 0 0 1 0 3062
## 134 0 32 132 1 0 0 0 0 4 3080
## 135 0 19 132 3 0 0 0 0 0 3090
## 136 0 24 115 1 0 0 0 0 2 3090
## 137 0 22 85 3 1 0 0 0 0 3090
## 138 0 22 120 1 0 0 1 0 1 3100
## 139 0 23 128 3 0 0 0 0 0 3104
## 140 0 22 130 1 1 0 0 0 0 3132
## 141 0 30 95 1 1 0 0 0 2 3147
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## 142 0 19 115 3 0 0 0 0 0 3175
## 143 0 16 110 3 0 0 0 0 0 3175
## 144 0 21 110 3 1 0 0 1 0 3203
## 145 0 30 153 3 0 0 0 0 0 3203
## 146 0 20 103 3 0 0 0 0 0 3203
## 147 0 17 119 3 0 0 0 0 0 3225
## 148 0 17 119 3 0 0 0 0 0 3225
## 149 0 23 119 3 0 0 0 0 2 3232
## 150 0 24 110 3 0 0 0 0 0 3232
## 151 0 28 140 1 0 0 0 0 0 3234
## 154 0 26 133 3 1 2 0 0 0 3260
## 155 0 20 169 3 0 1 0 1 1 3274
## 156 0 24 115 3 0 0 0 0 2 3274
## 159 0 28 250 3 1 0 0 0 6 3303
## 160 0 20 141 1 0 2 0 1 1 3317
## 161 0 22 158 2 0 1 0 0 2 3317
## 162 0 22 112 1 1 2 0 0 0 3317
## 163 0 31 150 3 1 0 0 0 2 3321
## 164 0 23 115 3 1 0 0 0 1 3331
## 166 0 16 112 2 0 0 0 0 0 3374
## 167 0 16 135 1 1 0 0 0 0 3374
## 168 0 18 229 2 0 0 0 0 0 3402
## 169 0 25 140 1 0 0 0 0 1 3416
## 170 0 32 134 1 1 1 0 0 4 3430
## 172 0 20 121 2 1 0 0 0 0 3444
## 173 0 23 190 1 0 0 0 0 0 3459
## 174 0 22 131 1 0 0 0 0 1 3460
## 175 0 32 170 1 0 0 0 0 0 3473
## 176 0 30 110 3 0 0 0 0 0 3544
## 177 0 20 127 3 0 0 0 0 0 3487
## 179 0 23 123 3 0 0 0 0 0 3544
## 180 0 17 120 3 1 0 0 0 0 3572
## 181 0 19 105 3 0 0 0 0 0 3572
## 182 0 23 130 1 0 0 0 0 0 3586
## 183 0 36 175 1 0 0 0 0 0 3600
## 184 0 22 125 1 0 0 0 0 1 3614
## 185 0 24 133 1 0 0 0 0 0 3614
## 186 0 21 134 3 0 0 0 0 2 3629
## 187 0 19 235 1 1 0 1 0 0 3629
## 188 0 25 95 1 1 3 0 1 0 3637
## 189 0 16 135 1 1 0 0 0 0 3643
## 190 0 29 135 1 0 0 0 0 1 3651
## 191 0 29 154 1 0 0 0 0 1 3651
## 192 0 19 147 1 1 0 0 0 0 3651
## 193 0 19 147 1 1 0 0 0 0 3651
## 195 0 30 137 1 0 0 0 0 1 3699
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## 196 0 24 110 1 0 0 0 0 1 3728
## 197 0 19 184 1 1 0 1 0 0 3756
## 199 0 24 110 3 0 1 0 0 0 3770
## 200 0 23 110 1 0 0 0 0 1 3770
## 201 0 20 120 3 0 0 0 0 0 3770
## 202 0 25 241 2 0 0 1 0 0 3790
## 203 0 30 112 1 0 0 0 0 1 3799
## 204 0 22 169 1 0 0 0 0 0 3827
## 205 0 18 120 1 1 0 0 0 2 3856
## 206 0 16 170 2 0 0 0 0 4 3860
## 207 0 32 186 1 0 0 0 0 2 3860
## 208 0 18 120 3 0 0 0 0 1 3884
## 209 0 29 130 1 1 0 0 0 2 3884
## 210 0 33 117 1 0 0 0 1 1 3912
## 211 0 20 170 1 1 0 0 0 0 3940
## 212 0 28 134 3 0 0 0 0 1 3941
## 213 0 14 135 1 0 0 0 0 0 3941
## 214 0 28 130 3 0 0 0 0 0 3969
## 215 0 25 120 1 0 0 0 0 2 3983
## 216 0 16 95 3 0 0 0 0 1 3997
## 217 0 20 158 1 0 0 0 0 1 3997
## 218 0 26 160 3 0 0 0 0 0 4054
## 219 0 21 115 1 0 0 0 0 1 4054
## 220 0 22 129 1 0 0 0 0 0 4111
## 221 0 25 130 1 0 0 0 0 2 4153
## 222 0 31 120 1 0 0 0 0 2 4167
## 223 0 35 170 1 0 1 0 0 1 4174
## 224 0 19 120 1 1 0 0 0 0 4238
## 225 0 24 116 1 0 0 0 0 1 4593
## 226 0 45 123 1 0 0 0 0 1 4990
## 4 1 28 120 3 1 1 0 1 0 709
## 10 1 29 130 1 0 0 0 1 2 1021
## 11 1 34 187 2 1 0 1 0 0 1135
## 13 1 25 105 3 0 1 1 0 0 1330
## 15 1 25 85 3 0 0 0 1 0 1474
## 16 1 27 150 3 0 0 0 0 0 1588
## 17 1 23 97 3 0 0 0 1 1 1588
## 18 1 24 128 2 0 1 0 0 1 1701
## 19 1 24 132 3 0 0 1 0 0 1729
## 20 1 21 165 1 1 0 1 0 1 1790
## 22 1 32 105 1 1 0 0 0 0 1818
## 23 1 19 91 1 1 2 0 1 0 1885
## 24 1 25 115 3 0 0 0 0 0 1893
## 25 1 16 130 3 0 0 0 0 1 1899
## 26 1 25 92 1 1 0 0 0 0 1928
## 27 1 20 150 1 1 0 0 0 2 1928
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## 28 1 21 200 2 0 0 0 1 2 1928
## 29 1 24 155 1 1 1 0 0 0 1936
## 30 1 21 103 3 0 0 0 0 0 1970
## 31 1 20 125 3 0 0 0 1 0 2055
## 32 1 25 89 3 0 2 0 0 1 2055
## 33 1 19 102 1 0 0 0 0 2 2082
## 34 1 19 112 1 1 0 0 1 0 2084
## 35 1 26 117 1 1 1 0 0 0 2084
## 36 1 24 138 1 0 0 0 0 0 2100
## 37 1 17 130 3 1 1 0 1 0 2125
## 40 1 20 120 2 1 0 0 0 3 2126
## 42 1 22 130 1 1 1 0 1 1 2187
## 43 1 27 130 2 0 0 0 1 0 2187
## 44 1 20 80 3 1 0 0 1 0 2211
## 45 1 17 110 1 1 0 0 0 0 2225
## 46 1 25 105 3 0 1 0 0 1 2240
## 47 1 20 109 3 0 0 0 0 0 2240
## 49 1 18 148 3 0 0 0 0 0 2282
## 50 1 18 110 2 1 1 0 0 0 2296
## 51 1 20 121 1 1 1 0 1 0 2296
## 52 1 21 100 3 0 1 0 0 4 2301
## 54 1 26 96 3 0 0 0 0 0 2325
## 56 1 31 102 1 1 1 0 0 1 2353
## 57 1 15 110 1 0 0 0 0 0 2353
## 59 1 23 187 2 1 0 0 0 1 2367
## 60 1 20 122 2 1 0 0 0 0 2381
## 61 1 24 105 2 1 0 0 0 0 2381
## 62 1 15 115 3 0 0 0 1 0 2381
## 63 1 23 120 3 0 0 0 0 0 2410
## 65 1 30 142 1 1 1 0 0 0 2410
## 67 1 22 130 1 1 0 0 0 1 2410
## 68 1 17 120 1 1 0 0 0 3 2414
## 69 1 23 110 1 1 1 0 0 0 2424
## 71 1 17 120 2 0 0 0 0 2 2438
## 75 1 26 154 3 0 1 1 0 1 2442
## 76 1 20 105 3 0 0 0 0 3 2450
## 77 1 26 190 1 1 0 0 0 0 2466
## 78 1 14 101 3 1 1 0 0 0 2466
## 79 1 28 95 1 1 0 0 0 2 2466
## 81 1 14 100 3 0 0 0 0 2 2495
## 82 1 23 94 3 1 0 0 0 0 2495
## 83 1 17 142 2 0 0 1 0 0 2495
## 84 1 21 130 1 1 0 1 0 3 2495
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glimpse(birthwt)

## Rows: 189
## Columns: 10
## $ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, 18, ~
## $ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 95, 1~
## $ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, 3, 1~
## $ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0~
## $ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1~
## $ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 2, 3~
## $ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, 2722~

The low variable is an indicator of birth weight less than 2.5 kg. So even though
birth weight is numerical, we have a convenient categorical variable that serves
as a marker of low birth weight, gathering all low birth weight babies into a
single group. The race variable is categorical, coded as 1 = white, 2 = black,
3 = other.

Neither variable appears in the data frame as a factor variable, so we will need
to change that. The new tibble will be called birthwt2.

birthwt2 <- birthwt %>%
mutate(low_fct = factor(low, levels = c(0, 1),

labels = c("no", "yes")),
race_fct = factor(race, levels = c(1, 2, 3),

labels = c("white", "black", "other")))
birthwt2

## low age lwt race smoke ptl ht ui ftv bwt low_fct race_fct
## 85 0 19 182 2 0 0 0 1 0 2523 no black
## 86 0 33 155 3 0 0 0 0 3 2551 no other
## 87 0 20 105 1 1 0 0 0 1 2557 no white
## 88 0 21 108 1 1 0 0 1 2 2594 no white
## 89 0 18 107 1 1 0 0 1 0 2600 no white
## 91 0 21 124 3 0 0 0 0 0 2622 no other
## 92 0 22 118 1 0 0 0 0 1 2637 no white
## 93 0 17 103 3 0 0 0 0 1 2637 no other
## 94 0 29 123 1 1 0 0 0 1 2663 no white
## 95 0 26 113 1 1 0 0 0 0 2665 no white
## 96 0 19 95 3 0 0 0 0 0 2722 no other
## 97 0 19 150 3 0 0 0 0 1 2733 no other
## 98 0 22 95 3 0 0 1 0 0 2751 no other
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## 99 0 30 107 3 0 1 0 1 2 2750 no other
## 100 0 18 100 1 1 0 0 0 0 2769 no white
## 101 0 18 100 1 1 0 0 0 0 2769 no white
## 102 0 15 98 2 0 0 0 0 0 2778 no black
## 103 0 25 118 1 1 0 0 0 3 2782 no white
## 104 0 20 120 3 0 0 0 1 0 2807 no other
## 105 0 28 120 1 1 0 0 0 1 2821 no white
## 106 0 32 121 3 0 0 0 0 2 2835 no other
## 107 0 31 100 1 0 0 0 1 3 2835 no white
## 108 0 36 202 1 0 0 0 0 1 2836 no white
## 109 0 28 120 3 0 0 0 0 0 2863 no other
## 111 0 25 120 3 0 0 0 1 2 2877 no other
## 112 0 28 167 1 0 0 0 0 0 2877 no white
## 113 0 17 122 1 1 0 0 0 0 2906 no white
## 114 0 29 150 1 0 0 0 0 2 2920 no white
## 115 0 26 168 2 1 0 0 0 0 2920 no black
## 116 0 17 113 2 0 0 0 0 1 2920 no black
## 117 0 17 113 2 0 0 0 0 1 2920 no black
## 118 0 24 90 1 1 1 0 0 1 2948 no white
## 119 0 35 121 2 1 1 0 0 1 2948 no black
## 120 0 25 155 1 0 0 0 0 1 2977 no white
## 121 0 25 125 2 0 0 0 0 0 2977 no black
## 123 0 29 140 1 1 0 0 0 2 2977 no white
## 124 0 19 138 1 1 0 0 0 2 2977 no white
## 125 0 27 124 1 1 0 0 0 0 2922 no white
## 126 0 31 215 1 1 0 0 0 2 3005 no white
## 127 0 33 109 1 1 0 0 0 1 3033 no white
## 128 0 21 185 2 1 0 0 0 2 3042 no black
## 129 0 19 189 1 0 0 0 0 2 3062 no white
## 130 0 23 130 2 0 0 0 0 1 3062 no black
## 131 0 21 160 1 0 0 0 0 0 3062 no white
## 132 0 18 90 1 1 0 0 1 0 3062 no white
## 133 0 18 90 1 1 0 0 1 0 3062 no white
## 134 0 32 132 1 0 0 0 0 4 3080 no white
## 135 0 19 132 3 0 0 0 0 0 3090 no other
## 136 0 24 115 1 0 0 0 0 2 3090 no white
## 137 0 22 85 3 1 0 0 0 0 3090 no other
## 138 0 22 120 1 0 0 1 0 1 3100 no white
## 139 0 23 128 3 0 0 0 0 0 3104 no other
## 140 0 22 130 1 1 0 0 0 0 3132 no white
## 141 0 30 95 1 1 0 0 0 2 3147 no white
## 142 0 19 115 3 0 0 0 0 0 3175 no other
## 143 0 16 110 3 0 0 0 0 0 3175 no other
## 144 0 21 110 3 1 0 0 1 0 3203 no other
## 145 0 30 153 3 0 0 0 0 0 3203 no other
## 146 0 20 103 3 0 0 0 0 0 3203 no other
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## 147 0 17 119 3 0 0 0 0 0 3225 no other
## 148 0 17 119 3 0 0 0 0 0 3225 no other
## 149 0 23 119 3 0 0 0 0 2 3232 no other
## 150 0 24 110 3 0 0 0 0 0 3232 no other
## 151 0 28 140 1 0 0 0 0 0 3234 no white
## 154 0 26 133 3 1 2 0 0 0 3260 no other
## 155 0 20 169 3 0 1 0 1 1 3274 no other
## 156 0 24 115 3 0 0 0 0 2 3274 no other
## 159 0 28 250 3 1 0 0 0 6 3303 no other
## 160 0 20 141 1 0 2 0 1 1 3317 no white
## 161 0 22 158 2 0 1 0 0 2 3317 no black
## 162 0 22 112 1 1 2 0 0 0 3317 no white
## 163 0 31 150 3 1 0 0 0 2 3321 no other
## 164 0 23 115 3 1 0 0 0 1 3331 no other
## 166 0 16 112 2 0 0 0 0 0 3374 no black
## 167 0 16 135 1 1 0 0 0 0 3374 no white
## 168 0 18 229 2 0 0 0 0 0 3402 no black
## 169 0 25 140 1 0 0 0 0 1 3416 no white
## 170 0 32 134 1 1 1 0 0 4 3430 no white
## 172 0 20 121 2 1 0 0 0 0 3444 no black
## 173 0 23 190 1 0 0 0 0 0 3459 no white
## 174 0 22 131 1 0 0 0 0 1 3460 no white
## 175 0 32 170 1 0 0 0 0 0 3473 no white
## 176 0 30 110 3 0 0 0 0 0 3544 no other
## 177 0 20 127 3 0 0 0 0 0 3487 no other
## 179 0 23 123 3 0 0 0 0 0 3544 no other
## 180 0 17 120 3 1 0 0 0 0 3572 no other
## 181 0 19 105 3 0 0 0 0 0 3572 no other
## 182 0 23 130 1 0 0 0 0 0 3586 no white
## 183 0 36 175 1 0 0 0 0 0 3600 no white
## 184 0 22 125 1 0 0 0 0 1 3614 no white
## 185 0 24 133 1 0 0 0 0 0 3614 no white
## 186 0 21 134 3 0 0 0 0 2 3629 no other
## 187 0 19 235 1 1 0 1 0 0 3629 no white
## 188 0 25 95 1 1 3 0 1 0 3637 no white
## 189 0 16 135 1 1 0 0 0 0 3643 no white
## 190 0 29 135 1 0 0 0 0 1 3651 no white
## 191 0 29 154 1 0 0 0 0 1 3651 no white
## 192 0 19 147 1 1 0 0 0 0 3651 no white
## 193 0 19 147 1 1 0 0 0 0 3651 no white
## 195 0 30 137 1 0 0 0 0 1 3699 no white
## 196 0 24 110 1 0 0 0 0 1 3728 no white
## 197 0 19 184 1 1 0 1 0 0 3756 no white
## 199 0 24 110 3 0 1 0 0 0 3770 no other
## 200 0 23 110 1 0 0 0 0 1 3770 no white
## 201 0 20 120 3 0 0 0 0 0 3770 no other
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## 202 0 25 241 2 0 0 1 0 0 3790 no black
## 203 0 30 112 1 0 0 0 0 1 3799 no white
## 204 0 22 169 1 0 0 0 0 0 3827 no white
## 205 0 18 120 1 1 0 0 0 2 3856 no white
## 206 0 16 170 2 0 0 0 0 4 3860 no black
## 207 0 32 186 1 0 0 0 0 2 3860 no white
## 208 0 18 120 3 0 0 0 0 1 3884 no other
## 209 0 29 130 1 1 0 0 0 2 3884 no white
## 210 0 33 117 1 0 0 0 1 1 3912 no white
## 211 0 20 170 1 1 0 0 0 0 3940 no white
## 212 0 28 134 3 0 0 0 0 1 3941 no other
## 213 0 14 135 1 0 0 0 0 0 3941 no white
## 214 0 28 130 3 0 0 0 0 0 3969 no other
## 215 0 25 120 1 0 0 0 0 2 3983 no white
## 216 0 16 95 3 0 0 0 0 1 3997 no other
## 217 0 20 158 1 0 0 0 0 1 3997 no white
## 218 0 26 160 3 0 0 0 0 0 4054 no other
## 219 0 21 115 1 0 0 0 0 1 4054 no white
## 220 0 22 129 1 0 0 0 0 0 4111 no white
## 221 0 25 130 1 0 0 0 0 2 4153 no white
## 222 0 31 120 1 0 0 0 0 2 4167 no white
## 223 0 35 170 1 0 1 0 0 1 4174 no white
## 224 0 19 120 1 1 0 0 0 0 4238 no white
## 225 0 24 116 1 0 0 0 0 1 4593 no white
## 226 0 45 123 1 0 0 0 0 1 4990 no white
## 4 1 28 120 3 1 1 0 1 0 709 yes other
## 10 1 29 130 1 0 0 0 1 2 1021 yes white
## 11 1 34 187 2 1 0 1 0 0 1135 yes black
## 13 1 25 105 3 0 1 1 0 0 1330 yes other
## 15 1 25 85 3 0 0 0 1 0 1474 yes other
## 16 1 27 150 3 0 0 0 0 0 1588 yes other
## 17 1 23 97 3 0 0 0 1 1 1588 yes other
## 18 1 24 128 2 0 1 0 0 1 1701 yes black
## 19 1 24 132 3 0 0 1 0 0 1729 yes other
## 20 1 21 165 1 1 0 1 0 1 1790 yes white
## 22 1 32 105 1 1 0 0 0 0 1818 yes white
## 23 1 19 91 1 1 2 0 1 0 1885 yes white
## 24 1 25 115 3 0 0 0 0 0 1893 yes other
## 25 1 16 130 3 0 0 0 0 1 1899 yes other
## 26 1 25 92 1 1 0 0 0 0 1928 yes white
## 27 1 20 150 1 1 0 0 0 2 1928 yes white
## 28 1 21 200 2 0 0 0 1 2 1928 yes black
## 29 1 24 155 1 1 1 0 0 0 1936 yes white
## 30 1 21 103 3 0 0 0 0 0 1970 yes other
## 31 1 20 125 3 0 0 0 1 0 2055 yes other
## 32 1 25 89 3 0 2 0 0 1 2055 yes other
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## 33 1 19 102 1 0 0 0 0 2 2082 yes white
## 34 1 19 112 1 1 0 0 1 0 2084 yes white
## 35 1 26 117 1 1 1 0 0 0 2084 yes white
## 36 1 24 138 1 0 0 0 0 0 2100 yes white
## 37 1 17 130 3 1 1 0 1 0 2125 yes other
## 40 1 20 120 2 1 0 0 0 3 2126 yes black
## 42 1 22 130 1 1 1 0 1 1 2187 yes white
## 43 1 27 130 2 0 0 0 1 0 2187 yes black
## 44 1 20 80 3 1 0 0 1 0 2211 yes other
## 45 1 17 110 1 1 0 0 0 0 2225 yes white
## 46 1 25 105 3 0 1 0 0 1 2240 yes other
## 47 1 20 109 3 0 0 0 0 0 2240 yes other
## 49 1 18 148 3 0 0 0 0 0 2282 yes other
## 50 1 18 110 2 1 1 0 0 0 2296 yes black
## 51 1 20 121 1 1 1 0 1 0 2296 yes white
## 52 1 21 100 3 0 1 0 0 4 2301 yes other
## 54 1 26 96 3 0 0 0 0 0 2325 yes other
## 56 1 31 102 1 1 1 0 0 1 2353 yes white
## 57 1 15 110 1 0 0 0 0 0 2353 yes white
## 59 1 23 187 2 1 0 0 0 1 2367 yes black
## 60 1 20 122 2 1 0 0 0 0 2381 yes black
## 61 1 24 105 2 1 0 0 0 0 2381 yes black
## 62 1 15 115 3 0 0 0 1 0 2381 yes other
## 63 1 23 120 3 0 0 0 0 0 2410 yes other
## 65 1 30 142 1 1 1 0 0 0 2410 yes white
## 67 1 22 130 1 1 0 0 0 1 2410 yes white
## 68 1 17 120 1 1 0 0 0 3 2414 yes white
## 69 1 23 110 1 1 1 0 0 0 2424 yes white
## 71 1 17 120 2 0 0 0 0 2 2438 yes black
## 75 1 26 154 3 0 1 1 0 1 2442 yes other
## 76 1 20 105 3 0 0 0 0 3 2450 yes other
## 77 1 26 190 1 1 0 0 0 0 2466 yes white
## 78 1 14 101 3 1 1 0 0 0 2466 yes other
## 79 1 28 95 1 1 0 0 0 2 2466 yes white
## 81 1 14 100 3 0 0 0 0 2 2495 yes other
## 82 1 23 94 3 1 0 0 0 0 2495 yes other
## 83 1 17 142 2 0 0 1 0 0 2495 yes black
## 84 1 21 130 1 1 0 1 0 3 2495 yes white

glimpse(birthwt2)

## Rows: 189
## Columns: 12
## $ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, 1~
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## $ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 95~
## $ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, 3~
## $ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0~
## $ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0~
## $ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0~
## $ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 2~
## $ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, 2~
## $ low_fct <fct> no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, n~
## $ race_fct <fct> black, other, white, white, white, other, white, other, white~

18.4 Chi-square test for independence

In a previous chapter, we learned about the chi-square goodness-of-fit test. With
a single categorical variable, we summarized data in a frequency table. Each
cell of the table had an observed count from the data that we compared to
an expected count from the assumption of a null hypothesis. The chi-square
statistic measured the discrepancy between observed and expected.

With two categorical variables, we use a contingency table instead of a frequency
table. But the principle of the chi-square statistic is the same: each cell in the
contingency table has an observed count and an expected count. This forms the
basis of a chi-square test for independence.

Below is the contingency table for these two variables. Normally, we only care
about column totals because we care how the response variable (here, low_fct)
is distributed in each group of the predictor variable (i.e., each racial group).
But for the calculation of chi-squared, we will need both row and column totals.

tabyl(birthwt2, low_fct, race_fct) %>%
adorn_totals(where = c("row", "col"))

## low_fct white black other Total
## no 73 15 42 130
## yes 23 11 25 59
## Total 96 26 67 189

A test for independence has a simple null hypothesis: the two variables are
independent. This gives us a way to compute expected counts. To see how,
look at the sum of all the normal weight babies (73+15+42 = 130) and all the
low birth weight babies (23 + 11 + 25 = 59). In other words, if race is ignored,
there were 130 normal weight babies and 59 low birth weight babies out of 189
total babies. 59 of 189 is 0.31217 or 31.217%, and 130 of 189 is 0.68783 or
68.783%.
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Now, if low birth weight and race are truly independent, it shouldn’t matter
if the mothers were white, black, or some other race. In other words, of 96
white mothers, we should still expect 68.783% of them to have normal weight
babies and 31.217% of them to have low birth weight babies. 68.783% of 96 is
66.032. This is the expected cell count for normal birth weight babies
of white women. 31.217% of 96 is 29.968. This is the expected cell count
for low birth weight babies of white women. The same analysis can be
done for the next two columns as well.

Exercise 1 Complete the list of expected cell counts in the table above. In
other words, apply the percentages 68.783% and 31.217% to the totals of the
“black” and “other” columns. Put them in the table below:

white black other
no 66.032 ? ?
yes 29.968 ? ?

Unlike the goodness-of-fit test that requires one to specify expected counts for
each cell, the test for independence uses only the data to determine the expected
counts. For any given cell, if 𝑅 is the row total, 𝐶 is the column total, and 𝑛 is
the grand total (the sample size), the expected count in any cell is simply

𝐸 = 𝑅𝐶
𝑛 .

This is equivalent to the explanation in the previous paragraph. Using low
birth weight babies among white mothers as an example, 𝑅/𝑛 is 59/189 which
is 0.31217. Then we multiply this by the column total 𝐶 = 96 to get

(𝑅
𝑛 )𝐶 = 𝑅𝐶

𝑛 = 59 × 96
189 = 29.96825.

Everything else works almost the same as it did for a chi-square goodness-of-fit
test. We still compute 𝜒2 by adding up deviations across all cells:

𝜒2 = ∑ (𝑂−𝐸)2
𝐸 .

Even under the assumption of the null, there will still be some sampling vari-
ability. Like any hypothesis test, our job is to determine whether the deviations
we see are possible due to pure chance alone. The random values of 𝜒2 that
result from sampling variability will follow a chi-square model. But how many
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degrees of freedom are there? This is a little different from the goodness-of-fit
test. Instead of the number of cells minus one, we use the following formula:

𝑑𝑓 = (#𝑟𝑜𝑤𝑠 − 1)(#𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1).

In our example we have 2 rows (“yes”, “no”) and 3 columns (“white”, “black”,
“other”); therefore,

𝑑𝑓 = (2 − 1)(3 − 1) = 1 × 2 = 2

and we have 2 degrees of freedom (even though there are 6 cells).

Let’s run through the rubric in its entirety.

18.5 Exploratory data analysis

18.5.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

You should type ?birthwt at the Console to read the help file. We don’t have
any information about how these mothers were selected. The “Source” at the
end of the help file is a statistics textbook, so we’d have to track down that
book to see where they got the data and if traced back to a primary source.

birthwt

## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
## 91 0 21 124 3 0 0 0 0 0 2622
## 92 0 22 118 1 0 0 0 0 1 2637
## 93 0 17 103 3 0 0 0 0 1 2637
## 94 0 29 123 1 1 0 0 0 1 2663
## 95 0 26 113 1 1 0 0 0 0 2665
## 96 0 19 95 3 0 0 0 0 0 2722
## 97 0 19 150 3 0 0 0 0 1 2733
## 98 0 22 95 3 0 0 1 0 0 2751
## 99 0 30 107 3 0 1 0 1 2 2750
## 100 0 18 100 1 1 0 0 0 0 2769
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## 101 0 18 100 1 1 0 0 0 0 2769
## 102 0 15 98 2 0 0 0 0 0 2778
## 103 0 25 118 1 1 0 0 0 3 2782
## 104 0 20 120 3 0 0 0 1 0 2807
## 105 0 28 120 1 1 0 0 0 1 2821
## 106 0 32 121 3 0 0 0 0 2 2835
## 107 0 31 100 1 0 0 0 1 3 2835
## 108 0 36 202 1 0 0 0 0 1 2836
## 109 0 28 120 3 0 0 0 0 0 2863
## 111 0 25 120 3 0 0 0 1 2 2877
## 112 0 28 167 1 0 0 0 0 0 2877
## 113 0 17 122 1 1 0 0 0 0 2906
## 114 0 29 150 1 0 0 0 0 2 2920
## 115 0 26 168 2 1 0 0 0 0 2920
## 116 0 17 113 2 0 0 0 0 1 2920
## 117 0 17 113 2 0 0 0 0 1 2920
## 118 0 24 90 1 1 1 0 0 1 2948
## 119 0 35 121 2 1 1 0 0 1 2948
## 120 0 25 155 1 0 0 0 0 1 2977
## 121 0 25 125 2 0 0 0 0 0 2977
## 123 0 29 140 1 1 0 0 0 2 2977
## 124 0 19 138 1 1 0 0 0 2 2977
## 125 0 27 124 1 1 0 0 0 0 2922
## 126 0 31 215 1 1 0 0 0 2 3005
## 127 0 33 109 1 1 0 0 0 1 3033
## 128 0 21 185 2 1 0 0 0 2 3042
## 129 0 19 189 1 0 0 0 0 2 3062
## 130 0 23 130 2 0 0 0 0 1 3062
## 131 0 21 160 1 0 0 0 0 0 3062
## 132 0 18 90 1 1 0 0 1 0 3062
## 133 0 18 90 1 1 0 0 1 0 3062
## 134 0 32 132 1 0 0 0 0 4 3080
## 135 0 19 132 3 0 0 0 0 0 3090
## 136 0 24 115 1 0 0 0 0 2 3090
## 137 0 22 85 3 1 0 0 0 0 3090
## 138 0 22 120 1 0 0 1 0 1 3100
## 139 0 23 128 3 0 0 0 0 0 3104
## 140 0 22 130 1 1 0 0 0 0 3132
## 141 0 30 95 1 1 0 0 0 2 3147
## 142 0 19 115 3 0 0 0 0 0 3175
## 143 0 16 110 3 0 0 0 0 0 3175
## 144 0 21 110 3 1 0 0 1 0 3203
## 145 0 30 153 3 0 0 0 0 0 3203
## 146 0 20 103 3 0 0 0 0 0 3203
## 147 0 17 119 3 0 0 0 0 0 3225
## 148 0 17 119 3 0 0 0 0 0 3225
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## 149 0 23 119 3 0 0 0 0 2 3232
## 150 0 24 110 3 0 0 0 0 0 3232
## 151 0 28 140 1 0 0 0 0 0 3234
## 154 0 26 133 3 1 2 0 0 0 3260
## 155 0 20 169 3 0 1 0 1 1 3274
## 156 0 24 115 3 0 0 0 0 2 3274
## 159 0 28 250 3 1 0 0 0 6 3303
## 160 0 20 141 1 0 2 0 1 1 3317
## 161 0 22 158 2 0 1 0 0 2 3317
## 162 0 22 112 1 1 2 0 0 0 3317
## 163 0 31 150 3 1 0 0 0 2 3321
## 164 0 23 115 3 1 0 0 0 1 3331
## 166 0 16 112 2 0 0 0 0 0 3374
## 167 0 16 135 1 1 0 0 0 0 3374
## 168 0 18 229 2 0 0 0 0 0 3402
## 169 0 25 140 1 0 0 0 0 1 3416
## 170 0 32 134 1 1 1 0 0 4 3430
## 172 0 20 121 2 1 0 0 0 0 3444
## 173 0 23 190 1 0 0 0 0 0 3459
## 174 0 22 131 1 0 0 0 0 1 3460
## 175 0 32 170 1 0 0 0 0 0 3473
## 176 0 30 110 3 0 0 0 0 0 3544
## 177 0 20 127 3 0 0 0 0 0 3487
## 179 0 23 123 3 0 0 0 0 0 3544
## 180 0 17 120 3 1 0 0 0 0 3572
## 181 0 19 105 3 0 0 0 0 0 3572
## 182 0 23 130 1 0 0 0 0 0 3586
## 183 0 36 175 1 0 0 0 0 0 3600
## 184 0 22 125 1 0 0 0 0 1 3614
## 185 0 24 133 1 0 0 0 0 0 3614
## 186 0 21 134 3 0 0 0 0 2 3629
## 187 0 19 235 1 1 0 1 0 0 3629
## 188 0 25 95 1 1 3 0 1 0 3637
## 189 0 16 135 1 1 0 0 0 0 3643
## 190 0 29 135 1 0 0 0 0 1 3651
## 191 0 29 154 1 0 0 0 0 1 3651
## 192 0 19 147 1 1 0 0 0 0 3651
## 193 0 19 147 1 1 0 0 0 0 3651
## 195 0 30 137 1 0 0 0 0 1 3699
## 196 0 24 110 1 0 0 0 0 1 3728
## 197 0 19 184 1 1 0 1 0 0 3756
## 199 0 24 110 3 0 1 0 0 0 3770
## 200 0 23 110 1 0 0 0 0 1 3770
## 201 0 20 120 3 0 0 0 0 0 3770
## 202 0 25 241 2 0 0 1 0 0 3790
## 203 0 30 112 1 0 0 0 0 1 3799
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## 204 0 22 169 1 0 0 0 0 0 3827
## 205 0 18 120 1 1 0 0 0 2 3856
## 206 0 16 170 2 0 0 0 0 4 3860
## 207 0 32 186 1 0 0 0 0 2 3860
## 208 0 18 120 3 0 0 0 0 1 3884
## 209 0 29 130 1 1 0 0 0 2 3884
## 210 0 33 117 1 0 0 0 1 1 3912
## 211 0 20 170 1 1 0 0 0 0 3940
## 212 0 28 134 3 0 0 0 0 1 3941
## 213 0 14 135 1 0 0 0 0 0 3941
## 214 0 28 130 3 0 0 0 0 0 3969
## 215 0 25 120 1 0 0 0 0 2 3983
## 216 0 16 95 3 0 0 0 0 1 3997
## 217 0 20 158 1 0 0 0 0 1 3997
## 218 0 26 160 3 0 0 0 0 0 4054
## 219 0 21 115 1 0 0 0 0 1 4054
## 220 0 22 129 1 0 0 0 0 0 4111
## 221 0 25 130 1 0 0 0 0 2 4153
## 222 0 31 120 1 0 0 0 0 2 4167
## 223 0 35 170 1 0 1 0 0 1 4174
## 224 0 19 120 1 1 0 0 0 0 4238
## 225 0 24 116 1 0 0 0 0 1 4593
## 226 0 45 123 1 0 0 0 0 1 4990
## 4 1 28 120 3 1 1 0 1 0 709
## 10 1 29 130 1 0 0 0 1 2 1021
## 11 1 34 187 2 1 0 1 0 0 1135
## 13 1 25 105 3 0 1 1 0 0 1330
## 15 1 25 85 3 0 0 0 1 0 1474
## 16 1 27 150 3 0 0 0 0 0 1588
## 17 1 23 97 3 0 0 0 1 1 1588
## 18 1 24 128 2 0 1 0 0 1 1701
## 19 1 24 132 3 0 0 1 0 0 1729
## 20 1 21 165 1 1 0 1 0 1 1790
## 22 1 32 105 1 1 0 0 0 0 1818
## 23 1 19 91 1 1 2 0 1 0 1885
## 24 1 25 115 3 0 0 0 0 0 1893
## 25 1 16 130 3 0 0 0 0 1 1899
## 26 1 25 92 1 1 0 0 0 0 1928
## 27 1 20 150 1 1 0 0 0 2 1928
## 28 1 21 200 2 0 0 0 1 2 1928
## 29 1 24 155 1 1 1 0 0 0 1936
## 30 1 21 103 3 0 0 0 0 0 1970
## 31 1 20 125 3 0 0 0 1 0 2055
## 32 1 25 89 3 0 2 0 0 1 2055
## 33 1 19 102 1 0 0 0 0 2 2082
## 34 1 19 112 1 1 0 0 1 0 2084
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## 35 1 26 117 1 1 1 0 0 0 2084
## 36 1 24 138 1 0 0 0 0 0 2100
## 37 1 17 130 3 1 1 0 1 0 2125
## 40 1 20 120 2 1 0 0 0 3 2126
## 42 1 22 130 1 1 1 0 1 1 2187
## 43 1 27 130 2 0 0 0 1 0 2187
## 44 1 20 80 3 1 0 0 1 0 2211
## 45 1 17 110 1 1 0 0 0 0 2225
## 46 1 25 105 3 0 1 0 0 1 2240
## 47 1 20 109 3 0 0 0 0 0 2240
## 49 1 18 148 3 0 0 0 0 0 2282
## 50 1 18 110 2 1 1 0 0 0 2296
## 51 1 20 121 1 1 1 0 1 0 2296
## 52 1 21 100 3 0 1 0 0 4 2301
## 54 1 26 96 3 0 0 0 0 0 2325
## 56 1 31 102 1 1 1 0 0 1 2353
## 57 1 15 110 1 0 0 0 0 0 2353
## 59 1 23 187 2 1 0 0 0 1 2367
## 60 1 20 122 2 1 0 0 0 0 2381
## 61 1 24 105 2 1 0 0 0 0 2381
## 62 1 15 115 3 0 0 0 1 0 2381
## 63 1 23 120 3 0 0 0 0 0 2410
## 65 1 30 142 1 1 1 0 0 0 2410
## 67 1 22 130 1 1 0 0 0 1 2410
## 68 1 17 120 1 1 0 0 0 3 2414
## 69 1 23 110 1 1 1 0 0 0 2424
## 71 1 17 120 2 0 0 0 0 2 2438
## 75 1 26 154 3 0 1 1 0 1 2442
## 76 1 20 105 3 0 0 0 0 3 2450
## 77 1 26 190 1 1 0 0 0 0 2466
## 78 1 14 101 3 1 1 0 0 0 2466
## 79 1 28 95 1 1 0 0 0 2 2466
## 81 1 14 100 3 0 0 0 0 2 2495
## 82 1 23 94 3 1 0 0 0 0 2495
## 83 1 17 142 2 0 0 1 0 0 2495
## 84 1 21 130 1 1 0 1 0 3 2495

glimpse(birthwt)

## Rows: 189
## Columns: 10
## $ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, 18, ~
## $ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 95, 1~
## $ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, 3, 1~
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## $ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0~
## $ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1~
## $ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 2, 3~
## $ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, 2722~

18.5.2 Prepare the data for analysis.

# Although we've already done this above,
# we include it here again for completeness.
birthwt2 <- birthwt %>%
mutate(low_fct = factor(low, levels = c(0, 1),

labels = c("no", "yes")),
race_fct = factor(race, levels = c(1, 2, 3),

labels = c("white", "black", "other")))
birthwt2

## low age lwt race smoke ptl ht ui ftv bwt low_fct race_fct
## 85 0 19 182 2 0 0 0 1 0 2523 no black
## 86 0 33 155 3 0 0 0 0 3 2551 no other
## 87 0 20 105 1 1 0 0 0 1 2557 no white
## 88 0 21 108 1 1 0 0 1 2 2594 no white
## 89 0 18 107 1 1 0 0 1 0 2600 no white
## 91 0 21 124 3 0 0 0 0 0 2622 no other
## 92 0 22 118 1 0 0 0 0 1 2637 no white
## 93 0 17 103 3 0 0 0 0 1 2637 no other
## 94 0 29 123 1 1 0 0 0 1 2663 no white
## 95 0 26 113 1 1 0 0 0 0 2665 no white
## 96 0 19 95 3 0 0 0 0 0 2722 no other
## 97 0 19 150 3 0 0 0 0 1 2733 no other
## 98 0 22 95 3 0 0 1 0 0 2751 no other
## 99 0 30 107 3 0 1 0 1 2 2750 no other
## 100 0 18 100 1 1 0 0 0 0 2769 no white
## 101 0 18 100 1 1 0 0 0 0 2769 no white
## 102 0 15 98 2 0 0 0 0 0 2778 no black
## 103 0 25 118 1 1 0 0 0 3 2782 no white
## 104 0 20 120 3 0 0 0 1 0 2807 no other
## 105 0 28 120 1 1 0 0 0 1 2821 no white
## 106 0 32 121 3 0 0 0 0 2 2835 no other
## 107 0 31 100 1 0 0 0 1 3 2835 no white
## 108 0 36 202 1 0 0 0 0 1 2836 no white
## 109 0 28 120 3 0 0 0 0 0 2863 no other
## 111 0 25 120 3 0 0 0 1 2 2877 no other
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## 112 0 28 167 1 0 0 0 0 0 2877 no white
## 113 0 17 122 1 1 0 0 0 0 2906 no white
## 114 0 29 150 1 0 0 0 0 2 2920 no white
## 115 0 26 168 2 1 0 0 0 0 2920 no black
## 116 0 17 113 2 0 0 0 0 1 2920 no black
## 117 0 17 113 2 0 0 0 0 1 2920 no black
## 118 0 24 90 1 1 1 0 0 1 2948 no white
## 119 0 35 121 2 1 1 0 0 1 2948 no black
## 120 0 25 155 1 0 0 0 0 1 2977 no white
## 121 0 25 125 2 0 0 0 0 0 2977 no black
## 123 0 29 140 1 1 0 0 0 2 2977 no white
## 124 0 19 138 1 1 0 0 0 2 2977 no white
## 125 0 27 124 1 1 0 0 0 0 2922 no white
## 126 0 31 215 1 1 0 0 0 2 3005 no white
## 127 0 33 109 1 1 0 0 0 1 3033 no white
## 128 0 21 185 2 1 0 0 0 2 3042 no black
## 129 0 19 189 1 0 0 0 0 2 3062 no white
## 130 0 23 130 2 0 0 0 0 1 3062 no black
## 131 0 21 160 1 0 0 0 0 0 3062 no white
## 132 0 18 90 1 1 0 0 1 0 3062 no white
## 133 0 18 90 1 1 0 0 1 0 3062 no white
## 134 0 32 132 1 0 0 0 0 4 3080 no white
## 135 0 19 132 3 0 0 0 0 0 3090 no other
## 136 0 24 115 1 0 0 0 0 2 3090 no white
## 137 0 22 85 3 1 0 0 0 0 3090 no other
## 138 0 22 120 1 0 0 1 0 1 3100 no white
## 139 0 23 128 3 0 0 0 0 0 3104 no other
## 140 0 22 130 1 1 0 0 0 0 3132 no white
## 141 0 30 95 1 1 0 0 0 2 3147 no white
## 142 0 19 115 3 0 0 0 0 0 3175 no other
## 143 0 16 110 3 0 0 0 0 0 3175 no other
## 144 0 21 110 3 1 0 0 1 0 3203 no other
## 145 0 30 153 3 0 0 0 0 0 3203 no other
## 146 0 20 103 3 0 0 0 0 0 3203 no other
## 147 0 17 119 3 0 0 0 0 0 3225 no other
## 148 0 17 119 3 0 0 0 0 0 3225 no other
## 149 0 23 119 3 0 0 0 0 2 3232 no other
## 150 0 24 110 3 0 0 0 0 0 3232 no other
## 151 0 28 140 1 0 0 0 0 0 3234 no white
## 154 0 26 133 3 1 2 0 0 0 3260 no other
## 155 0 20 169 3 0 1 0 1 1 3274 no other
## 156 0 24 115 3 0 0 0 0 2 3274 no other
## 159 0 28 250 3 1 0 0 0 6 3303 no other
## 160 0 20 141 1 0 2 0 1 1 3317 no white
## 161 0 22 158 2 0 1 0 0 2 3317 no black
## 162 0 22 112 1 1 2 0 0 0 3317 no white
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## 163 0 31 150 3 1 0 0 0 2 3321 no other
## 164 0 23 115 3 1 0 0 0 1 3331 no other
## 166 0 16 112 2 0 0 0 0 0 3374 no black
## 167 0 16 135 1 1 0 0 0 0 3374 no white
## 168 0 18 229 2 0 0 0 0 0 3402 no black
## 169 0 25 140 1 0 0 0 0 1 3416 no white
## 170 0 32 134 1 1 1 0 0 4 3430 no white
## 172 0 20 121 2 1 0 0 0 0 3444 no black
## 173 0 23 190 1 0 0 0 0 0 3459 no white
## 174 0 22 131 1 0 0 0 0 1 3460 no white
## 175 0 32 170 1 0 0 0 0 0 3473 no white
## 176 0 30 110 3 0 0 0 0 0 3544 no other
## 177 0 20 127 3 0 0 0 0 0 3487 no other
## 179 0 23 123 3 0 0 0 0 0 3544 no other
## 180 0 17 120 3 1 0 0 0 0 3572 no other
## 181 0 19 105 3 0 0 0 0 0 3572 no other
## 182 0 23 130 1 0 0 0 0 0 3586 no white
## 183 0 36 175 1 0 0 0 0 0 3600 no white
## 184 0 22 125 1 0 0 0 0 1 3614 no white
## 185 0 24 133 1 0 0 0 0 0 3614 no white
## 186 0 21 134 3 0 0 0 0 2 3629 no other
## 187 0 19 235 1 1 0 1 0 0 3629 no white
## 188 0 25 95 1 1 3 0 1 0 3637 no white
## 189 0 16 135 1 1 0 0 0 0 3643 no white
## 190 0 29 135 1 0 0 0 0 1 3651 no white
## 191 0 29 154 1 0 0 0 0 1 3651 no white
## 192 0 19 147 1 1 0 0 0 0 3651 no white
## 193 0 19 147 1 1 0 0 0 0 3651 no white
## 195 0 30 137 1 0 0 0 0 1 3699 no white
## 196 0 24 110 1 0 0 0 0 1 3728 no white
## 197 0 19 184 1 1 0 1 0 0 3756 no white
## 199 0 24 110 3 0 1 0 0 0 3770 no other
## 200 0 23 110 1 0 0 0 0 1 3770 no white
## 201 0 20 120 3 0 0 0 0 0 3770 no other
## 202 0 25 241 2 0 0 1 0 0 3790 no black
## 203 0 30 112 1 0 0 0 0 1 3799 no white
## 204 0 22 169 1 0 0 0 0 0 3827 no white
## 205 0 18 120 1 1 0 0 0 2 3856 no white
## 206 0 16 170 2 0 0 0 0 4 3860 no black
## 207 0 32 186 1 0 0 0 0 2 3860 no white
## 208 0 18 120 3 0 0 0 0 1 3884 no other
## 209 0 29 130 1 1 0 0 0 2 3884 no white
## 210 0 33 117 1 0 0 0 1 1 3912 no white
## 211 0 20 170 1 1 0 0 0 0 3940 no white
## 212 0 28 134 3 0 0 0 0 1 3941 no other
## 213 0 14 135 1 0 0 0 0 0 3941 no white
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## 214 0 28 130 3 0 0 0 0 0 3969 no other
## 215 0 25 120 1 0 0 0 0 2 3983 no white
## 216 0 16 95 3 0 0 0 0 1 3997 no other
## 217 0 20 158 1 0 0 0 0 1 3997 no white
## 218 0 26 160 3 0 0 0 0 0 4054 no other
## 219 0 21 115 1 0 0 0 0 1 4054 no white
## 220 0 22 129 1 0 0 0 0 0 4111 no white
## 221 0 25 130 1 0 0 0 0 2 4153 no white
## 222 0 31 120 1 0 0 0 0 2 4167 no white
## 223 0 35 170 1 0 1 0 0 1 4174 no white
## 224 0 19 120 1 1 0 0 0 0 4238 no white
## 225 0 24 116 1 0 0 0 0 1 4593 no white
## 226 0 45 123 1 0 0 0 0 1 4990 no white
## 4 1 28 120 3 1 1 0 1 0 709 yes other
## 10 1 29 130 1 0 0 0 1 2 1021 yes white
## 11 1 34 187 2 1 0 1 0 0 1135 yes black
## 13 1 25 105 3 0 1 1 0 0 1330 yes other
## 15 1 25 85 3 0 0 0 1 0 1474 yes other
## 16 1 27 150 3 0 0 0 0 0 1588 yes other
## 17 1 23 97 3 0 0 0 1 1 1588 yes other
## 18 1 24 128 2 0 1 0 0 1 1701 yes black
## 19 1 24 132 3 0 0 1 0 0 1729 yes other
## 20 1 21 165 1 1 0 1 0 1 1790 yes white
## 22 1 32 105 1 1 0 0 0 0 1818 yes white
## 23 1 19 91 1 1 2 0 1 0 1885 yes white
## 24 1 25 115 3 0 0 0 0 0 1893 yes other
## 25 1 16 130 3 0 0 0 0 1 1899 yes other
## 26 1 25 92 1 1 0 0 0 0 1928 yes white
## 27 1 20 150 1 1 0 0 0 2 1928 yes white
## 28 1 21 200 2 0 0 0 1 2 1928 yes black
## 29 1 24 155 1 1 1 0 0 0 1936 yes white
## 30 1 21 103 3 0 0 0 0 0 1970 yes other
## 31 1 20 125 3 0 0 0 1 0 2055 yes other
## 32 1 25 89 3 0 2 0 0 1 2055 yes other
## 33 1 19 102 1 0 0 0 0 2 2082 yes white
## 34 1 19 112 1 1 0 0 1 0 2084 yes white
## 35 1 26 117 1 1 1 0 0 0 2084 yes white
## 36 1 24 138 1 0 0 0 0 0 2100 yes white
## 37 1 17 130 3 1 1 0 1 0 2125 yes other
## 40 1 20 120 2 1 0 0 0 3 2126 yes black
## 42 1 22 130 1 1 1 0 1 1 2187 yes white
## 43 1 27 130 2 0 0 0 1 0 2187 yes black
## 44 1 20 80 3 1 0 0 1 0 2211 yes other
## 45 1 17 110 1 1 0 0 0 0 2225 yes white
## 46 1 25 105 3 0 1 0 0 1 2240 yes other
## 47 1 20 109 3 0 0 0 0 0 2240 yes other
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## 49 1 18 148 3 0 0 0 0 0 2282 yes other
## 50 1 18 110 2 1 1 0 0 0 2296 yes black
## 51 1 20 121 1 1 1 0 1 0 2296 yes white
## 52 1 21 100 3 0 1 0 0 4 2301 yes other
## 54 1 26 96 3 0 0 0 0 0 2325 yes other
## 56 1 31 102 1 1 1 0 0 1 2353 yes white
## 57 1 15 110 1 0 0 0 0 0 2353 yes white
## 59 1 23 187 2 1 0 0 0 1 2367 yes black
## 60 1 20 122 2 1 0 0 0 0 2381 yes black
## 61 1 24 105 2 1 0 0 0 0 2381 yes black
## 62 1 15 115 3 0 0 0 1 0 2381 yes other
## 63 1 23 120 3 0 0 0 0 0 2410 yes other
## 65 1 30 142 1 1 1 0 0 0 2410 yes white
## 67 1 22 130 1 1 0 0 0 1 2410 yes white
## 68 1 17 120 1 1 0 0 0 3 2414 yes white
## 69 1 23 110 1 1 1 0 0 0 2424 yes white
## 71 1 17 120 2 0 0 0 0 2 2438 yes black
## 75 1 26 154 3 0 1 1 0 1 2442 yes other
## 76 1 20 105 3 0 0 0 0 3 2450 yes other
## 77 1 26 190 1 1 0 0 0 0 2466 yes white
## 78 1 14 101 3 1 1 0 0 0 2466 yes other
## 79 1 28 95 1 1 0 0 0 2 2466 yes white
## 81 1 14 100 3 0 0 0 0 2 2495 yes other
## 82 1 23 94 3 1 0 0 0 0 2495 yes other
## 83 1 17 142 2 0 0 1 0 0 2495 yes black
## 84 1 21 130 1 1 0 1 0 3 2495 yes white

18.5.3 Make tables or plots to explore the data visually.

tabyl(birthwt2, low_fct, race_fct) %>%
adorn_totals()

## low_fct white black other
## no 73 15 42
## yes 23 11 25
## Total 96 26 67

tabyl(birthwt2, low_fct, race_fct) %>%
adorn_totals() %>%
adorn_percentages("col") %>%
adorn_pct_formatting()

## low_fct white black other
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## no 76.0% 57.7% 62.7%
## yes 24.0% 42.3% 37.3%
## Total 100.0% 100.0% 100.0%

Commentary: Earlier we used row and column total to explain how expected cell
counts arise. Here, however, we will revert back to our previous standard prac-
tice of generating one contingency table with counts and another with column
percentages.

18.6 Hypotheses

18.6.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample consists of 189 mothers who gave birth at the Baystate Medical
Center in Springfield, Massachusetts in 1986. The population is presumably all
mothers, although it’s safest to conclude only about mothers who gave birth at
this hospital.

18.6.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ Low birth weight and race are independent.

𝐻𝐴 ∶ Low birth weight and race are associated.

18.6.3 Express the null and alternative hypotheses in sym-
bols (when possible).

For a chi-square test for independence, this section is not applicable. With
multiple categories in the response and predictor variables, there are no specific
parameters of interest to express symbolically.

18.7 Model

18.7.1 Identify the sampling distribution model.

We will use a chi-square model with 2 degrees of freedom.
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18.7.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random

– We hope that these 189 women are representative of all women who
gave birth in this hospital (or, at best, in that region) around that
time.

• 10%

– We don’t know how many women gave birth at this hospital, but
perhaps over many years we might have more than 1890 women.

• Expected cell counts

– You checked the cell counts as a part of Exercise 1. Note that all
expected cell counts are larger than 5, so the condition is met.

18.8 Mechanics

18.8.1 Compute the test statistic.

obs_chisq <- birthwt2 %>%
specify(response = low_fct, explanatory = race_fct) %>%
hypothesize(null = "independence") %>%
calculate(stat = "chisq")

obs_chisq

## Response: low_fct (factor)
## Explanatory: race_fct (factor)
## Null Hypothesis: independence
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 5.00

18.8.2 Report the test statistic in context (when possible).

The value of 𝜒2 is 5.004813.

Commentary: As in the last chapter, there’s not much context to report with a
value of 𝜒2, so the most we can do here is just report it in a full sentence.
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18.8.3 Plot the null distribution.

low_race_test <- birthwt2 %>%
specify(response = low_fct, explanatory = race_fct) %>%
assume(distribution = "chisq")

low_race_test

## A Chi-squared distribution with 2 degrees of freedom.

low_race_test %>%
visualize() +
shade_p_value(obs_chisq, direction = "greater")
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18.8.4 Calculate the P-value.

low_race_test_p <- low_race_test %>%
get_p_value(obs_chisq, direction = "greater")

low_race_test_p

## # A tibble: 1 x 1
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## p_value
## <dbl>
## 1 0.0819

18.8.5 Interpret the P-value as a probability given the
null.

The P-value is 0.0818877. If low birth weight and race were independent, there
would be a 8.1887698% chance of seeing results at least as extreme as we saw
in the data.

18.9 Conclusion

18.9.1 State the statistical conclusion.

We fail to reject the null hypothesis.

18.9.2 State (but do not overstate) a contextually mean-
ingful conclusion.

There is insufficient evidence that low birth weight and race are associated.

18.9.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

Given our uncertainly about how the data was collected, it’s not clear what our
conclusion means. Also, failing to reject the null is really a “non-conclusion” in
that it leaves us basically knowing nothing. We don’t have evidence of such an
association (and there are good reasons to believe there may not be one), but
failing to reject the null does not prove anything.

18.9.4 Identify the possibility of either a Type I or Type II
error and state what making such an error means
in the context of the hypotheses.

It’s possible that we have made a Type II error. It may be that low birth weight
and race are associated, but our sample has not given enough evidence of such
an association.
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18.10 Confidence interval

There are no parameters of interest in a chi-square test, so there is no confidence
interval to report.

18.11 Your turn

Use the smoking data set from the openintro package. Run a chi-square test for
independence to determine if smoking status is associated with marital status.

The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere.

Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]
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# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.
𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.
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# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

18.12 Bonus section: Residuals

Just like with the chi-square test for goodness of fit, rejecting the null hypothe-
sis using the chi-square test for independence informs us that two variables are
associated, but it doesn’t tell us the useful information about which combina-
tions of variables have higher and lower counts than expected. And just like the
chi-square test for goodness of fit, we can examine the residuals table to find
that information.
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A word of caution: You should only examine the residuals if your test was
statistically significant! The residuals table for tests in which we fail to reject
the null hypothesis can be misleading.
Because we failed to reject the null hypothesis in the low_race_test, it would
be unwise for us to examine the residuals table in that test. Instead, we’ll use
a different example.
The diabetes2 dataset in the openintro package contains information about an
experiment evaluating three treatments for Type 2 diabetes in patients aged 10-
17 who were being treated with metformin. The three treatments summarized
in the treatment variable were: continued treatment with metformin (met),
treatment with metformin combined with rosiglitazone (rosi), or a lifestyle
intervention program (lifestyle). Each patient had a primary outcome, which
was either “lacked glycemic control” (failure) or did not lack that control
(success). Here is the summary of the results of the experiment:

tabyl(diabetes2, treatment, outcome)

## treatment failure success
## lifestyle 109 125
## met 120 112
## rosi 90 143

For the sake of a streamlined presentation, we’ll omit the usual details of
condition-checking, hypothesis-writing, etc., and skip right to the conclusion.

tabyl(diabetes2, treatment, outcome) %>%
chisq.test() -> outcome_treatment_chisq.test

outcome_treatment_chisq.test

##
## Pearson's Chi-squared test
##
## data: .
## X-squared = 8.1645, df = 2, p-value = 0.01687

Notice that the p-value obtained from the test is below our usual significance
level 𝛼 = 0.05, so it makes sense for us to examine the residuals.

outcome_treatment_chisq.test$residuals

## treatment failure success
## lifestyle 0.2138881 -0.1959703
## met 1.3725470 -1.2575659
## rosi -1.5839451 1.4512548
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Again, these values don’t mean much in the real world; our job is to look at the
most positive and most negative values.

• Since the rosi and failure cell has the most negative value, the count
of people who failed to achieve glycemic control with rosiglitazone is the
most below expected. (That’s a good result!)

• Since the rosi and success cell has the most positive value, the count of
people who succeeded in achieving glycemic control with rosiglitazone is
the most above expected. (That’s also a good result!)

Overall, we can conclude that the rosiglitazone treatment was quite successful
in helping people achieve their glycemic control goals.

18.12.1 Your turn

Examine the residuals table to determine which marital statuses are most asso-
ciated with smoking or not smoking.

# Add code here to produce the chisq.test result.

# Add code here to examine the residuals table.

Please write your answer here.

18.13 Conclusion

With two categorical variables, we can run a chi-square test for independence
to test the null hypothesis that the two variables are independent. While tech-
nically we can run this test for any two categorical variables, if both variables
have only two levels, we would usually choose to run a test for two proportions.
The chi-square test for independence is useful when one or both of the response
and predictor variables have three or more levels. The expected cell counts are
derived from the data and then the chi-squared statistic is computed as usual.
Using the correct degrees of freedom, we can test how much the observed cell
counts deviate from the expected cell counts and derive a P-value.

18.13.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
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3. Spell check your document by clicking the icon with “ABC” and a check
mark.

4. Hit the “Preview” button one last time to generate the final draft of the
.nb.html file.

5. Proofread the HTML file carefully. If there are errors, go back and fix
them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 19

Inference for one mean

2.0

Functions introduced in this chapter

rnorm

19.1 Introduction

In this chapter, we’ll learn about the Student t distribution and use it to perform
a t test for a single mean.

19.1.1 Install new packages

There are no new packages used in this chapter.

19.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/19-inference_for_one_mean.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

539
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19.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

19.2 Load packages

We load the standard tidyverse and infer packages as well as the mosaic
package to run some simulation. The openintro package contains the teacher
data and the hsb2 data.

library(tidyverse)
library(infer)
library(mosaic)
library(openintro)

19.3 Simulating means

Systolic blood pressure (SBP) for women in the U.S. and Canada follows a
normal distribution with a mean of 114 and a standard deviation of 14.

Suppose we gather a random sample of 4 women and measure their SBP. We
can simulate doing that with the rnorm command:

set.seed(5151977)
SBP_sample <- rnorm(4, mean = 114, sd = 14)
SBP_sample

## [1] 99.75130 126.47739 99.53632 115.05247

We summarize our sample by taking the mean and standard deviation:

mean(SBP_sample)

## [1] 110.2044

sd(SBP_sample)

## [1] 13.05615
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The sample mean ̄𝑦 = 110.2043696 is somewhat close to the true population
mean 𝜇 = 114 and the sample standard deviation 𝑠 = 13.0561519 is somewhat
close to the true population standard deviation 𝜎 = 14. (𝜇 is the Greek letter
“mu” and 𝜎 is the Greek letter “sigma”.)

Let’s simulate lots of samples of size 4. For each sample, we calculate the sample
mean.

set.seed(5151977)
sims <- do(2000) * mean(rnorm(4, mean = 114, sd = 14))
sims

## mean
## 1 110.95524
## 2 111.06853
## 3 109.91266
## 4 113.51487
## 5 114.84292
## 6 124.12671
## 7 110.52277
## 8 122.91483
## 9 113.79958
## 10 121.52306
## 11 119.45527
## 12 130.95196
## 13 106.25140
## 14 119.48189
## 15 122.95412
## 16 111.36293
## 17 115.26561
## 18 120.00887
## 19 111.12422
## 20 125.11449
## 21 112.54356
## 22 121.05007
## 23 111.92577
## 24 112.37685
## 25 108.60242
## 26 112.14135
## 27 121.03786
## 28 102.21504
## 29 131.42457
## 30 115.75208
## 31 118.57539
## 32 107.75367
## 33 113.73938
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## 34 107.48598
## 35 104.02251
## 36 110.26283
## 37 114.03591
## 38 105.89310
## 39 112.81019
## 40 123.99549
## 41 102.07213
## 42 102.65507
## 43 119.93490
## 44 123.99603
## 45 119.72605
## 46 122.57296
## 47 112.79102
## 48 108.88674
## 49 109.46094
## 50 111.52494
## 51 106.51913
## 52 118.92374
## 53 122.65041
## 54 106.33611
## 55 114.84009
## 56 119.94925
## 57 87.48567
## 58 107.67256
## 59 112.29705
## 60 114.49032
## 61 106.00521
## 62 103.61574
## 63 114.44472
## 64 124.40115
## 65 107.25545
## 66 106.18013
## 67 107.38138
## 68 115.50453
## 69 118.83450
## 70 109.98443
## 71 133.63093
## 72 118.93599
## 73 112.55365
## 74 122.22781
## 75 119.94346
## 76 120.08051
## 77 115.73125
## 78 99.12175
## 79 110.20178
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## 80 97.50553
## 81 126.13150
## 82 110.10237
## 83 116.45862
## 84 118.18392
## 85 120.15207
## 86 107.32720
## 87 117.33775
## 88 96.64247
## 89 109.86058
## 90 124.84727
## 91 109.67761
## 92 117.45921
## 93 110.36776
## 94 118.71447
## 95 122.94817
## 96 113.04646
## 97 116.69160
## 98 113.14800
## 99 117.60656
## 100 116.98939
## 101 113.87627
## 102 117.60049
## 103 119.06600
## 104 126.74302
## 105 116.53015
## 106 121.92932
## 107 107.90235
## 108 118.06294
## 109 116.88269
## 110 119.81950
## 111 127.56483
## 112 109.67205
## 113 113.93574
## 114 110.89664
## 115 115.59765
## 116 98.08517
## 117 108.69878
## 118 114.50676
## 119 109.82143
## 120 118.93792
## 121 121.50253
## 122 101.73570
## 123 117.77834
## 124 103.81164
## 125 101.48508



544 CHAPTER 19. INFERENCE FOR ONE MEAN

## 126 127.18256
## 127 119.56654
## 128 120.47221
## 129 123.70693
## 130 125.67436
## 131 124.50634
## 132 99.11626
## 133 113.36051
## 134 107.59688
## 135 119.69572
## 136 113.57789
## 137 114.00803
## 138 114.95061
## 139 117.94756
## 140 106.20955
## 141 112.69388
## 142 115.82052
## 143 124.41148
## 144 119.49821
## 145 114.44646
## 146 101.22920
## 147 109.58204
## 148 109.16187
## 149 105.36936
## 150 111.49145
## 151 118.48739
## 152 101.84622
## 153 115.05308
## 154 121.74454
## 155 115.84609
## 156 114.60402
## 157 121.84957
## 158 118.38499
## 159 117.98274
## 160 121.94268
## 161 112.60397
## 162 106.21758
## 163 121.90313
## 164 122.05917
## 165 128.85365
## 166 106.67919
## 167 120.88093
## 168 105.27210
## 169 133.73894
## 170 112.95960
## 171 114.62501



19.3. SIMULATING MEANS 545

## 172 118.79292
## 173 114.05784
## 174 106.07207
## 175 122.25110
## 176 124.99923
## 177 111.32837
## 178 112.67882
## 179 118.10980
## 180 113.55150
## 181 109.94996
## 182 130.17665
## 183 117.41869
## 184 112.29039
## 185 115.18728
## 186 119.10711
## 187 121.18710
## 188 116.40250
## 189 123.58668
## 190 117.05543
## 191 114.30052
## 192 120.59040
## 193 108.93992
## 194 116.69512
## 195 123.65056
## 196 120.25289
## 197 119.10736
## 198 121.35013
## 199 108.22576
## 200 123.96013
## 201 120.50076
## 202 109.45569
## 203 124.60173
## 204 109.20374
## 205 109.14185
## 206 111.64284
## 207 127.80637
## 208 97.05353
## 209 104.42525
## 210 108.70502
## 211 123.53495
## 212 111.92085
## 213 103.79728
## 214 109.04242
## 215 101.15528
## 216 108.99493
## 217 115.66033



546 CHAPTER 19. INFERENCE FOR ONE MEAN

## 218 104.27866
## 219 127.74945
## 220 119.18990
## 221 99.37513
## 222 119.24557
## 223 107.03566
## 224 118.83983
## 225 118.84264
## 226 124.91099
## 227 103.66402
## 228 109.91857
## 229 116.49506
## 230 112.01135
## 231 110.40098
## 232 100.23115
## 233 115.89741
## 234 120.00895
## 235 110.26257
## 236 104.91429
## 237 121.20485
## 238 127.85001
## 239 121.99891
## 240 116.34753
## 241 113.57648
## 242 113.91281
## 243 117.83396
## 244 117.19323
## 245 123.04011
## 246 111.43295
## 247 108.88549
## 248 101.10892
## 249 108.54658
## 250 128.54127
## 251 132.02932
## 252 117.36163
## 253 100.19385
## 254 113.30224
## 255 120.65156
## 256 104.76686
## 257 118.55390
## 258 118.08333
## 259 118.85312
## 260 116.92587
## 261 125.34601
## 262 113.04661
## 263 127.01136



19.3. SIMULATING MEANS 547

## 264 116.97079
## 265 115.09776
## 266 120.77965
## 267 112.78021
## 268 120.98030
## 269 96.97945
## 270 109.06035
## 271 113.31895
## 272 118.24567
## 273 128.56256
## 274 122.71663
## 275 122.79106
## 276 107.69711
## 277 122.51593
## 278 121.62137
## 279 115.44487
## 280 114.65932
## 281 100.87231
## 282 118.26446
## 283 108.46425
## 284 115.83714
## 285 121.39197
## 286 110.09557
## 287 113.85471
## 288 117.69545
## 289 116.22425
## 290 120.78184
## 291 126.43991
## 292 103.53681
## 293 116.32864
## 294 108.06495
## 295 106.65624
## 296 120.69772
## 297 119.37433
## 298 100.02332
## 299 118.59332
## 300 119.53438
## 301 107.11014
## 302 111.97493
## 303 103.47491
## 304 111.99805
## 305 118.71416
## 306 116.33954
## 307 125.49563
## 308 107.78016
## 309 102.12925



548 CHAPTER 19. INFERENCE FOR ONE MEAN

## 310 112.12212
## 311 117.51136
## 312 110.08975
## 313 114.72259
## 314 120.56031
## 315 122.04100
## 316 111.17129
## 317 116.39056
## 318 111.50435
## 319 104.30895
## 320 101.31131
## 321 114.53301
## 322 113.94972
## 323 116.04217
## 324 112.54460
## 325 113.52116
## 326 110.60055
## 327 117.48808
## 328 116.50048
## 329 119.46474
## 330 123.91257
## 331 111.94294
## 332 102.98073
## 333 109.80824
## 334 106.57737
## 335 113.14494
## 336 100.74728
## 337 100.16375
## 338 115.02875
## 339 110.51485
## 340 110.32509
## 341 120.91380
## 342 118.33534
## 343 111.63758
## 344 110.58353
## 345 118.32547
## 346 106.03945
## 347 114.78878
## 348 95.12731
## 349 115.50274
## 350 123.32999
## 351 104.88001
## 352 127.10250
## 353 127.14507
## 354 108.64777
## 355 112.02036



19.3. SIMULATING MEANS 549

## 356 120.33362
## 357 120.23128
## 358 111.15694
## 359 123.51130
## 360 116.82204
## 361 104.68623
## 362 114.13924
## 363 111.40374
## 364 109.04713
## 365 118.19404
## 366 126.41994
## 367 119.38439
## 368 112.72901
## 369 106.14565
## 370 115.27480
## 371 112.79306
## 372 111.38774
## 373 115.34948
## 374 105.88397
## 375 127.93875
## 376 106.13218
## 377 103.12044
## 378 117.84138
## 379 117.41520
## 380 125.36306
## 381 105.82215
## 382 127.51360
## 383 103.99779
## 384 113.93482
## 385 104.04683
## 386 106.93355
## 387 107.05414
## 388 104.54855
## 389 125.37328
## 390 112.21401
## 391 113.13934
## 392 125.71206
## 393 105.71941
## 394 112.40308
## 395 108.61642
## 396 107.48780
## 397 118.09707
## 398 125.35679
## 399 97.45444
## 400 100.10943
## 401 116.58694



550 CHAPTER 19. INFERENCE FOR ONE MEAN

## 402 106.78057
## 403 111.91079
## 404 116.75726
## 405 108.17398
## 406 99.58362
## 407 114.57293
## 408 109.85168
## 409 121.84334
## 410 107.86493
## 411 127.12080
## 412 124.86587
## 413 99.53627
## 414 116.46358
## 415 124.81236
## 416 111.73796
## 417 108.87264
## 418 117.94757
## 419 115.56643
## 420 123.96318
## 421 113.77360
## 422 119.94670
## 423 108.32990
## 424 124.58518
## 425 114.06451
## 426 110.54113
## 427 114.85524
## 428 117.35423
## 429 125.28117
## 430 114.69364
## 431 106.83007
## 432 110.89630
## 433 115.50097
## 434 121.92301
## 435 118.78799
## 436 113.84525
## 437 120.64767
## 438 109.36883
## 439 121.13011
## 440 113.52213
## 441 115.16573
## 442 123.03323
## 443 111.16598
## 444 110.23718
## 445 121.01684
## 446 104.57516
## 447 114.23794



19.3. SIMULATING MEANS 551

## 448 116.48334
## 449 112.93738
## 450 116.97262
## 451 123.01939
## 452 103.86612
## 453 108.16585
## 454 117.46619
## 455 102.80921
## 456 111.45025
## 457 113.71313
## 458 115.76154
## 459 107.26893
## 460 122.26012
## 461 136.24026
## 462 123.72361
## 463 110.92298
## 464 100.08531
## 465 112.24392
## 466 110.54597
## 467 111.99873
## 468 112.89430
## 469 112.26102
## 470 117.39683
## 471 117.50764
## 472 106.53525
## 473 105.80527
## 474 115.67630
## 475 100.35041
## 476 113.07986
## 477 114.39667
## 478 118.53729
## 479 125.13422
## 480 116.61993
## 481 113.62256
## 482 117.60229
## 483 121.42464
## 484 123.01585
## 485 110.59016
## 486 118.49153
## 487 116.60030
## 488 114.53784
## 489 126.91723
## 490 96.27709
## 491 103.54786
## 492 105.34090
## 493 113.60563



552 CHAPTER 19. INFERENCE FOR ONE MEAN

## 494 119.49589
## 495 120.85729
## 496 111.34998
## 497 108.19074
## 498 105.44374
## 499 111.48404
## 500 115.11209
## 501 113.31679
## 502 107.93316
## 503 121.78264
## 504 110.72774
## 505 108.02673
## 506 113.40761
## 507 121.72887
## 508 112.27018
## 509 105.09043
## 510 121.76014
## 511 116.73332
## 512 121.76908
## 513 117.22549
## 514 108.76471
## 515 107.87862
## 516 117.75028
## 517 110.29232
## 518 116.54346
## 519 109.25235
## 520 113.03419
## 521 117.64512
## 522 121.47154
## 523 114.08779
## 524 106.18617
## 525 119.07393
## 526 106.86533
## 527 115.46940
## 528 101.70763
## 529 97.54206
## 530 110.64455
## 531 107.06610
## 532 112.42027
## 533 118.73436
## 534 111.71727
## 535 104.05510
## 536 129.54831
## 537 117.09248
## 538 124.54404
## 539 116.33296



19.3. SIMULATING MEANS 553

## 540 123.40549
## 541 102.44298
## 542 111.77241
## 543 120.33461
## 544 117.91417
## 545 108.52797
## 546 126.19165
## 547 113.31332
## 548 107.87823
## 549 119.66154
## 550 111.16370
## 551 109.34024
## 552 117.21184
## 553 119.04455
## 554 117.19549
## 555 107.11711
## 556 106.42320
## 557 121.77364
## 558 119.82572
## 559 113.46557
## 560 115.69528
## 561 110.62206
## 562 122.38456
## 563 122.98836
## 564 108.48447
## 565 106.09706
## 566 116.32697
## 567 116.35801
## 568 124.40857
## 569 116.82206
## 570 114.09462
## 571 115.40778
## 572 116.96016
## 573 98.85140
## 574 135.20693
## 575 119.75133
## 576 114.80116
## 577 108.22753
## 578 117.61364
## 579 116.36189
## 580 109.92622
## 581 111.91415
## 582 116.15821
## 583 105.58993
## 584 108.08802
## 585 117.67850



554 CHAPTER 19. INFERENCE FOR ONE MEAN

## 586 111.13633
## 587 132.24823
## 588 110.85715
## 589 87.83593
## 590 125.64538
## 591 109.59319
## 592 101.12824
## 593 113.94740
## 594 124.31554
## 595 118.67357
## 596 111.03314
## 597 121.03873
## 598 110.29637
## 599 112.24814
## 600 119.22314
## 601 124.26302
## 602 112.70908
## 603 97.54202
## 604 112.54098
## 605 117.30295
## 606 113.61166
## 607 126.07466
## 608 108.19994
## 609 117.06018
## 610 117.99884
## 611 124.48122
## 612 120.04676
## 613 120.79039
## 614 113.56916
## 615 106.28474
## 616 121.85101
## 617 121.80984
## 618 107.49041
## 619 110.51965
## 620 122.22094
## 621 112.96608
## 622 107.79417
## 623 109.04927
## 624 100.50307
## 625 117.33123
## 626 125.95204
## 627 122.03779
## 628 116.83302
## 629 110.13387
## 630 118.26938
## 631 123.07836



19.3. SIMULATING MEANS 555

## 632 106.96144
## 633 119.32938
## 634 114.60838
## 635 104.26998
## 636 117.78356
## 637 112.10798
## 638 116.92210
## 639 122.20747
## 640 103.41158
## 641 104.35021
## 642 111.00875
## 643 126.15944
## 644 120.43646
## 645 103.26239
## 646 121.87818
## 647 109.79967
## 648 111.64820
## 649 116.67954
## 650 105.66557
## 651 112.75183
## 652 121.22979
## 653 114.24457
## 654 103.54787
## 655 101.95563
## 656 103.88058
## 657 124.59750
## 658 113.34938
## 659 104.30297
## 660 124.46201
## 661 114.08120
## 662 126.73495
## 663 117.66581
## 664 99.67641
## 665 107.33070
## 666 107.93766
## 667 113.07169
## 668 114.49677
## 669 109.61490
## 670 102.14626
## 671 118.50619
## 672 109.63734
## 673 125.07082
## 674 106.13135
## 675 120.89767
## 676 118.49616
## 677 121.94440



556 CHAPTER 19. INFERENCE FOR ONE MEAN

## 678 116.67561
## 679 110.53741
## 680 109.26362
## 681 121.35528
## 682 120.08566
## 683 106.30738
## 684 105.02832
## 685 116.33245
## 686 113.73313
## 687 121.30509
## 688 127.22500
## 689 115.56041
## 690 121.46557
## 691 118.54388
## 692 113.01171
## 693 130.12382
## 694 120.11217
## 695 105.06264
## 696 107.70540
## 697 116.29044
## 698 107.87553
## 699 99.27654
## 700 111.77306
## 701 112.65223
## 702 109.55930
## 703 116.77807
## 704 109.78229
## 705 119.13192
## 706 113.67539
## 707 118.85713
## 708 121.56431
## 709 116.28196
## 710 119.04540
## 711 109.45345
## 712 114.95872
## 713 115.29909
## 714 112.15066
## 715 116.73322
## 716 114.44525
## 717 111.12546
## 718 112.27558
## 719 113.56506
## 720 114.10238
## 721 100.49031
## 722 113.25783
## 723 111.85214



19.3. SIMULATING MEANS 557

## 724 116.96490
## 725 108.83318
## 726 114.62116
## 727 106.61273
## 728 109.46670
## 729 123.27669
## 730 120.57396
## 731 103.87767
## 732 106.94421
## 733 108.34143
## 734 116.92814
## 735 110.42256
## 736 109.48496
## 737 116.48718
## 738 120.68135
## 739 111.55352
## 740 93.88022
## 741 107.22182
## 742 124.23818
## 743 113.48573
## 744 114.27485
## 745 111.79580
## 746 113.71912
## 747 110.32422
## 748 122.13764
## 749 111.87946
## 750 127.66771
## 751 117.10136
## 752 115.48153
## 753 110.11040
## 754 112.85943
## 755 105.63839
## 756 108.13891
## 757 120.85112
## 758 117.88342
## 759 111.69815
## 760 119.76180
## 761 134.35632
## 762 109.77925
## 763 119.67662
## 764 120.93808
## 765 109.29167
## 766 122.32388
## 767 109.15243
## 768 117.27312
## 769 108.50841



558 CHAPTER 19. INFERENCE FOR ONE MEAN

## 770 111.76736
## 771 124.59931
## 772 112.06909
## 773 112.19180
## 774 114.38893
## 775 120.83596
## 776 107.44710
## 777 121.63091
## 778 114.90195
## 779 101.89752
## 780 111.35287
## 781 117.87474
## 782 101.78017
## 783 110.58340
## 784 125.94421
## 785 123.96811
## 786 113.46274
## 787 121.76359
## 788 110.06839
## 789 102.44855
## 790 111.36805
## 791 112.06821
## 792 107.07052
## 793 109.29914
## 794 123.65203
## 795 105.85683
## 796 111.35574
## 797 125.17185
## 798 100.63606
## 799 104.69494
## 800 116.48918
## 801 97.65872
## 802 110.70257
## 803 99.96854
## 804 118.34047
## 805 98.87707
## 806 106.96261
## 807 121.66617
## 808 120.60981
## 809 113.29107
## 810 111.57254
## 811 108.33329
## 812 122.84750
## 813 116.70816
## 814 123.37593
## 815 105.93103



19.3. SIMULATING MEANS 559

## 816 120.38120
## 817 117.05266
## 818 117.38626
## 819 111.90372
## 820 124.06628
## 821 108.95796
## 822 119.86165
## 823 117.27993
## 824 120.37133
## 825 128.86851
## 826 109.71630
## 827 111.71660
## 828 110.05162
## 829 113.51702
## 830 108.89157
## 831 107.63479
## 832 108.94371
## 833 118.58841
## 834 114.21696
## 835 111.22482
## 836 122.48018
## 837 115.61993
## 838 109.40633
## 839 104.44660
## 840 111.94576
## 841 127.03510
## 842 119.93454
## 843 111.68510
## 844 120.58653
## 845 108.03814
## 846 113.34691
## 847 106.62631
## 848 110.40374
## 849 122.61251
## 850 114.44325
## 851 104.69718
## 852 106.56099
## 853 127.06369
## 854 125.45967
## 855 114.71837
## 856 117.62471
## 857 120.52498
## 858 116.44214
## 859 107.40783
## 860 114.50855
## 861 115.58185



560 CHAPTER 19. INFERENCE FOR ONE MEAN

## 862 115.97269
## 863 114.63601
## 864 99.79335
## 865 109.73196
## 866 108.74116
## 867 102.28575
## 868 107.32777
## 869 117.85405
## 870 105.90642
## 871 112.89515
## 872 134.41702
## 873 112.23719
## 874 104.71251
## 875 118.32708
## 876 104.18355
## 877 128.33015
## 878 116.90507
## 879 120.39067
## 880 126.98088
## 881 116.34320
## 882 109.82074
## 883 123.30521
## 884 106.80564
## 885 118.13258
## 886 97.52207
## 887 112.72367
## 888 115.18713
## 889 117.35420
## 890 118.52945
## 891 112.23963
## 892 112.33860
## 893 117.71835
## 894 113.51003
## 895 102.75577
## 896 120.41303
## 897 113.45623
## 898 106.96468
## 899 118.39375
## 900 112.78840
## 901 111.73239
## 902 100.42487
## 903 117.71950
## 904 111.69543
## 905 102.44391
## 906 110.05755
## 907 116.58030



19.3. SIMULATING MEANS 561

## 908 116.50860
## 909 120.90876
## 910 120.61065
## 911 114.09941
## 912 108.47591
## 913 114.89356
## 914 111.55837
## 915 125.64014
## 916 120.40303
## 917 115.25511
## 918 113.53279
## 919 108.45547
## 920 104.94686
## 921 113.27691
## 922 113.20703
## 923 108.27743
## 924 118.50170
## 925 116.89015
## 926 111.98375
## 927 116.81695
## 928 122.73135
## 929 103.39012
## 930 117.62376
## 931 112.30233
## 932 113.45888
## 933 116.66527
## 934 118.67719
## 935 114.26432
## 936 122.97697
## 937 125.19933
## 938 118.29743
## 939 110.50635
## 940 115.82745
## 941 121.11219
## 942 113.55447
## 943 117.57714
## 944 112.28155
## 945 122.27081
## 946 106.57600
## 947 109.08308
## 948 117.50010
## 949 122.11137
## 950 122.16193
## 951 121.44458
## 952 117.33063
## 953 123.51882



562 CHAPTER 19. INFERENCE FOR ONE MEAN

## 954 121.94215
## 955 118.96786
## 956 114.31738
## 957 107.41746
## 958 113.77130
## 959 111.35407
## 960 107.59777
## 961 109.19277
## 962 127.13358
## 963 100.17054
## 964 120.18044
## 965 117.28016
## 966 109.87820
## 967 118.51631
## 968 108.74053
## 969 107.78547
## 970 95.13907
## 971 108.20715
## 972 118.80471
## 973 118.20027
## 974 113.92949
## 975 130.31542
## 976 114.68755
## 977 103.50685
## 978 109.87666
## 979 117.27346
## 980 113.62313
## 981 106.39070
## 982 113.30711
## 983 110.87394
## 984 125.48873
## 985 110.72711
## 986 112.07703
## 987 106.68431
## 988 105.44745
## 989 110.80564
## 990 109.69366
## 991 113.20748
## 992 114.57158
## 993 110.00366
## 994 106.38230
## 995 113.29721
## 996 121.58053
## 997 116.29353
## 998 118.41607
## 999 100.96017



19.3. SIMULATING MEANS 563

## 1000 108.10720
## 1001 130.32826
## 1002 120.17653
## 1003 115.76080
## 1004 104.11123
## 1005 111.41403
## 1006 110.55287
## 1007 109.45958
## 1008 117.71342
## 1009 106.94909
## 1010 119.46146
## 1011 111.08046
## 1012 117.20810
## 1013 121.10426
## 1014 113.24686
## 1015 116.21945
## 1016 103.16162
## 1017 109.84911
## 1018 119.90426
## 1019 116.16652
## 1020 115.20789
## 1021 115.37497
## 1022 109.81569
## 1023 123.91835
## 1024 118.28780
## 1025 117.16872
## 1026 114.28380
## 1027 117.47676
## 1028 127.92206
## 1029 120.61338
## 1030 119.82510
## 1031 117.25111
## 1032 109.81241
## 1033 110.86057
## 1034 99.17878
## 1035 105.74768
## 1036 124.20102
## 1037 125.06881
## 1038 113.94185
## 1039 119.46429
## 1040 110.56440
## 1041 103.70747
## 1042 114.42114
## 1043 119.36101
## 1044 114.96361
## 1045 127.03302



564 CHAPTER 19. INFERENCE FOR ONE MEAN

## 1046 110.93612
## 1047 121.32774
## 1048 125.58299
## 1049 113.66107
## 1050 127.45563
## 1051 121.29938
## 1052 115.91205
## 1053 125.66449
## 1054 117.38157
## 1055 113.01597
## 1056 113.25878
## 1057 127.29828
## 1058 125.32686
## 1059 109.75475
## 1060 112.37593
## 1061 107.38527
## 1062 115.14333
## 1063 111.45853
## 1064 120.82785
## 1065 105.20941
## 1066 108.54900
## 1067 114.02939
## 1068 118.37864
## 1069 102.11114
## 1070 116.64180
## 1071 108.40744
## 1072 117.18136
## 1073 108.19509
## 1074 107.14360
## 1075 116.90222
## 1076 104.15030
## 1077 100.26139
## 1078 105.81597
## 1079 113.34212
## 1080 111.94739
## 1081 121.14570
## 1082 118.44696
## 1083 107.34237
## 1084 117.24360
## 1085 107.60404
## 1086 118.85538
## 1087 106.40600
## 1088 122.85663
## 1089 104.07504
## 1090 113.22320
## 1091 114.97140



19.3. SIMULATING MEANS 565

## 1092 118.09961
## 1093 117.03136
## 1094 107.14066
## 1095 123.18202
## 1096 112.09900
## 1097 107.97797
## 1098 111.92963
## 1099 111.93445
## 1100 128.90915
## 1101 115.24124
## 1102 111.91907
## 1103 99.85996
## 1104 113.54477
## 1105 108.94829
## 1106 128.90917
## 1107 107.32140
## 1108 120.24379
## 1109 105.11357
## 1110 111.05352
## 1111 120.79707
## 1112 115.00555
## 1113 111.01941
## 1114 111.84065
## 1115 114.34084
## 1116 105.92397
## 1117 111.70965
## 1118 119.16662
## 1119 111.73266
## 1120 105.54516
## 1121 113.79357
## 1122 117.76457
## 1123 102.44144
## 1124 103.29840
## 1125 115.05315
## 1126 111.03007
## 1127 116.53265
## 1128 107.45888
## 1129 115.61642
## 1130 118.95059
## 1131 111.51774
## 1132 117.40121
## 1133 112.47827
## 1134 125.66763
## 1135 119.79011
## 1136 111.11484
## 1137 114.83657
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## 1138 105.88437
## 1139 108.63627
## 1140 116.41257
## 1141 110.12795
## 1142 123.79206
## 1143 118.45650
## 1144 113.94787
## 1145 102.62388
## 1146 111.09719
## 1147 118.36165
## 1148 112.94732
## 1149 108.43720
## 1150 115.28137
## 1151 119.46534
## 1152 106.99961
## 1153 119.62218
## 1154 118.95339
## 1155 117.88381
## 1156 119.81714
## 1157 100.78069
## 1158 131.23269
## 1159 107.50770
## 1160 111.55628
## 1161 108.06604
## 1162 106.77945
## 1163 113.80202
## 1164 105.77542
## 1165 116.13634
## 1166 119.07567
## 1167 111.49404
## 1168 100.29369
## 1169 116.34176
## 1170 113.23696
## 1171 115.80735
## 1172 116.01929
## 1173 117.67437
## 1174 115.35731
## 1175 117.38773
## 1176 109.38466
## 1177 118.08699
## 1178 114.07595
## 1179 111.67969
## 1180 111.36346
## 1181 111.30338
## 1182 112.80356
## 1183 113.69834
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## 1184 124.86923
## 1185 108.54999
## 1186 113.09888
## 1187 104.47500
## 1188 116.31281
## 1189 122.09594
## 1190 112.86609
## 1191 98.80012
## 1192 106.70147
## 1193 117.85387
## 1194 112.45122
## 1195 116.41153
## 1196 117.87522
## 1197 109.68763
## 1198 111.52220
## 1199 107.07082
## 1200 111.32972
## 1201 112.26528
## 1202 111.10109
## 1203 114.52308
## 1204 112.31476
## 1205 117.47502
## 1206 116.52666
## 1207 120.81598
## 1208 116.33793
## 1209 112.74801
## 1210 127.52139
## 1211 121.52660
## 1212 105.79790
## 1213 117.85491
## 1214 97.34274
## 1215 111.33687
## 1216 107.07140
## 1217 126.33510
## 1218 110.39163
## 1219 113.56320
## 1220 115.64189
## 1221 113.85816
## 1222 104.43309
## 1223 111.79075
## 1224 110.78703
## 1225 110.67750
## 1226 116.06451
## 1227 108.96969
## 1228 108.15498
## 1229 112.92344
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## 1230 107.14717
## 1231 115.92812
## 1232 113.04762
## 1233 109.43041
## 1234 114.23104
## 1235 119.86467
## 1236 126.11721
## 1237 128.23638
## 1238 113.65702
## 1239 108.32141
## 1240 114.21378
## 1241 107.63545
## 1242 117.78865
## 1243 129.03578
## 1244 115.47835
## 1245 123.17433
## 1246 115.30096
## 1247 112.59428
## 1248 105.57202
## 1249 111.88252
## 1250 110.88433
## 1251 114.84263
## 1252 107.40725
## 1253 111.47207
## 1254 120.21071
## 1255 111.89527
## 1256 118.35163
## 1257 117.88052
## 1258 116.34688
## 1259 112.34029
## 1260 103.99297
## 1261 123.56539
## 1262 111.97952
## 1263 116.69397
## 1264 116.34907
## 1265 116.79808
## 1266 101.95297
## 1267 117.86954
## 1268 108.23262
## 1269 132.30578
## 1270 120.46958
## 1271 114.94029
## 1272 120.20149
## 1273 100.30723
## 1274 129.85113
## 1275 115.81816
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## 1276 117.02384
## 1277 120.27815
## 1278 121.85546
## 1279 103.90078
## 1280 122.19051
## 1281 116.57745
## 1282 109.95009
## 1283 105.23317
## 1284 116.93435
## 1285 111.57148
## 1286 119.13922
## 1287 125.54779
## 1288 109.10373
## 1289 110.70050
## 1290 105.11765
## 1291 109.87981
## 1292 118.19105
## 1293 114.29103
## 1294 106.15203
## 1295 102.50338
## 1296 109.96188
## 1297 108.15569
## 1298 113.50295
## 1299 111.48597
## 1300 121.54557
## 1301 110.93386
## 1302 103.80765
## 1303 119.33408
## 1304 102.02712
## 1305 118.55922
## 1306 107.06847
## 1307 108.79602
## 1308 116.50134
## 1309 118.38453
## 1310 118.79259
## 1311 106.82584
## 1312 102.34545
## 1313 130.01962
## 1314 109.81604
## 1315 119.12788
## 1316 110.37244
## 1317 95.99251
## 1318 119.60626
## 1319 119.44452
## 1320 123.12385
## 1321 119.36772
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## 1322 116.31835
## 1323 111.28271
## 1324 122.10482
## 1325 114.14807
## 1326 127.06285
## 1327 118.53668
## 1328 115.02598
## 1329 108.22127
## 1330 116.81348
## 1331 112.81088
## 1332 118.34949
## 1333 114.29864
## 1334 123.59628
## 1335 119.70373
## 1336 117.51460
## 1337 127.34626
## 1338 113.07955
## 1339 110.45866
## 1340 119.92736
## 1341 117.28564
## 1342 108.09077
## 1343 104.62263
## 1344 105.07416
## 1345 104.88394
## 1346 110.06062
## 1347 108.95208
## 1348 132.09090
## 1349 107.30942
## 1350 112.99771
## 1351 117.46157
## 1352 117.16070
## 1353 109.21347
## 1354 112.24620
## 1355 112.61793
## 1356 121.18151
## 1357 103.94874
## 1358 113.37763
## 1359 122.73741
## 1360 115.32113
## 1361 111.77167
## 1362 110.99553
## 1363 121.94203
## 1364 110.34328
## 1365 105.30604
## 1366 116.09629
## 1367 102.05262
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## 1368 109.95499
## 1369 119.25235
## 1370 118.15268
## 1371 112.32892
## 1372 105.47613
## 1373 111.76131
## 1374 100.76358
## 1375 109.93715
## 1376 100.96184
## 1377 125.21202
## 1378 110.37468
## 1379 124.80175
## 1380 109.96470
## 1381 115.14373
## 1382 121.15185
## 1383 115.30872
## 1384 118.92581
## 1385 110.46122
## 1386 111.08989
## 1387 105.44359
## 1388 117.45240
## 1389 109.14479
## 1390 115.13759
## 1391 110.39389
## 1392 115.01801
## 1393 108.04009
## 1394 120.60450
## 1395 118.56538
## 1396 117.14946
## 1397 120.93808
## 1398 114.59867
## 1399 118.94317
## 1400 117.58117
## 1401 110.22179
## 1402 106.15499
## 1403 113.10225
## 1404 110.11491
## 1405 102.21913
## 1406 105.08358
## 1407 103.49084
## 1408 100.73561
## 1409 107.55905
## 1410 106.16039
## 1411 129.10527
## 1412 108.82824
## 1413 121.21923
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## 1414 106.53840
## 1415 102.58445
## 1416 118.46176
## 1417 127.49937
## 1418 106.71160
## 1419 122.65682
## 1420 114.51373
## 1421 121.56658
## 1422 113.11742
## 1423 122.15894
## 1424 115.77924
## 1425 111.80496
## 1426 112.46076
## 1427 109.06221
## 1428 113.28135
## 1429 110.47385
## 1430 122.36573
## 1431 118.63585
## 1432 111.77054
## 1433 110.29033
## 1434 114.62444
## 1435 108.00727
## 1436 114.92012
## 1437 108.95962
## 1438 102.97774
## 1439 119.22310
## 1440 120.43765
## 1441 108.49537
## 1442 110.92757
## 1443 107.97688
## 1444 116.12105
## 1445 101.42974
## 1446 108.56945
## 1447 123.53596
## 1448 113.23547
## 1449 111.06023
## 1450 123.54516
## 1451 116.48961
## 1452 114.14523
## 1453 122.20655
## 1454 103.98278
## 1455 121.67445
## 1456 99.28229
## 1457 114.72245
## 1458 123.91351
## 1459 125.14108
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## 1460 113.67279
## 1461 111.81406
## 1462 113.03427
## 1463 112.31009
## 1464 123.09269
## 1465 118.35434
## 1466 114.97969
## 1467 116.46900
## 1468 110.49186
## 1469 106.00737
## 1470 111.91734
## 1471 123.08918
## 1472 120.01327
## 1473 108.06641
## 1474 109.38992
## 1475 109.96492
## 1476 123.97694
## 1477 109.80171
## 1478 108.36984
## 1479 120.85546
## 1480 118.34128
## 1481 117.86559
## 1482 116.26975
## 1483 108.53301
## 1484 118.59358
## 1485 116.85862
## 1486 116.77585
## 1487 120.74770
## 1488 107.73169
## 1489 119.16405
## 1490 108.31084
## 1491 116.06004
## 1492 112.46070
## 1493 116.88191
## 1494 111.17441
## 1495 104.23124
## 1496 103.50059
## 1497 101.43330
## 1498 113.01985
## 1499 110.29478
## 1500 115.67790
## 1501 118.72363
## 1502 120.64310
## 1503 109.50663
## 1504 129.39962
## 1505 110.08841
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## 1506 125.67869
## 1507 112.94456
## 1508 130.30593
## 1509 110.96469
## 1510 105.34348
## 1511 113.96547
## 1512 108.46737
## 1513 122.71343
## 1514 102.94200
## 1515 124.77048
## 1516 116.56960
## 1517 122.55535
## 1518 116.02211
## 1519 114.43897
## 1520 121.18077
## 1521 119.74168
## 1522 118.83429
## 1523 121.15772
## 1524 114.06548
## 1525 106.46666
## 1526 119.30676
## 1527 133.72091
## 1528 123.13389
## 1529 104.38520
## 1530 115.42896
## 1531 117.66344
## 1532 119.83591
## 1533 123.98602
## 1534 102.37509
## 1535 114.07874
## 1536 106.97540
## 1537 110.35280
## 1538 116.97690
## 1539 111.18541
## 1540 105.69587
## 1541 104.59612
## 1542 115.75452
## 1543 120.29783
## 1544 123.31126
## 1545 131.44892
## 1546 122.69949
## 1547 113.97907
## 1548 110.09498
## 1549 115.16476
## 1550 100.29843
## 1551 113.91254
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## 1552 114.66159
## 1553 103.84541
## 1554 110.39713
## 1555 105.25746
## 1556 102.13013
## 1557 124.34440
## 1558 118.88271
## 1559 109.24473
## 1560 103.34364
## 1561 120.40739
## 1562 116.99994
## 1563 123.02828
## 1564 108.33611
## 1565 119.99752
## 1566 121.03319
## 1567 99.99384
## 1568 116.67556
## 1569 107.83469
## 1570 108.69174
## 1571 105.66309
## 1572 119.96092
## 1573 117.85073
## 1574 117.72457
## 1575 108.18494
## 1576 105.57252
## 1577 109.74319
## 1578 103.37063
## 1579 120.24026
## 1580 117.46247
## 1581 118.56704
## 1582 113.29901
## 1583 126.00136
## 1584 118.37080
## 1585 114.59037
## 1586 123.25053
## 1587 118.19777
## 1588 105.07041
## 1589 110.12177
## 1590 108.81398
## 1591 118.84109
## 1592 114.03587
## 1593 118.08697
## 1594 114.20147
## 1595 115.63426
## 1596 115.48063
## 1597 119.33707
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## 1598 113.05393
## 1599 110.55678
## 1600 121.74840
## 1601 123.84287
## 1602 103.31903
## 1603 107.83778
## 1604 117.31981
## 1605 100.17249
## 1606 123.31731
## 1607 113.20546
## 1608 110.73020
## 1609 126.64609
## 1610 102.29858
## 1611 109.91586
## 1612 108.10079
## 1613 111.44146
## 1614 122.73071
## 1615 115.16343
## 1616 109.03564
## 1617 119.87047
## 1618 106.47498
## 1619 109.46235
## 1620 101.66624
## 1621 118.03451
## 1622 116.10188
## 1623 108.65630
## 1624 113.09310
## 1625 104.06154
## 1626 101.97438
## 1627 116.78661
## 1628 110.29435
## 1629 123.46893
## 1630 116.59034
## 1631 102.98659
## 1632 110.18205
## 1633 109.23006
## 1634 120.82451
## 1635 121.75575
## 1636 112.22303
## 1637 105.56302
## 1638 121.47504
## 1639 110.05367
## 1640 104.12317
## 1641 113.38777
## 1642 111.67334
## 1643 114.42323
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## 1644 106.43060
## 1645 135.61538
## 1646 115.60082
## 1647 117.35365
## 1648 113.11384
## 1649 117.95815
## 1650 112.93363
## 1651 113.47685
## 1652 105.97033
## 1653 114.98154
## 1654 107.74614
## 1655 116.06752
## 1656 122.10031
## 1657 112.99138
## 1658 114.29996
## 1659 106.96841
## 1660 108.60291
## 1661 121.43145
## 1662 92.95222
## 1663 113.02822
## 1664 111.52353
## 1665 105.84010
## 1666 129.57170
## 1667 116.08035
## 1668 117.68832
## 1669 116.61900
## 1670 122.81734
## 1671 115.13204
## 1672 114.64356
## 1673 116.38536
## 1674 109.62207
## 1675 110.92888
## 1676 114.36763
## 1677 105.78363
## 1678 116.03262
## 1679 101.17360
## 1680 118.69656
## 1681 114.24099
## 1682 113.32326
## 1683 103.40502
## 1684 112.39048
## 1685 113.95558
## 1686 115.26227
## 1687 124.42804
## 1688 118.27150
## 1689 123.43397
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## 1690 124.46988
## 1691 110.85936
## 1692 114.07836
## 1693 112.95339
## 1694 120.96305
## 1695 122.99706
## 1696 115.55654
## 1697 115.87079
## 1698 115.29694
## 1699 125.24085
## 1700 128.62481
## 1701 108.18660
## 1702 105.87661
## 1703 104.39514
## 1704 113.98015
## 1705 119.94162
## 1706 120.89582
## 1707 115.58448
## 1708 124.34802
## 1709 119.27451
## 1710 125.94165
## 1711 118.74313
## 1712 118.66193
## 1713 117.66496
## 1714 107.85271
## 1715 116.25929
## 1716 118.91040
## 1717 112.54798
## 1718 108.35888
## 1719 106.78994
## 1720 122.41502
## 1721 112.78309
## 1722 111.49801
## 1723 110.25142
## 1724 100.29204
## 1725 109.43258
## 1726 109.33677
## 1727 108.22743
## 1728 121.09013
## 1729 126.03049
## 1730 114.12910
## 1731 114.46407
## 1732 101.81167
## 1733 109.25527
## 1734 117.17836
## 1735 114.15739
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## 1736 106.89497
## 1737 113.97003
## 1738 109.90265
## 1739 120.60851
## 1740 126.19142
## 1741 121.11972
## 1742 111.88430
## 1743 105.94220
## 1744 113.77476
## 1745 111.42531
## 1746 114.39007
## 1747 115.78462
## 1748 112.93819
## 1749 118.81692
## 1750 118.76391
## 1751 123.01901
## 1752 111.04410
## 1753 118.35484
## 1754 110.54607
## 1755 110.85959
## 1756 105.96548
## 1757 116.78229
## 1758 108.15793
## 1759 110.14765
## 1760 109.63972
## 1761 112.02199
## 1762 114.85539
## 1763 117.21206
## 1764 115.58728
## 1765 99.67584
## 1766 116.18988
## 1767 106.56255
## 1768 110.93185
## 1769 120.20929
## 1770 110.24173
## 1771 115.38537
## 1772 123.69769
## 1773 115.34699
## 1774 111.34985
## 1775 109.82229
## 1776 115.89685
## 1777 118.99048
## 1778 118.77597
## 1779 111.15591
## 1780 116.88276
## 1781 116.84949
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## 1782 107.54415
## 1783 115.28064
## 1784 113.47038
## 1785 110.72918
## 1786 111.94738
## 1787 107.27141
## 1788 115.04275
## 1789 96.72293
## 1790 122.32240
## 1791 104.26958
## 1792 123.25807
## 1793 115.92358
## 1794 117.70162
## 1795 118.16755
## 1796 118.03596
## 1797 120.34519
## 1798 104.31188
## 1799 132.04806
## 1800 117.71137
## 1801 113.05951
## 1802 110.26341
## 1803 127.21428
## 1804 117.25141
## 1805 108.35096
## 1806 110.27506
## 1807 111.23149
## 1808 124.83066
## 1809 123.39050
## 1810 106.58225
## 1811 109.74921
## 1812 109.04106
## 1813 125.43409
## 1814 110.93092
## 1815 111.74767
## 1816 101.40743
## 1817 116.73829
## 1818 102.78626
## 1819 112.74032
## 1820 105.15150
## 1821 106.97115
## 1822 120.82963
## 1823 115.17882
## 1824 118.71154
## 1825 124.19609
## 1826 109.75987
## 1827 120.38832
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## 1828 121.82306
## 1829 106.27523
## 1830 128.54055
## 1831 117.93971
## 1832 106.59459
## 1833 119.75123
## 1834 117.02807
## 1835 117.46441
## 1836 117.25068
## 1837 112.56719
## 1838 108.33113
## 1839 107.22700
## 1840 114.48208
## 1841 110.34761
## 1842 117.18823
## 1843 124.86804
## 1844 115.99743
## 1845 118.54041
## 1846 114.31177
## 1847 122.35911
## 1848 115.61515
## 1849 111.68315
## 1850 119.04893
## 1851 105.15279
## 1852 104.46286
## 1853 108.21831
## 1854 120.25840
## 1855 113.72293
## 1856 116.31275
## 1857 110.21878
## 1858 104.04796
## 1859 116.13271
## 1860 99.73447
## 1861 114.76161
## 1862 123.04099
## 1863 114.48397
## 1864 119.41272
## 1865 114.43066
## 1866 116.57754
## 1867 104.68885
## 1868 102.26670
## 1869 111.31379
## 1870 107.89620
## 1871 107.26937
## 1872 128.56182
## 1873 112.31984
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## 1874 117.48175
## 1875 111.82601
## 1876 121.53766
## 1877 108.59204
## 1878 114.00073
## 1879 109.15453
## 1880 115.40349
## 1881 120.02438
## 1882 120.00529
## 1883 114.15522
## 1884 97.21296
## 1885 118.74600
## 1886 110.07800
## 1887 105.74195
## 1888 109.99513
## 1889 115.58094
## 1890 98.49195
## 1891 119.22469
## 1892 108.36079
## 1893 123.17149
## 1894 122.71776
## 1895 119.61528
## 1896 113.61297
## 1897 104.29065
## 1898 119.35944
## 1899 114.59634
## 1900 114.87640
## 1901 114.83493
## 1902 120.75232
## 1903 116.33686
## 1904 112.85593
## 1905 108.99668
## 1906 119.80091
## 1907 107.51762
## 1908 117.00237
## 1909 125.47799
## 1910 109.23858
## 1911 99.10170
## 1912 113.58951
## 1913 110.50543
## 1914 120.26970
## 1915 112.06393
## 1916 101.04741
## 1917 112.63951
## 1918 113.25368
## 1919 121.02941
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## 1920 120.40065
## 1921 102.51873
## 1922 122.20321
## 1923 121.08449
## 1924 119.55367
## 1925 115.73619
## 1926 108.47358
## 1927 113.91919
## 1928 115.65892
## 1929 117.53470
## 1930 113.44030
## 1931 112.06709
## 1932 106.90271
## 1933 113.75108
## 1934 118.57237
## 1935 115.23998
## 1936 108.66065
## 1937 108.24943
## 1938 112.21938
## 1939 124.59338
## 1940 113.36595
## 1941 107.43284
## 1942 115.07636
## 1943 116.41288
## 1944 114.93979
## 1945 112.58356
## 1946 118.89955
## 1947 113.45179
## 1948 109.08609
## 1949 122.58892
## 1950 101.93728
## 1951 106.47563
## 1952 120.28890
## 1953 109.49638
## 1954 104.30374
## 1955 112.77269
## 1956 124.76056
## 1957 118.72269
## 1958 123.78044
## 1959 110.63524
## 1960 109.31897
## 1961 107.73594
## 1962 116.17672
## 1963 105.96558
## 1964 119.74607
## 1965 118.69882
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## 1966 115.85835
## 1967 104.62583
## 1968 113.57872
## 1969 128.22431
## 1970 115.12682
## 1971 114.34633
## 1972 106.33976
## 1973 112.85725
## 1974 109.54481
## 1975 126.89872
## 1976 106.20579
## 1977 114.33387
## 1978 118.06756
## 1979 120.88291
## 1980 112.68291
## 1981 126.43337
## 1982 110.43387
## 1983 114.83281
## 1984 116.18950
## 1985 105.62630
## 1986 122.38782
## 1987 118.93003
## 1988 113.00455
## 1989 121.08291
## 1990 124.71230
## 1991 111.14368
## 1992 111.19670
## 1993 114.69397
## 1994 113.91546
## 1995 111.82721
## 1996 112.65771
## 1997 118.70725
## 1998 109.79392
## 1999 114.41826
## 2000 114.76945

Again, we see that the sample means are close to 114, but there is some vari-
ability. Naturally, not every sample is going to have an average of exactly 114.
So how much variability do we expect? Let’s graph and find out. We’re going
to set the x-axis manually so that we can do some comparisons later.

ggplot(sims, aes(x = mean)) +
geom_histogram(binwidth = 1) +
scale_x_continuous(limits = c(86, 142),

breaks = c(93, 100, 107, 114, 121, 128, 135))
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## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Most sample means are around 114, but there is a good range of possibilities
from around 93 to 135. The population standard deviation 𝜎 is 14, but the
standard deviation in this graph is clearly much smaller than that. (A large
majority of the samples are within 14 of the mean!)
With some fancy mathematics, one can show that the standard deviation of this
sampling distribution is not 𝜎, but rather 𝜎/√𝑛. In other words, this sampling
distribution of the mean has a standard error of

𝜎√𝑛 = 14√
4
= 7.

This makes sense: as the sample size increases, we expect the sample mean to be
more and more accurate, so the standard error should shrink with large sample
sizes.
Let’s re-scale the y-axis to use percentages instead of counts. Then we should
be able to superimpose the normal model 𝑁(114, 7) to check visually that it’s
the right fit.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(sims, aes(x = mean)) +

geom_histogram(aes(y = ..density..), binwidth = 1) +
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scale_x_continuous(limits = c(86, 142),
breaks = c(93, 100, 107, 114, 121, 128, 135)) +

stat_function(fun = dnorm, args = list(mean = 114, sd = 7),
color = "red", size = 1.5)

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Looks pretty good!

All we do now is convert everything to z scores. In other words, suppose we
sample 4 individuals from a population distributed according to the normal
model 𝑁(0, 1). Now the standard error of the sampling distribution is

𝜎√𝑛 = 1√
4
= 0.5.

The following code will accomplish all of this. (Don’t worry about the messy
syntax. All I’m doing here is making sure that this graph looks exactly the same
as the previous graph, except now centered at 𝜇 = 0 instead of 𝜇 = 114.)

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
sims_z <- data.frame(mean = scale(sims$mean, center = 114, scale = 14))
ggplot(sims_z, aes(x = mean)) +
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geom_histogram(aes(y = ..density..), binwidth = 1/14) +
scale_x_continuous(limits = c(-2, 2),

breaks = c(-1.5, -1, -0.5, 0, 0.5, 1, 1.5)) +
stat_function(fun = dnorm, args = list(mean = 0, sd = 0.5),

color = "red", size = 1.5)

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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Remember that this is not the standard normal model 𝑁(0, 1). The standard
deviation in the graph above is not 1, but 0.5 because that is the standard error
when using samples of size 4. (1/

√
4 = 0.5.)

19.4 Unknown standard errors

If we want to run a hypothesis test, we will have a null hypothesis about the
true value of the population mean 𝜇. For example,

𝐻0 ∶ 𝜇 = 114

Now we gather a sample and compute the sample mean, say 110.2043696. We
would like to be able to compare the sample mean ̄𝑦 to the hypothesized value
114 using a z score:
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𝑧 = ( ̄𝑦 − 𝜇)
𝜎/√𝑛 = (110.2 − 114)

𝜎/
√
4

.

However, we have a problem: we usually don’t know the true value of 𝜎. In
our SBP example, we do happen to know it’s 14, but we won’t know this for a
general research question.

The best we can do with a sample is calculate this z score replacing the unknown
𝜎 with the sample standard deviation 𝑠, 13.0561519. We’ll call this a “t score”
instead of a “z score”:

𝑡 = ( ̄𝑦 − 𝜇)
𝑠/√𝑛 = (110.2 − 114)

13.06/
√
4

= −0.58.

The problem is that 𝑠 is not a perfect estimate of 𝜎. We saw earlier that 𝑠 is
usually close to 𝜎, but 𝑠 has its own sampling variability. That means that our
earlier simulation in which we assumed that 𝜎 was known and equal to 14 was
wrong for the type of situation that will arise when we run a hypothesis test.
How wrong was it?

19.5 Simulating t scores

Let’s run the simulation again, but this time with the added uncertainty of using
𝑠 to estimate 𝜎.

The first step is to write a little function of our own to compute simulated t
scores. This function will take a sample of size 𝑛 from the true population
𝑁(𝜇, 𝜎), calculate the sample mean and sample standard deviation, then com-
pute the t score. Don’t worry: you won’t be required to do anything like this
on your own.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
sim_t <- function(n, mu, sigma) {

sample_values <- rnorm(n, mean = mu, sd = sigma)
y_bar <- mean(sample_values)
s <- sd(sample_values)
t <- (y_bar - mu)/(s / sqrt(n))

}

Now we can simulate doing this 2000 times.
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set.seed(5151977)
sims_t <- do(2000) * sim_t(4, mu = 114, sigma = 14)
sims_t

## sim_t
## 1 1.670726734
## 2 -0.975666678
## 3 -0.278839393
## 4 0.907808022
## 5 -1.527274531
## 6 -1.717671837
## 7 -0.610956296
## 8 -0.177107883
## 9 -0.081578742
## 10 -0.150764283
## 11 0.105561464
## 12 0.989851233
## 13 0.754578374
## 14 -0.221752375
## 15 -0.569806798
## 16 1.056144154
## 17 0.709520796
## 18 1.786249608
## 19 -0.022957371
## 20 -0.479076521
## 21 2.196497891
## 22 -0.057126903
## 23 0.723176732
## 24 0.462163070
## 25 2.305842397
## 26 -0.541132956
## 27 -1.155518891
## 28 1.893602331
## 29 3.587253178
## 30 -1.329845154
## 31 1.786070559
## 32 0.205368769
## 33 -0.617185683
## 34 1.408927566
## 35 0.174600728
## 36 -0.585585461
## 37 0.975358819
## 38 0.867186495
## 39 -0.509037457
## 40 0.463270308
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## 41 2.961196587
## 42 0.250917786
## 43 -0.151400364
## 44 2.379911294
## 45 0.965542692
## 46 -1.639114331
## 47 -0.187393864
## 48 0.702999822
## 49 -1.649486008
## 50 0.642256403
## 51 -0.445978914
## 52 -0.870684799
## 53 -0.506327234
## 54 0.515425890
## 55 1.188525622
## 56 1.173749591
## 57 -3.089680034
## 58 1.479209494
## 59 10.039858675
## 60 -1.865677247
## 61 0.208720956
## 62 1.698415163
## 63 0.874459927
## 64 -0.414113539
## 65 -2.079229096
## 66 -0.641514036
## 67 -0.046016401
## 68 -2.051611648
## 69 -1.116638893
## 70 -2.568290582
## 71 -3.634987999
## 72 0.131241299
## 73 -0.317803823
## 74 -1.063949859
## 75 0.004811193
## 76 4.439627383
## 77 -1.364313839
## 78 1.645804106
## 79 -0.201914744
## 80 0.504043393
## 81 1.440774874
## 82 -3.291032994
## 83 -1.551130801
## 84 -0.802710562
## 85 -4.861382113
## 86 1.016265268
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## 87 1.080518333
## 88 2.980709799
## 89 4.326429336
## 90 0.458414619
## 91 2.037994906
## 92 -1.820144738
## 93 1.040068322
## 94 2.555396424
## 95 -0.478768875
## 96 -0.929751963
## 97 -0.508981112
## 98 -0.569059363
## 99 -1.094024179
## 100 0.110893966
## 101 -0.923379631
## 102 0.408635917
## 103 -0.521992962
## 104 2.636311764
## 105 0.636091866
## 106 0.859720275
## 107 1.253116033
## 108 0.874350704
## 109 -0.867757352
## 110 -1.337827858
## 111 0.156515269
## 112 -2.023417372
## 113 0.789119890
## 114 0.664206505
## 115 -5.013338827
## 116 1.080852724
## 117 -0.468189050
## 118 -0.592941304
## 119 -0.224440854
## 120 1.566295593
## 121 0.104289555
## 122 -1.197675728
## 123 -1.007030300
## 124 0.407430926
## 125 -1.942399658
## 126 -3.000766684
## 127 0.061485310
## 128 -1.592080649
## 129 1.051971725
## 130 3.007244391
## 131 -0.926063447
## 132 0.360010372
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## 133 -1.154431763
## 134 0.837885024
## 135 -0.865787271
## 136 -1.185354554
## 137 0.295746913
## 138 -0.396571358
## 139 0.887971205
## 140 -1.027778834
## 141 -1.056473957
## 142 -0.790085592
## 143 2.166777070
## 144 0.009600946
## 145 0.761096684
## 146 -0.445841081
## 147 -0.513983827
## 148 0.831912239
## 149 0.716585444
## 150 -0.341729523
## 151 1.959676409
## 152 0.501861848
## 153 1.419772119
## 154 -1.145028443
## 155 0.404685855
## 156 0.572805957
## 157 -1.261116341
## 158 -1.077860929
## 159 -0.340670950
## 160 3.191331484
## 161 -2.919014184
## 162 1.362479919
## 163 1.326437044
## 164 -0.619316503
## 165 -1.330164481
## 166 0.114571544
## 167 0.275918212
## 168 -1.609972483
## 169 0.746043178
## 170 0.571191844
## 171 1.155595866
## 172 0.134574629
## 173 -1.218916492
## 174 -1.492947751
## 175 1.012713541
## 176 -0.651309215
## 177 -2.690012483
## 178 0.381110576
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## 179 -0.709852732
## 180 1.127924885
## 181 2.690832381
## 182 1.716396925
## 183 -0.697362354
## 184 -0.961945375
## 185 0.746108381
## 186 -1.524226171
## 187 -0.458618707
## 188 -0.055254402
## 189 1.020115666
## 190 0.018051809
## 191 0.979239006
## 192 0.785251827
## 193 -0.178483558
## 194 -1.244265037
## 195 0.744906482
## 196 -0.491305065
## 197 -0.345225608
## 198 -0.857919408
## 199 0.767931118
## 200 0.567650649
## 201 0.285171950
## 202 -0.912431467
## 203 -0.016306668
## 204 -0.018041076
## 205 0.864570995
## 206 1.856671982
## 207 0.481038270
## 208 -1.469329052
## 209 2.623871232
## 210 -0.712124175
## 211 0.392677868
## 212 -0.960771180
## 213 1.503009840
## 214 -1.308729342
## 215 -0.714134598
## 216 0.910092338
## 217 0.687880279
## 218 -0.706690653
## 219 1.039393080
## 220 1.285188816
## 221 2.082287808
## 222 0.065838057
## 223 1.905921689
## 224 1.228140674
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## 225 -0.765591982
## 226 0.605332968
## 227 -0.017615429
## 228 -0.220003147
## 229 -0.921723662
## 230 -1.408301607
## 231 0.307375781
## 232 -0.384728667
## 233 -4.815204952
## 234 0.153630251
## 235 -0.544127519
## 236 -0.012780210
## 237 0.143751438
## 238 1.320877365
## 239 -1.291725993
## 240 -0.482246881
## 241 0.752661778
## 242 0.393190471
## 243 1.179327701
## 244 0.393345460
## 245 -3.793928233
## 246 5.181415482
## 247 0.564651863
## 248 -1.295222322
## 249 -1.416412176
## 250 0.491626455
## 251 -3.145790254
## 252 0.254944191
## 253 2.515832119
## 254 0.820769536
## 255 0.645464631
## 256 -0.270108112
## 257 1.810842034
## 258 1.074959231
## 259 2.627121628
## 260 1.387446754
## 261 1.645532448
## 262 -0.384565059
## 263 5.407605220
## 264 -0.037234681
## 265 -3.045039779
## 266 0.226437021
## 267 -0.146152727
## 268 1.122665692
## 269 -0.757175673
## 270 0.183402023
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## 271 0.696221348
## 272 1.020714292
## 273 -0.042622579
## 274 2.912200674
## 275 0.002357622
## 276 0.699894074
## 277 0.228627097
## 278 0.104690123
## 279 0.661475603
## 280 -0.506233167
## 281 -1.170819473
## 282 0.225067302
## 283 -0.286442271
## 284 1.034292157
## 285 0.968956715
## 286 0.269954196
## 287 1.606642913
## 288 -3.655783532
## 289 1.138644184
## 290 -0.593614901
## 291 0.089351830
## 292 0.583687533
## 293 -3.131934208
## 294 4.141194148
## 295 -0.538553813
## 296 -0.195671796
## 297 -0.952154129
## 298 -0.412867470
## 299 -2.633934189
## 300 2.676456838
## 301 -0.365352128
## 302 -1.524525321
## 303 0.691961595
## 304 0.117792930
## 305 -1.966522333
## 306 2.396111764
## 307 0.158270827
## 308 0.089115221
## 309 1.095316968
## 310 -0.304480598
## 311 0.405375406
## 312 -0.525285654
## 313 0.077370056
## 314 0.322573677
## 315 0.550125365
## 316 -0.836923161
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## 317 0.853458742
## 318 -0.153190888
## 319 0.426522118
## 320 0.416588871
## 321 1.665861614
## 322 0.245350802
## 323 -0.425537399
## 324 -1.399886864
## 325 -1.101151020
## 326 -0.195676630
## 327 1.374298361
## 328 0.896422001
## 329 2.034473123
## 330 1.160952652
## 331 3.155376516
## 332 -2.194758925
## 333 -1.342957830
## 334 -4.302821158
## 335 1.520409119
## 336 0.161026761
## 337 -0.858873653
## 338 -2.234242006
## 339 2.664978720
## 340 -0.325694033
## 341 -0.162072513
## 342 0.419374037
## 343 0.040149235
## 344 0.753124668
## 345 0.629287085
## 346 1.405714938
## 347 0.026077230
## 348 -2.930378187
## 349 -1.963771968
## 350 -0.275931005
## 351 1.492102994
## 352 0.422755335
## 353 1.364728012
## 354 1.755187258
## 355 -0.805715021
## 356 -3.759095166
## 357 -0.089061286
## 358 0.315457365
## 359 0.422526784
## 360 -0.066293002
## 361 -0.082625911
## 362 0.030700304
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## 363 -0.572736076
## 364 0.609248931
## 365 2.237477557
## 366 -1.101976715
## 367 0.852254060
## 368 0.565323495
## 369 -0.409330460
## 370 -2.525449990
## 371 0.258198977
## 372 -0.155976375
## 373 1.713712143
## 374 -0.117440894
## 375 0.978363477
## 376 -0.295776559
## 377 0.413207781
## 378 -0.113175493
## 379 0.990093200
## 380 -0.022918883
## 381 0.549205857
## 382 -0.052790585
## 383 0.040575930
## 384 -0.292532738
## 385 0.639195715
## 386 -0.013228408
## 387 -1.881623593
## 388 1.637375851
## 389 0.774513263
## 390 0.027607716
## 391 1.527196670
## 392 1.624357378
## 393 0.931386941
## 394 -0.291767122
## 395 0.535967556
## 396 1.179312447
## 397 1.537035187
## 398 -13.448053979
## 399 -0.790771070
## 400 2.083921975
## 401 1.067028943
## 402 -0.929967278
## 403 1.547377203
## 404 -1.006231606
## 405 -0.480039478
## 406 -0.226170119
## 407 2.171631036
## 408 1.209164065
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## 409 -0.634197264
## 410 1.168913920
## 411 -1.209455505
## 412 0.236386507
## 413 -0.343579491
## 414 0.561363444
## 415 1.655111860
## 416 0.133171203
## 417 -3.087070219
## 418 0.360239166
## 419 -1.218840158
## 420 -0.597036378
## 421 -1.018712950
## 422 -0.570737036
## 423 1.406809822
## 424 0.519374240
## 425 -0.480235004
## 426 -0.403953907
## 427 -0.631731646
## 428 0.186698413
## 429 -1.183039695
## 430 -0.262268243
## 431 -3.287276247
## 432 0.359065901
## 433 -0.505551442
## 434 -1.320142014
## 435 0.364654330
## 436 -1.885659342
## 437 -1.455481065
## 438 1.226269594
## 439 2.578741242
## 440 3.846835949
## 441 0.873998739
## 442 1.506630849
## 443 -2.988994581
## 444 -0.279364518
## 445 0.781926119
## 446 -0.403122067
## 447 -0.844081180
## 448 -1.042618412
## 449 0.457285503
## 450 1.431224917
## 451 1.209652423
## 452 -3.683650911
## 453 1.393770996
## 454 1.720084469
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## 455 -2.230431231
## 456 0.134609859
## 457 -0.408620761
## 458 0.999314450
## 459 0.314023571
## 460 -0.372848530
## 461 -0.296119292
## 462 -0.150450959
## 463 -0.356862667
## 464 1.383127233
## 465 -1.860842022
## 466 0.605805125
## 467 0.152247462
## 468 1.007301713
## 469 0.765607632
## 470 -0.871449843
## 471 -0.648254493
## 472 -0.930334676
## 473 -1.349523909
## 474 0.905013805
## 475 1.388240794
## 476 -3.438014952
## 477 1.819725450
## 478 -0.294196927
## 479 0.986265047
## 480 0.187133472
## 481 0.552328349
## 482 2.113986298
## 483 -0.043963581
## 484 3.590154410
## 485 -0.006183080
## 486 0.106542240
## 487 0.657637300
## 488 1.235365257
## 489 0.314752210
## 490 -1.739762948
## 491 1.682474392
## 492 -1.504560768
## 493 -0.328829005
## 494 -0.301441343
## 495 -0.900253920
## 496 -0.042854272
## 497 -1.494956777
## 498 3.144871165
## 499 -0.720509064
## 500 1.813776977
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## 501 1.896355460
## 502 -1.871342764
## 503 3.374841664
## 504 0.178730593
## 505 1.015395706
## 506 -0.379659796
## 507 -2.371334183
## 508 0.939599149
## 509 -0.200982845
## 510 2.343383750
## 511 1.106325676
## 512 -1.144706599
## 513 -0.916929140
## 514 1.128801935
## 515 0.641931894
## 516 0.297937489
## 517 0.406864789
## 518 -2.774211121
## 519 0.888483995
## 520 -0.629204839
## 521 1.418468601
## 522 2.036061086
## 523 1.439590335
## 524 -0.271836839
## 525 -0.175824831
## 526 -0.338271232
## 527 1.927815452
## 528 1.512879557
## 529 0.378511022
## 530 2.845399324
## 531 0.109042091
## 532 -0.083921454
## 533 0.886072470
## 534 -0.726462152
## 535 -0.558078587
## 536 0.680400472
## 537 1.802017133
## 538 -1.176004753
## 539 -1.916491222
## 540 3.333289221
## 541 -0.789699279
## 542 0.547902167
## 543 -0.088759086
## 544 -2.534317259
## 545 1.260407314
## 546 0.703405451
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## 547 2.334909385
## 548 -0.457216745
## 549 0.789376258
## 550 0.455350445
## 551 0.721712170
## 552 -0.182200217
## 553 -1.515374135
## 554 -0.480620772
## 555 1.767572267
## 556 1.187207823
## 557 1.193733236
## 558 2.411566680
## 559 0.364429766
## 560 -2.219328757
## 561 0.085287694
## 562 0.531591789
## 563 -9.341273275
## 564 0.094853504
## 565 0.785084721
## 566 -0.634924243
## 567 -0.858426461
## 568 1.733052640
## 569 1.242191829
## 570 1.569673781
## 571 1.069168621
## 572 -1.521836188
## 573 -0.645073812
## 574 0.111012855
## 575 -0.040402131
## 576 -0.197406483
## 577 0.617917659
## 578 1.993147674
## 579 0.346510921
## 580 0.780109907
## 581 2.090928794
## 582 -0.004185166
## 583 1.349686189
## 584 -1.421752348
## 585 -1.601158478
## 586 -0.106531520
## 587 0.209839990
## 588 -2.045089991
## 589 -1.234780588
## 590 -0.461004820
## 591 -0.726951479
## 592 -0.423468783



602 CHAPTER 19. INFERENCE FOR ONE MEAN

## 593 0.817807644
## 594 -1.188983170
## 595 1.204874973
## 596 -0.133536565
## 597 -2.592167903
## 598 -0.699481674
## 599 0.703027125
## 600 -1.079842721
## 601 1.023587812
## 602 -0.433562412
## 603 -0.988467936
## 604 -2.670492513
## 605 -0.405054168
## 606 1.138635723
## 607 -4.547017979
## 608 -2.661674486
## 609 -0.202076484
## 610 0.708493361
## 611 2.718968071
## 612 -2.128790696
## 613 0.397993079
## 614 -0.376750125
## 615 2.464988702
## 616 -0.240840568
## 617 -0.926389805
## 618 0.722448449
## 619 -2.863359383
## 620 -0.718307594
## 621 -0.158636810
## 622 -1.000882017
## 623 0.503105050
## 624 -1.641816283
## 625 -0.391703819
## 626 1.988374553
## 627 0.373060429
## 628 -0.911117546
## 629 0.727572449
## 630 -0.906238623
## 631 2.047456061
## 632 0.260991694
## 633 -0.602544898
## 634 0.030703231
## 635 0.269998976
## 636 1.217862010
## 637 -0.747867807
## 638 -0.971587187
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## 639 -0.911399652
## 640 -0.190915752
## 641 -1.106996675
## 642 -1.122937663
## 643 0.046394561
## 644 -0.121906856
## 645 -0.007749496
## 646 -1.469233577
## 647 0.246686114
## 648 0.624422073
## 649 -0.345384370
## 650 -0.910899695
## 651 -0.141657072
## 652 -0.382851158
## 653 -0.539948064
## 654 -2.496415504
## 655 0.448029935
## 656 0.551416084
## 657 0.399083932
## 658 -0.663320517
## 659 1.175334007
## 660 2.863997683
## 661 3.155675712
## 662 -2.225264098
## 663 -0.258376140
## 664 0.628880493
## 665 -1.963660373
## 666 -0.291929352
## 667 -0.535754083
## 668 -0.583840122
## 669 -1.802510943
## 670 -3.854886130
## 671 -0.225790532
## 672 0.650160540
## 673 -1.510854956
## 674 -0.602191297
## 675 -2.250936994
## 676 -2.176366039
## 677 0.199527708
## 678 0.596295642
## 679 -0.610092497
## 680 0.826319844
## 681 -0.406057365
## 682 -2.791436051
## 683 1.016551228
## 684 -3.832118970
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## 685 0.474703675
## 686 -0.392337439
## 687 -0.414976635
## 688 -1.766244742
## 689 -1.252073689
## 690 -3.751861386
## 691 1.022733152
## 692 0.882560368
## 693 -1.521596800
## 694 -0.612430392
## 695 0.103893932
## 696 -2.056366948
## 697 -3.682288537
## 698 -0.770294858
## 699 0.263251202
## 700 0.698337535
## 701 0.986237494
## 702 -0.260951421
## 703 -2.285881307
## 704 -1.182122288
## 705 1.972595161
## 706 -1.750006324
## 707 2.675074586
## 708 1.974046390
## 709 -0.609375213
## 710 -0.254129786
## 711 -0.523115828
## 712 -0.072300521
## 713 0.611214547
## 714 1.596620666
## 715 2.306383754
## 716 -1.419869458
## 717 -0.376853558
## 718 -0.117070894
## 719 0.951879840
## 720 -0.790275047
## 721 0.310070760
## 722 -2.824664332
## 723 -1.379521650
## 724 1.668106523
## 725 0.022702649
## 726 -0.635325983
## 727 -0.359415998
## 728 -0.933730278
## 729 -1.140490968
## 730 0.333124364



19.5. SIMULATING T SCORES 605

## 731 2.425355154
## 732 -0.507101338
## 733 2.119591235
## 734 -0.232517000
## 735 0.712292633
## 736 -0.654089022
## 737 -0.223122214
## 738 -0.585805638
## 739 -0.918021780
## 740 0.700829615
## 741 0.160607319
## 742 -2.099742294
## 743 -0.200215140
## 744 0.303891449
## 745 -0.257338792
## 746 -0.328260599
## 747 0.243176094
## 748 -0.085191687
## 749 -0.871863259
## 750 -0.856766501
## 751 2.480765033
## 752 -0.278128581
## 753 -2.142664872
## 754 -0.889514335
## 755 -1.762439222
## 756 0.832724710
## 757 0.686305106
## 758 -2.104581727
## 759 0.567277023
## 760 -0.511621161
## 761 3.663699867
## 762 0.302672919
## 763 -1.140676457
## 764 0.620449123
## 765 6.421933234
## 766 0.368526892
## 767 -1.075629491
## 768 0.199039023
## 769 -0.007360514
## 770 0.462910912
## 771 -1.425572785
## 772 -0.345610941
## 773 -3.098008791
## 774 -1.958626339
## 775 -1.004602181
## 776 -0.500937913



606 CHAPTER 19. INFERENCE FOR ONE MEAN

## 777 -1.665725321
## 778 -1.090476929
## 779 2.400728753
## 780 -0.817570219
## 781 -0.660999236
## 782 0.904997966
## 783 -0.266663748
## 784 0.318056265
## 785 1.661822423
## 786 -1.640156345
## 787 -4.756981266
## 788 0.577606743
## 789 -0.308861651
## 790 -1.150271004
## 791 -1.627229938
## 792 -0.980164694
## 793 -1.066120071
## 794 -1.457905137
## 795 0.299263089
## 796 -0.349031501
## 797 1.534238168
## 798 4.097141405
## 799 -3.631181562
## 800 0.471849634
## 801 -0.988695064
## 802 0.038049817
## 803 0.396302397
## 804 0.322771451
## 805 -3.158854812
## 806 -0.986408328
## 807 -0.268281111
## 808 -2.860154110
## 809 0.362559601
## 810 0.552265488
## 811 -0.861090613
## 812 2.144060801
## 813 -2.050856369
## 814 2.955034571
## 815 0.098469162
## 816 3.093684330
## 817 -0.363663950
## 818 -0.323551241
## 819 1.680685212
## 820 0.340180512
## 821 -0.578391528
## 822 1.329548200



19.5. SIMULATING T SCORES 607

## 823 1.809529276
## 824 0.480853786
## 825 1.430165094
## 826 0.836765941
## 827 -2.707082948
## 828 -1.758176032
## 829 0.277666166
## 830 -0.845274445
## 831 1.891522820
## 832 0.263956829
## 833 -0.305065811
## 834 -0.444100542
## 835 -0.832133502
## 836 1.584719736
## 837 0.662723604
## 838 1.018975319
## 839 0.133071965
## 840 1.503813337
## 841 1.660804214
## 842 0.253183799
## 843 -0.101678251
## 844 0.521611568
## 845 0.729517569
## 846 2.881727329
## 847 -1.599790182
## 848 -1.095986176
## 849 0.763666941
## 850 3.268114443
## 851 0.006155721
## 852 1.841689702
## 853 -0.848697008
## 854 -0.723285225
## 855 0.141026496
## 856 1.034208339
## 857 0.570545240
## 858 -1.059584931
## 859 2.256888490
## 860 0.218106644
## 861 0.119763833
## 862 0.515775210
## 863 -2.424967874
## 864 0.434591838
## 865 -0.307744759
## 866 -2.178715876
## 867 0.323150371
## 868 1.072889144



608 CHAPTER 19. INFERENCE FOR ONE MEAN

## 869 1.362182109
## 870 0.891800388
## 871 1.255617487
## 872 -0.398858495
## 873 -0.024776420
## 874 -0.053741887
## 875 0.927007657
## 876 -0.052900194
## 877 -0.654057127
## 878 0.012066258
## 879 1.071104781
## 880 0.607243092
## 881 -0.032708359
## 882 1.006930173
## 883 0.596201330
## 884 -0.043870537
## 885 1.364728823
## 886 0.359146350
## 887 -0.798584856
## 888 -1.388090992
## 889 -0.411679156
## 890 -2.534136571
## 891 0.677893153
## 892 -2.303311561
## 893 -1.274039074
## 894 -12.876024629
## 895 0.034091110
## 896 0.870246811
## 897 0.440710160
## 898 -0.440934112
## 899 -0.204777576
## 900 -0.413712686
## 901 0.303877859
## 902 2.330154376
## 903 0.837433166
## 904 0.075834877
## 905 -1.728999374
## 906 -0.433398626
## 907 -1.237728779
## 908 -1.556073749
## 909 0.541534085
## 910 -0.412478800
## 911 -1.234088662
## 912 2.159294673
## 913 -0.300622547
## 914 -0.277136722



19.5. SIMULATING T SCORES 609

## 915 -0.048932774
## 916 -1.651987115
## 917 0.411460155
## 918 0.357884786
## 919 -0.959020471
## 920 0.652461567
## 921 0.869394728
## 922 -1.052548303
## 923 7.735766381
## 924 -1.858632914
## 925 1.113097838
## 926 -0.653838040
## 927 -0.363131151
## 928 2.757841945
## 929 -1.050550646
## 930 0.333704168
## 931 -0.519988076
## 932 2.784028955
## 933 -0.336139186
## 934 0.328824510
## 935 -0.793858728
## 936 1.142554991
## 937 -0.251327219
## 938 -1.782530638
## 939 -0.432279847
## 940 -0.667963498
## 941 0.453203165
## 942 -1.027829292
## 943 0.510713083
## 944 0.302223440
## 945 -0.682919997
## 946 1.267671677
## 947 -4.361014643
## 948 -1.980776525
## 949 0.389335928
## 950 -0.024079309
## 951 -7.178334583
## 952 1.422483253
## 953 -0.178124970
## 954 -0.892870249
## 955 0.053239863
## 956 -4.218448310
## 957 0.582503371
## 958 0.858599622
## 959 3.859424705
## 960 1.273544431



610 CHAPTER 19. INFERENCE FOR ONE MEAN

## 961 0.218920339
## 962 -3.964303194
## 963 -0.067487123
## 964 3.040461061
## 965 0.414046231
## 966 -1.731130480
## 967 0.595039185
## 968 -0.789370576
## 969 0.760666649
## 970 0.603495502
## 971 -0.647671226
## 972 -0.406906433
## 973 0.504575989
## 974 -0.441102622
## 975 0.204804348
## 976 1.256872540
## 977 0.073100559
## 978 -0.152361811
## 979 1.216515068
## 980 -0.566578552
## 981 -2.572576504
## 982 -1.871178048
## 983 -1.315115063
## 984 -0.464006373
## 985 -0.657201966
## 986 0.513818033
## 987 -0.038699190
## 988 0.049218763
## 989 0.666306475
## 990 1.710078219
## 991 1.308764161
## 992 2.092958839
## 993 -0.297879988
## 994 1.699824920
## 995 -0.561901059
## 996 -0.569983374
## 997 -2.062624183
## 998 0.116585032
## 999 -0.691662280
## 1000 0.454501578
## 1001 0.115681607
## 1002 -0.088101861
## 1003 -0.179487282
## 1004 -0.048374434
## 1005 -0.887888492
## 1006 0.635667878



19.5. SIMULATING T SCORES 611

## 1007 1.109505293
## 1008 0.915217647
## 1009 -0.484481384
## 1010 -0.059942457
## 1011 -0.851350746
## 1012 -3.352807055
## 1013 -0.062506323
## 1014 -3.077742291
## 1015 2.038985316
## 1016 1.714390486
## 1017 -0.365361959
## 1018 0.821890973
## 1019 -0.892618890
## 1020 -1.165390718
## 1021 0.949877146
## 1022 2.778657780
## 1023 0.443728775
## 1024 -1.987553453
## 1025 1.617540382
## 1026 3.012009259
## 1027 0.329400717
## 1028 3.192548011
## 1029 -0.601935849
## 1030 0.207863082
## 1031 -0.402755736
## 1032 0.975270853
## 1033 0.590699124
## 1034 0.590344288
## 1035 -0.694925060
## 1036 1.280512240
## 1037 0.320842610
## 1038 0.879190555
## 1039 -0.421247403
## 1040 0.482409584
## 1041 -0.173461502
## 1042 -0.762309013
## 1043 0.640210578
## 1044 2.921763772
## 1045 2.465518280
## 1046 -0.394633962
## 1047 0.013767253
## 1048 -0.227148899
## 1049 -1.437343875
## 1050 0.854553718
## 1051 1.444743214
## 1052 0.352313934



612 CHAPTER 19. INFERENCE FOR ONE MEAN

## 1053 -1.418960956
## 1054 -0.433563044
## 1055 0.213926802
## 1056 -2.762004219
## 1057 -1.970564368
## 1058 0.784245562
## 1059 -2.668064591
## 1060 -1.839751324
## 1061 -0.372832627
## 1062 1.577134085
## 1063 -1.534273992
## 1064 1.384169832
## 1065 -0.203847011
## 1066 -0.160122769
## 1067 0.412128639
## 1068 1.194348530
## 1069 -0.336802653
## 1070 0.521225688
## 1071 -1.209735063
## 1072 -4.336767111
## 1073 3.558754438
## 1074 0.288635772
## 1075 0.265339029
## 1076 -0.771790420
## 1077 1.870272455
## 1078 -0.968482516
## 1079 0.399774383
## 1080 -1.595623724
## 1081 2.107980908
## 1082 0.509871763
## 1083 -1.715073906
## 1084 -4.236678577
## 1085 -0.810134926
## 1086 -0.174073493
## 1087 0.483745461
## 1088 -0.715191969
## 1089 0.302479914
## 1090 1.873513177
## 1091 -0.762798444
## 1092 -0.512772225
## 1093 1.104466345
## 1094 -1.177130801
## 1095 -0.059396575
## 1096 2.819139356
## 1097 -0.466195794
## 1098 -1.161766919



19.5. SIMULATING T SCORES 613

## 1099 0.541721723
## 1100 0.551086355
## 1101 -0.410143789
## 1102 0.142285532
## 1103 -1.409158800
## 1104 -1.999603948
## 1105 0.383202262
## 1106 0.252158976
## 1107 0.848396573
## 1108 5.290096585
## 1109 0.268312814
## 1110 4.203285976
## 1111 -0.786918453
## 1112 0.028217665
## 1113 -0.824632477
## 1114 -0.445547860
## 1115 1.194786610
## 1116 -0.877747130
## 1117 1.531146314
## 1118 -1.405574675
## 1119 -0.095432631
## 1120 0.471860656
## 1121 0.175268260
## 1122 1.099012154
## 1123 -0.279112608
## 1124 0.842098136
## 1125 1.379772263
## 1126 -1.226010809
## 1127 1.264588931
## 1128 0.688864301
## 1129 -0.881439374
## 1130 -2.218421802
## 1131 -1.172365209
## 1132 -1.773827177
## 1133 0.649231874
## 1134 1.912460841
## 1135 0.839105311
## 1136 1.976246914
## 1137 0.798928381
## 1138 -0.541835471
## 1139 0.618860671
## 1140 -0.072465710
## 1141 0.103287755
## 1142 -2.341294296
## 1143 0.157198323
## 1144 -0.394060017



614 CHAPTER 19. INFERENCE FOR ONE MEAN

## 1145 0.261624806
## 1146 1.170755719
## 1147 -1.229135173
## 1148 1.407054275
## 1149 2.452136702
## 1150 -0.934792613
## 1151 1.110353751
## 1152 -2.171629061
## 1153 0.108007080
## 1154 -0.410686302
## 1155 -1.523732276
## 1156 0.252399008
## 1157 0.431287929
## 1158 0.547242335
## 1159 0.546819981
## 1160 -0.095161123
## 1161 -0.726619195
## 1162 -0.860841670
## 1163 -0.431344431
## 1164 3.221572848
## 1165 0.249040297
## 1166 -0.081927285
## 1167 -0.624354664
## 1168 -0.394809412
## 1169 -0.557736656
## 1170 0.100340864
## 1171 3.021686043
## 1172 1.260570229
## 1173 -0.410989305
## 1174 -0.146871045
## 1175 1.964353831
## 1176 -2.500153444
## 1177 -0.447536875
## 1178 -2.574574866
## 1179 -4.287548129
## 1180 1.153457810
## 1181 2.173666410
## 1182 -0.519943099
## 1183 -0.473815823
## 1184 0.432745124
## 1185 -2.281937336
## 1186 -0.056261091
## 1187 -0.007256448
## 1188 -2.612554921
## 1189 2.942839329
## 1190 0.008701550



19.5. SIMULATING T SCORES 615

## 1191 0.675950427
## 1192 -0.324858423
## 1193 -0.687838364
## 1194 0.269435765
## 1195 2.062511161
## 1196 0.916646877
## 1197 -0.421622496
## 1198 -1.474024780
## 1199 -0.299467592
## 1200 0.551409461
## 1201 1.084585807
## 1202 -1.037964724
## 1203 1.887821041
## 1204 0.244311617
## 1205 -0.342557943
## 1206 0.076218510
## 1207 -2.141643929
## 1208 0.011344198
## 1209 -0.208091283
## 1210 0.499466700
## 1211 0.352609206
## 1212 -1.971065657
## 1213 -0.118231244
## 1214 -0.737973540
## 1215 1.306761700
## 1216 -1.060298655
## 1217 -1.109264984
## 1218 1.848097802
## 1219 1.341300964
## 1220 -0.327415139
## 1221 0.711614165
## 1222 -0.964588141
## 1223 1.747049360
## 1224 -0.684578675
## 1225 0.606712182
## 1226 -0.396094186
## 1227 2.094981879
## 1228 3.738627328
## 1229 -0.048426414
## 1230 0.978287949
## 1231 -1.738942614
## 1232 -2.678693719
## 1233 1.991243173
## 1234 -0.075896678
## 1235 1.861303762
## 1236 0.279789378



616 CHAPTER 19. INFERENCE FOR ONE MEAN

## 1237 -0.704633114
## 1238 -2.245840330
## 1239 -0.491596345
## 1240 1.350821063
## 1241 1.159268941
## 1242 2.563835474
## 1243 -0.316994459
## 1244 0.131036611
## 1245 -0.816719847
## 1246 -0.519524394
## 1247 -1.123900063
## 1248 1.796256766
## 1249 -2.398445781
## 1250 2.224808670
## 1251 0.668688472
## 1252 0.133588247
## 1253 2.321659262
## 1254 -0.833244563
## 1255 6.647704218
## 1256 -0.081147508
## 1257 0.309002663
## 1258 -2.555130980
## 1259 -0.633583294
## 1260 -0.330585206
## 1261 0.493718836
## 1262 -0.552787196
## 1263 0.741720135
## 1264 0.196605577
## 1265 -2.125804693
## 1266 -1.779726127
## 1267 0.579019979
## 1268 0.291791195
## 1269 0.161875521
## 1270 0.212720644
## 1271 -1.134643593
## 1272 0.681981061
## 1273 0.498504138
## 1274 -1.386284271
## 1275 -0.220590580
## 1276 1.487585710
## 1277 0.537019055
## 1278 4.451643014
## 1279 0.770233782
## 1280 -0.758778647
## 1281 -1.786389883
## 1282 0.417687649



19.5. SIMULATING T SCORES 617

## 1283 -1.664440526
## 1284 1.122732640
## 1285 -0.452907306
## 1286 0.152293053
## 1287 1.933638283
## 1288 -0.097661837
## 1289 0.809181211
## 1290 0.051716281
## 1291 -1.233689147
## 1292 -0.049879862
## 1293 1.028282129
## 1294 -1.294527592
## 1295 -0.469395574
## 1296 -7.721252513
## 1297 -0.330432885
## 1298 -1.106866776
## 1299 0.399146461
## 1300 0.477407917
## 1301 -2.745928602
## 1302 2.059424546
## 1303 -0.235986960
## 1304 -1.394616728
## 1305 0.853551350
## 1306 -0.719213021
## 1307 0.036203143
## 1308 0.592916761
## 1309 -2.768588911
## 1310 -1.313387893
## 1311 -2.952215023
## 1312 0.830775706
## 1313 -1.441512502
## 1314 -0.663934636
## 1315 0.927809448
## 1316 -0.383536835
## 1317 -0.129197527
## 1318 -0.033924310
## 1319 -7.169829889
## 1320 0.007148680
## 1321 2.638155643
## 1322 1.860135094
## 1323 0.021305769
## 1324 1.521029847
## 1325 1.999452646
## 1326 -1.157030579
## 1327 0.756898977
## 1328 1.065187461



618 CHAPTER 19. INFERENCE FOR ONE MEAN

## 1329 -2.470330068
## 1330 -0.698741193
## 1331 -0.801165260
## 1332 -0.798597179
## 1333 -0.629974599
## 1334 -1.143161002
## 1335 -0.182075853
## 1336 -2.338966459
## 1337 0.066622219
## 1338 -0.690948538
## 1339 -0.470581019
## 1340 -0.347169990
## 1341 -1.957197143
## 1342 -1.233320257
## 1343 0.801232172
## 1344 1.200831630
## 1345 -0.390554845
## 1346 0.469616780
## 1347 1.782332491
## 1348 -2.149798084
## 1349 -2.613294156
## 1350 0.438782481
## 1351 1.139382762
## 1352 -0.308855219
## 1353 0.999896372
## 1354 0.314012020
## 1355 2.463681804
## 1356 2.215526503
## 1357 0.386637491
## 1358 -0.358231248
## 1359 -0.325300248
## 1360 -2.022475852
## 1361 -1.001495535
## 1362 -0.816259532
## 1363 0.521460410
## 1364 -0.297710762
## 1365 1.576904130
## 1366 0.534457372
## 1367 -0.720381551
## 1368 -0.101406070
## 1369 -1.039553163
## 1370 -1.173355442
## 1371 0.369268619
## 1372 -1.301283563
## 1373 -0.050649282
## 1374 -0.687560101



19.5. SIMULATING T SCORES 619

## 1375 1.527027773
## 1376 -1.194595115
## 1377 1.150533620
## 1378 0.287574264
## 1379 0.626507651
## 1380 0.968699197
## 1381 1.572480545
## 1382 -0.728840817
## 1383 2.159037325
## 1384 -0.667439741
## 1385 -0.602737372
## 1386 0.952528504
## 1387 1.936817690
## 1388 -0.987760178
## 1389 1.178225379
## 1390 3.077060534
## 1391 -1.053587017
## 1392 0.807477552
## 1393 -0.890167424
## 1394 -0.811802927
## 1395 0.417211818
## 1396 -1.407006337
## 1397 -0.780232333
## 1398 -0.381211875
## 1399 -3.201664166
## 1400 -1.108139876
## 1401 -0.325111693
## 1402 0.759960002
## 1403 -0.327380083
## 1404 5.274185714
## 1405 -0.833327398
## 1406 2.503631589
## 1407 0.460560479
## 1408 -0.935272631
## 1409 -0.345666893
## 1410 0.430683949
## 1411 0.696055383
## 1412 3.843824227
## 1413 -0.121868072
## 1414 -0.490721075
## 1415 0.926346776
## 1416 -0.461519136
## 1417 0.708146691
## 1418 0.503874891
## 1419 0.422430471
## 1420 -1.231466554



620 CHAPTER 19. INFERENCE FOR ONE MEAN

## 1421 1.218929365
## 1422 4.288494018
## 1423 -0.516789511
## 1424 -0.032704246
## 1425 0.180499676
## 1426 0.080421906
## 1427 0.318356439
## 1428 0.174124621
## 1429 -0.324119009
## 1430 0.321239852
## 1431 0.770467073
## 1432 -3.011207623
## 1433 0.090665245
## 1434 0.300468577
## 1435 -0.604616867
## 1436 -0.707905275
## 1437 -0.261749622
## 1438 0.406102311
## 1439 -0.302461886
## 1440 1.382221602
## 1441 0.017695113
## 1442 3.555920752
## 1443 -1.868913101
## 1444 0.500642572
## 1445 -0.076810316
## 1446 -1.360614021
## 1447 -0.702102041
## 1448 -0.017093657
## 1449 0.483282102
## 1450 -0.334988697
## 1451 -0.927678205
## 1452 -0.066942973
## 1453 0.057608258
## 1454 1.190272598
## 1455 -1.461951961
## 1456 4.419592157
## 1457 -1.042666916
## 1458 -1.371622876
## 1459 2.079175996
## 1460 -0.873932770
## 1461 0.871692904
## 1462 0.209582761
## 1463 -0.911768871
## 1464 -0.118634663
## 1465 -1.193339533
## 1466 -1.545605258
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## 1467 -0.468149352
## 1468 -1.697889179
## 1469 0.661741562
## 1470 0.612425714
## 1471 -0.594900022
## 1472 -0.641563664
## 1473 -0.851446174
## 1474 -0.183969459
## 1475 0.824904247
## 1476 -0.554708352
## 1477 0.720919778
## 1478 -1.168043785
## 1479 -0.328803749
## 1480 -0.197667699
## 1481 -2.414323067
## 1482 0.462409501
## 1483 -0.962574080
## 1484 -0.020550655
## 1485 2.367209356
## 1486 0.158580545
## 1487 -0.091190936
## 1488 -1.076725631
## 1489 0.032262636
## 1490 -0.711142844
## 1491 -0.455510585
## 1492 1.098242092
## 1493 -0.059830299
## 1494 -0.611522224
## 1495 -0.626424025
## 1496 1.486783900
## 1497 1.595967258
## 1498 -0.888434140
## 1499 -0.266378633
## 1500 -0.939822603
## 1501 2.589398642
## 1502 -0.218828040
## 1503 0.563434027
## 1504 0.434432006
## 1505 0.262213953
## 1506 -3.118741247
## 1507 -0.617500114
## 1508 0.581591939
## 1509 -0.276759620
## 1510 0.288052321
## 1511 -1.598773475
## 1512 0.021832099
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## 1513 -6.974078864
## 1514 0.486744176
## 1515 0.636557801
## 1516 0.392121118
## 1517 0.517205996
## 1518 -0.538942525
## 1519 -0.215029092
## 1520 1.416198851
## 1521 1.626127373
## 1522 0.158949634
## 1523 4.549209452
## 1524 -0.902323383
## 1525 -0.601068188
## 1526 -1.388538512
## 1527 1.554620950
## 1528 0.364235521
## 1529 1.002223331
## 1530 -1.030499393
## 1531 -1.006627222
## 1532 2.089119117
## 1533 1.178268951
## 1534 2.602879637
## 1535 -0.419353359
## 1536 1.181689843
## 1537 0.348529141
## 1538 4.254783630
## 1539 -1.137243337
## 1540 0.408030834
## 1541 -0.583707352
## 1542 -1.151355186
## 1543 1.358954598
## 1544 -1.147339306
## 1545 -0.472154839
## 1546 0.725269370
## 1547 -0.794886721
## 1548 -0.447723960
## 1549 0.109899936
## 1550 0.709707248
## 1551 1.138930354
## 1552 -0.507806136
## 1553 -2.214779536
## 1554 1.288584567
## 1555 0.721578976
## 1556 -0.367826188
## 1557 0.139879213
## 1558 4.781695259
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## 1559 -1.016720590
## 1560 -0.432739357
## 1561 -1.077164801
## 1562 2.540890638
## 1563 0.689251719
## 1564 -1.013459415
## 1565 -2.515843294
## 1566 -0.673855328
## 1567 -0.375476789
## 1568 -0.916219044
## 1569 1.549304588
## 1570 1.360792750
## 1571 0.843166673
## 1572 -0.558579907
## 1573 -0.084642378
## 1574 0.439714247
## 1575 1.523576748
## 1576 0.145536798
## 1577 -0.875930356
## 1578 0.842339344
## 1579 -3.171521827
## 1580 -3.692743737
## 1581 -0.400794562
## 1582 1.911938625
## 1583 -0.566976032
## 1584 -0.968506736
## 1585 -1.115103942
## 1586 0.145175659
## 1587 -0.984834947
## 1588 -1.305448618
## 1589 3.295349848
## 1590 -1.165658689
## 1591 -1.845432609
## 1592 0.170522717
## 1593 -0.363562190
## 1594 -0.168452528
## 1595 1.698956155
## 1596 -1.386215391
## 1597 -1.489997078
## 1598 -0.814450078
## 1599 -1.014306255
## 1600 1.013378952
## 1601 0.351210846
## 1602 -1.469309772
## 1603 -2.843906663
## 1604 -0.451553048
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## 1605 -0.437467998
## 1606 -0.661090971
## 1607 -2.364554960
## 1608 -3.947712307
## 1609 0.372874967
## 1610 -0.817729561
## 1611 -2.444505852
## 1612 1.831984089
## 1613 -0.644249182
## 1614 0.787011605
## 1615 1.959075243
## 1616 1.686181224
## 1617 1.278091026
## 1618 -0.566425596
## 1619 -0.101294954
## 1620 0.349554990
## 1621 -0.272791347
## 1622 1.763222216
## 1623 -1.297241599
## 1624 -0.282142273
## 1625 3.369303210
## 1626 0.038739340
## 1627 0.372240615
## 1628 2.176687667
## 1629 0.966583562
## 1630 0.294144531
## 1631 -0.924339801
## 1632 -0.805942341
## 1633 0.721619147
## 1634 -0.355998391
## 1635 0.818389503
## 1636 -0.699578508
## 1637 0.387726348
## 1638 1.463883367
## 1639 -0.245300158
## 1640 -0.218009542
## 1641 3.244028578
## 1642 -0.680401009
## 1643 -0.936290709
## 1644 -0.512382706
## 1645 1.086573712
## 1646 -1.093709977
## 1647 0.729652289
## 1648 0.548847371
## 1649 1.037099580
## 1650 -0.396714115



19.5. SIMULATING T SCORES 625

## 1651 2.791648679
## 1652 -0.805443037
## 1653 -0.584678755
## 1654 -0.356144843
## 1655 -0.404034530
## 1656 1.359927361
## 1657 -0.495495218
## 1658 -1.240287121
## 1659 -0.082211339
## 1660 -1.188018749
## 1661 -2.223184727
## 1662 0.705587014
## 1663 -0.848632473
## 1664 -2.613258924
## 1665 -0.863908222
## 1666 -2.107749753
## 1667 2.082153516
## 1668 1.496670703
## 1669 0.016416946
## 1670 1.014578005
## 1671 -0.361644011
## 1672 0.247235364
## 1673 1.144823453
## 1674 -0.047697451
## 1675 0.455343948
## 1676 0.994593364
## 1677 -0.822444222
## 1678 -0.244816328
## 1679 -1.082771869
## 1680 0.747409305
## 1681 -0.428650753
## 1682 -0.169425334
## 1683 1.605816199
## 1684 0.449971184
## 1685 0.730435284
## 1686 1.847506343
## 1687 -0.206396757
## 1688 0.380880583
## 1689 0.818313605
## 1690 -0.408848628
## 1691 -0.515786900
## 1692 0.974370595
## 1693 -0.133150873
## 1694 1.398333843
## 1695 -1.361151145
## 1696 0.433309662
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## 1697 -0.946376931
## 1698 -0.670063632
## 1699 1.676048959
## 1700 -0.140611177
## 1701 0.053654636
## 1702 1.259689693
## 1703 -5.174206131
## 1704 0.788702296
## 1705 -1.993087093
## 1706 0.397864475
## 1707 2.134884681
## 1708 -0.710201299
## 1709 2.996060042
## 1710 0.510889890
## 1711 0.054068572
## 1712 0.605433933
## 1713 0.347134535
## 1714 1.103668504
## 1715 1.103076166
## 1716 1.332205225
## 1717 0.423082535
## 1718 -1.625596444
## 1719 -1.554203022
## 1720 0.006527303
## 1721 0.053696296
## 1722 -1.561823405
## 1723 0.207694829
## 1724 1.301721385
## 1725 0.603758316
## 1726 -2.775142964
## 1727 0.063536743
## 1728 2.740397766
## 1729 -2.752915518
## 1730 0.822732164
## 1731 -0.980567935
## 1732 3.973534763
## 1733 -0.740899772
## 1734 1.420636878
## 1735 -1.333517659
## 1736 -0.706797886
## 1737 -0.709147617
## 1738 3.371441854
## 1739 1.005492756
## 1740 -3.541571056
## 1741 -1.439834921
## 1742 3.286784985
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## 1743 -0.122735530
## 1744 -0.437715190
## 1745 3.251385190
## 1746 -0.593354656
## 1747 -1.079917550
## 1748 0.606761232
## 1749 -1.127159142
## 1750 2.358211611
## 1751 0.763686667
## 1752 1.110251032
## 1753 -1.492509083
## 1754 -1.241463822
## 1755 4.439832289
## 1756 2.554971740
## 1757 0.660895643
## 1758 0.123687788
## 1759 1.333725257
## 1760 4.152832797
## 1761 1.217302777
## 1762 1.656895371
## 1763 0.353317077
## 1764 -0.657602012
## 1765 -0.381770876
## 1766 0.187400308
## 1767 1.939343087
## 1768 0.210374661
## 1769 -2.345500420
## 1770 -0.874157596
## 1771 0.540670356
## 1772 0.112802661
## 1773 -2.648256979
## 1774 0.597568786
## 1775 -0.137426550
## 1776 3.516064434
## 1777 0.102408252
## 1778 0.776033821
## 1779 0.930709076
## 1780 5.220574704
## 1781 0.736020501
## 1782 -0.990894962
## 1783 -0.274559644
## 1784 -1.016884505
## 1785 -0.221887192
## 1786 -0.445992770
## 1787 0.475688115
## 1788 0.785786694
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## 1789 -0.130032635
## 1790 -0.394688042
## 1791 -2.323386527
## 1792 0.514375139
## 1793 1.492241939
## 1794 0.327791984
## 1795 -0.075720368
## 1796 0.514881334
## 1797 -1.119208961
## 1798 -0.180152878
## 1799 0.637308878
## 1800 3.964044307
## 1801 -0.144384160
## 1802 1.487932212
## 1803 -0.566635527
## 1804 -1.139370142
## 1805 -3.086612508
## 1806 0.862030400
## 1807 0.474449333
## 1808 0.961474292
## 1809 -0.538548656
## 1810 0.017726335
## 1811 -1.138437401
## 1812 0.121364311
## 1813 -0.978068660
## 1814 0.283660468
## 1815 0.242053638
## 1816 -0.117018330
## 1817 0.540950519
## 1818 1.580644887
## 1819 1.028931010
## 1820 1.015550193
## 1821 1.196996138
## 1822 0.230669296
## 1823 0.031274355
## 1824 -0.707303604
## 1825 -1.142676757
## 1826 1.804785405
## 1827 0.112926949
## 1828 0.477232896
## 1829 -0.476903681
## 1830 -0.692818107
## 1831 1.332466553
## 1832 2.318784256
## 1833 1.184052989
## 1834 1.141068630
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## 1835 0.167916703
## 1836 -1.116243275
## 1837 -0.045689694
## 1838 0.596004263
## 1839 -0.748392267
## 1840 -0.060920315
## 1841 -1.444313228
## 1842 -0.044715427
## 1843 -0.056960004
## 1844 1.151901771
## 1845 -0.174865186
## 1846 0.545593634
## 1847 -0.692471122
## 1848 -0.734818390
## 1849 1.457787809
## 1850 0.875233226
## 1851 0.391506603
## 1852 1.740417860
## 1853 -0.388065238
## 1854 -0.877747675
## 1855 0.284135482
## 1856 0.111826285
## 1857 0.815318224
## 1858 -0.140032745
## 1859 -1.361405539
## 1860 -0.758963912
## 1861 0.360491065
## 1862 -0.205572385
## 1863 -0.363727621
## 1864 1.604171479
## 1865 -0.120997962
## 1866 -0.766683547
## 1867 0.468191113
## 1868 -1.837601301
## 1869 1.415300784
## 1870 -1.098654854
## 1871 0.035359762
## 1872 0.156320433
## 1873 1.539551984
## 1874 0.266961864
## 1875 1.352917387
## 1876 -0.404440536
## 1877 1.808759952
## 1878 -1.881284209
## 1879 -0.549492991
## 1880 2.526688917
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## 1881 0.228924017
## 1882 0.513811303
## 1883 1.017006255
## 1884 -0.742499144
## 1885 -0.140586012
## 1886 -0.053718530
## 1887 0.803828055
## 1888 0.048360449
## 1889 -0.215828947
## 1890 -0.058291264
## 1891 0.864983841
## 1892 -1.356170107
## 1893 -0.617262864
## 1894 -1.402265309
## 1895 -0.523441459
## 1896 0.830853039
## 1897 0.317281478
## 1898 0.084830762
## 1899 2.121363127
## 1900 0.121462979
## 1901 0.834729191
## 1902 0.040652843
## 1903 0.722788277
## 1904 -0.747640271
## 1905 0.387297140
## 1906 -0.812770956
## 1907 1.454741416
## 1908 0.620606741
## 1909 0.833451137
## 1910 -1.683346033
## 1911 0.804701034
## 1912 -0.229263120
## 1913 0.046194911
## 1914 -0.166435185
## 1915 -1.112652661
## 1916 -1.073200728
## 1917 -0.046565310
## 1918 5.696117906
## 1919 -0.290236383
## 1920 1.207304711
## 1921 -0.762685782
## 1922 -1.497926637
## 1923 -0.822479149
## 1924 1.052504492
## 1925 1.198638323
## 1926 -0.126984105
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## 1927 -2.196066627
## 1928 2.821882676
## 1929 0.888531536
## 1930 1.030936408
## 1931 0.557465035
## 1932 0.289026047
## 1933 -0.709589288
## 1934 1.018615649
## 1935 1.014718518
## 1936 0.118878497
## 1937 -2.353307515
## 1938 -0.463709158
## 1939 -3.089588325
## 1940 -2.124134818
## 1941 -3.397232314
## 1942 0.910430585
## 1943 -1.056790935
## 1944 -0.262030547
## 1945 0.607755870
## 1946 0.403856235
## 1947 1.412269952
## 1948 0.422769816
## 1949 -0.005290671
## 1950 -0.361825063
## 1951 2.228995584
## 1952 -0.093855139
## 1953 0.088769126
## 1954 2.985708776
## 1955 -1.616981175
## 1956 -0.814294262
## 1957 -0.579969780
## 1958 -0.532228413
## 1959 0.475891817
## 1960 -0.028348796
## 1961 -0.097690038
## 1962 -1.338162601
## 1963 -1.294586067
## 1964 0.687677162
## 1965 -0.201650989
## 1966 -0.658662267
## 1967 -0.364505858
## 1968 -0.822221317
## 1969 3.268173150
## 1970 -4.967636498
## 1971 -0.584376271
## 1972 -1.161526012
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## 1973 -0.244878422
## 1974 3.032321344
## 1975 -1.812160139
## 1976 -1.261326720
## 1977 -2.309825696
## 1978 0.131785814
## 1979 -0.512137299
## 1980 -2.212688313
## 1981 -0.833872274
## 1982 0.185610652
## 1983 -0.141494928
## 1984 0.109487405
## 1985 0.089989645
## 1986 0.668121661
## 1987 -0.430441702
## 1988 0.792453656
## 1989 -1.400129839
## 1990 -0.215107105
## 1991 -0.085294745
## 1992 0.437635054
## 1993 1.414558604
## 1994 -1.470842044
## 1995 0.204152049
## 1996 -0.603812902
## 1997 0.788499060
## 1998 0.489937346
## 1999 -1.605398619
## 2000 0.409543307

Let’s plot our simulated t scores alongside a normal distribution.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(sims_t, aes(x = sim_t)) +

geom_histogram(aes(y = ..density..), binwidth = 0.25) +
scale_x_continuous(limits = c(-5, 5),

breaks = c(-4, -3, -2, -1, 0, 1, 2, 3, 4)) +
stat_function(fun = dnorm, args = list(mean = 0, sd = 1),

color = "red", size = 1.5)

## Warning: Removed 19 rows containing non-finite values (`stat_bin()`).

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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These t scores are somewhat close to the normal model we had when we knew
𝜎, but the fit doesn’t look quite right. The peak of the simulated values isn’t
quite high enough, and the tails seem to spill out over the much thinner tails of
the normal model.

William Gosset figured this all out in the early 20th century. While working for
the Guinness brewery in Dublin, Ireland, he started noticing that his quality
control tests (using very small sample sizes) didn’t yield statistical results con-
sistent with the normal models that were universally used at the time. At the
encouragement of the company, which saw his work as a potential source of cost
savings, he took some time off to study and consult with other statisticians. As
a result, he found a new function that is similar to a normal distribution but is
more spread out. This new function accounts for the extra variability one gets
when using the sample standard deviation 𝑠 as an estimate for the true popu-
lation standard deviation 𝜎. Guinness considered the result a “trade secret”, so
they wouldn’t allow Gosset to publish under his own name. But they did permit
him to publish his findings under the pseudonym “Student”. He used data sets
unrelated to brewing and submitted his work to the top statistical journal of
the time.

The new function Gosset discovered became known as the Student t distribution.
He realized that the spread of the t distribution depends on the sample size.
This makes sense: the accuracy of 𝑠 will be greater when we have a larger
sample. In fact, for large enough samples, the t distribution is very close to a
normal model.

Gosset used the term degrees of freedom to describe how the sample size influ-
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ences the spread of the t distribution. It’s somewhat mathematical and techni-
cal, so suffice it to say here that the number of degrees of freedom is simply the
sample size minus 1:

𝑑𝑓 = 𝑛 − 1.

So is the t model correct for our simulated t scores? Our sample size was 4, so
we should use a t model with 3 degrees of freedom. Let’s plot it in green on top
of our previous graph and see:

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(sims_t, aes(x = sim_t)) +

geom_histogram(aes(y = ..density..), binwidth = 0.25) +
scale_x_continuous(limits = c(-5, 5),

breaks = c(-4, -3, -2, -1, 0, 1, 2, 3, 4)) +
stat_function(fun = dnorm, args = list(mean = 0, sd = 1),

color = "red", size = 1.5) +
stat_function(fun = dt, args = list(df = 3),

color = "green", size = 1.5)

## Warning: Removed 19 rows containing non-finite values (`stat_bin()`).

## Warning: Removed 2 rows containing missing values (`geom_bar()`).
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The green curve fits the simulated values much better.

19.6 Inference for one mean

When we have a single numerical variable, we can ask if the sample mean is
consistent or not with a null hypothesis. We will use a t model for our sampling
distribution model as long as certain conditions are met.

One of the assumptions we made in the simulation above was that the true
population was normally distributed. In general, we have no way of knowing if
this is true. So instead we check the nearly normal condition: if a histogram
or QQ plot of our data shows that the data is nearly normal, then there is a
reasonable assumption that the whole population is shaped the same way.

If our sample size is large enough, the central limit theorem tells us that the
sampling distribution gets closer and closer to a normal model. Therefore, we’ll
use a rule of thumb that says that if the sample size is greater than 30, we won’t
worry too much about any deviations from normality in the data.

The number 30 is somewhat arbitrary. If the sample size is 25 and a histogram
shows only a little skewness, we’re probably okay. But if the sample size is 10,
we need for the data to be very normal to justify using the t model. The irony,
of course, is that small sample sizes are the hardest to check for normality. We’ll
have to use our best judgment.

19.7 Outliers

We also need to be on the lookout for outliers. We’ve seen before that outliers
can have a huge effect on means and standard deviations, especially when sample
sizes are small. Whenever we find an outlier, we need to investigate.

Some outliers are mistakes. Perhaps someone entered data incorrectly into the
computer. When it’s clear that outliers are data entry errors, we are free to
either correct them (if we know what error was made) or delete them from our
data completely.

Some outliers are not necessarily mistakes, but should be excluded for other
reasons. For example, if we are studying the weight of birds and we have
sampled a bunch of hummingbirds and one emu, the emu’s weight will appear
as an outlier. It’s not that its weight is “wrong”, but it clearly doesn’t belong
in the analysis.

In general, though, outliers are real data that just happen to be unusual. It’s not
ethical simply to throw away such data points because they are inconvenient.
(We only do so in very narrow and well-justified circumstances like the emu.)
The best policy to follow when faced with such outliers is to run inference
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twice—once with the outlier included, and once with the outlier excluded. If,
when running a hypothesis test, the conclusion is the same either way, then
the outlier wasn’t all that influential, so we leave it in. If, when computing a
confidence interval, the endpoints don’t change a lot either way, then we leave
the outlier in. However, when conclusions or intervals are dramatically different
depending on whether the outlier was in or out, then we have no choice but to
state that honestly.

19.8 Research question

The teacher data from the openintro package contains information on 71
teachers employed by the St. Louis Public School in Michigan. According to
Google, the average teacher salary in Michigan was $63,024 in 2010. So does
this data suggest that the teachers in the St. Louis region of Michigan are paid
differently than teachers in other parts of Michigan?

Let’s walk through the rubric.

19.9 Exploratory data analysis

19.9.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

You should type ?teacher at the Console to read the help file. Unfortunately,
the help file does not give us a lot of information about how the data was
collected. The only source listed is a website that no longer contains this data
set. Besides, that website is just an open repository for data, so it’s not clear that
the site would have contained any additional information about the provenance
of the data. We will have to assume that the data was collected accurately.

Here is the data set:

teacher

## # A tibble: 71 x 8
## id degree fte years base fica retirement total
## * <fct> <fct> <fct> <dbl> <int> <dbl> <dbl> <dbl>
## 1 01 BA 1 5 45388 3472. 7689. 56549.
## 2 02 MA 1 15 60649 4640. 10274. 75563.
## 3 03 MA 1 16 60649 4640. 10274. 75563.
## 4 04 BA 1 10 54466 4167. 9227. 67859.
## 5 05 BA 1 26 65360 5000. 11072. 81432.
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## 6 06 BA 1 28.5 65360 5000. 11072. 81432.
## 7 07 BA 1 12 58097 4444. 9842. 72383.
## 8 08 MA 1 32 68230 5220. 11558. 85008.
## 9 09 BA 1 25 65360 5000. 11072. 81432.
## 10 11 BA 1 12 58097 4444. 9842. 72383.
## # i 61 more rows

glimpse(teacher)

## Rows: 71
## Columns: 8
## $ id <fct> 01, 02, 03, 04, 05, 06, 07, 08, 09, 11, 12, 13, 14, 15, 16,~
## $ degree <fct> BA, MA, MA, BA, BA, BA, BA, MA, BA, BA, BA, BA, BA, BA, MA,~
## $ fte <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ years <dbl> 5.0, 15.0, 16.0, 10.0, 26.0, 28.5, 12.0, 32.0, 25.0, 12.0, ~
## $ base <int> 45388, 60649, 60649, 54466, 65360, 65360, 58097, 68230, 653~
## $ fica <dbl> 3472.18, 4639.65, 4639.65, 4166.65, 5000.04, 5000.04, 4444.~
## $ retirement <dbl> 7688.73, 10273.94, 10273.94, 9226.54, 11071.98, 11071.98, 9~
## $ total <dbl> 56548.91, 75562.59, 75562.59, 67859.19, 81432.02, 81432.02,~

Since total is a numerical variable, we can use the summary function to produce
the five-number summary. (The function also reports the mean.)

summary(teacher$total)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 24793 63758 74647 70289 81432 85008

19.9.2 Prepare the data for analysis.

Not necessary here, but see the next section to find out what we do when we
discover an outlier.

19.9.3 Make tables or plots to explore the data visually.

Here is a histogram.

ggplot(teacher, aes(x = total)) +
geom_histogram(binwidth = 5000, boundary = 60000)
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And here is a QQ plot.

ggplot(teacher, aes(sample = total)) +
geom_qq() +
geom_qq_line()
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This distribution is quite skewed to the left. Of even more concern is the extreme
outlier on the left.
With any outlier, we need to investigate.

Exercise 1 Let’s sort the data by total (ascending) using the arrange com-
mand.

teacher %>%
arrange(total)

## # A tibble: 71 x 8
## id degree fte years base fica retirement total
## <fct> <fct> <fct> <dbl> <int> <dbl> <dbl> <dbl>
## 1 37 MA 0.5 1 19900 1522. 3371. 24793.
## 2 12 BA 1 0 35427 2710. 6001. 44138.
## 3 57 BA 1 0 35427 2710. 6001. 44138.
## 4 41 BA 1 1 37199 2846. 6302. 46346.
## 5 69 BA 1 2 38968 2981. 6601. 48550.
## 6 48 BA 1 3 40739 3117. 6901. 50757.
## 7 54 BA 1 3 40739 3117. 6901. 50757.
## 8 38 MA 1 2 41695 3190. 7063. 51948.
## 9 15 BA 1 4 43575 3333. 7382. 54290.
## 10 39 MA 1 3 43593 3335. 7385. 54313.
## # i 61 more rows
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Can you figure out why the person with the lowest total salary is different from
all the other teachers?

Please write up your answer here.

Based on your answer to the above exercise, hopefully it’s clear that this is
an outlier for which we can easily justify exclusion. We can use the filter
command to get only the rows we want. There are lots of ways to do this, but
it’s easy enough to grab only salaries above $30,000. (There’s only one salary
below $30,000, so that outlier will be excluded.)

CAUTION: If you are copying and pasting from this example to use
for another research question, the following code chuck is specific to
this research question and not applicable in other contexts.

teacher2 <- teacher %>%
filter(total > 30000)

Check to make sure this had the desired effect:

summary(teacher2$total)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 44139 63758 74647 70939 81432 85008

Notice how the min is no longer $24,793.41.

Here are the new plots:

ggplot(teacher2, aes(x = total)) +
geom_histogram(binwidth = 5000, boundary = 60000)
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ggplot(teacher2, aes(sample = total)) +
geom_qq() +
geom_qq_line()
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The left skew is still present, but we have removed the outlier.

19.10 Hypotheses

19.10.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample consists of 70 teachers employed by the St. Louis Public School in
Michigan. We are using these 70 teachers as a hopefully representative sample
of all teachers in that region of Michigan.

19.10.2 Express the null and alternative hypotheses as
contextually meaningful full sentences.

𝐻0 ∶ Teachers in the St. Louis region earn $63,024 on average. (In other words,
these teachers are the same as the teachers anywhere else in Michigan.)

𝐻𝐴 ∶ Teachers in the St. Louis region do not earn $63,024 on average. (In
other words, these teachers are not the same as the teachers anywhere else in
Michigan.)

19.10.3 Express the null and alternative hypotheses in
symbols (when possible).

𝐻0 ∶ 𝜇 = 63024

𝐻𝐴 ∶ 𝜇 ≠ 63024

19.11 Model

19.11.1 Identify the sampling distribution model.

We will use a t model with 69 degrees of freedom.

Commentary: The original teacher data had 71 observations. The teacher2
data has only 70 observations because we removed an outlier. Therefore 𝑛 = 70
and thus 𝑑𝑓 = 𝑛 − 1 = 69.
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19.11.2 Check the relevant conditions to ensure that
model assumptions are met.

• Random

– We know this isn’t a random sample. We’re not sure if this school
is representative of other schools in the region, so we’ll proceed with
caution.

• 10%

– This is also suspect, as it’s not clear that there are 700 teachers in the
region. One way to look at it is this: if there are 10 or more schools
in the region, and all the school are about the size of the St. Louis
Public School under consideration, then we should be okay.

• Nearly Normal

– For this, we note that the sample size is much larger than 30, so we
should be okay, even with the skewness in the data.

19.12 Mechanics

19.12.1 Compute the test statistic.

total_mean <- teacher2 %>%
specify(response = total) %>%
calculate(stat = "mean")

total_mean

## Response: total (numeric)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 70939.

total_t <- teacher2 %>%
specify(response = total) %>%
hypothesize(null = "point", mu = 63024) %>%
calculate(stat = "t")

total_t

## Response: total (numeric)
## Null Hypothesis: point
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## # A tibble: 1 x 1
## stat
## <dbl>
## 1 5.89

19.12.2 Report the test statistic in context (when possi-
ble).

The sample mean is $70938.5725714.

The t score is 5.886253. The mean teacher salary in our sample is almost 6
standard errors to the right of the null value.

19.12.3 Plot the null distribution.

total_test <- teacher2 %>%
specify(response = total) %>%
assume("t")

total_test

## A T distribution with 69 degrees of freedom.

total_test %>%
visualize() +
shade_p_value(obs_stat = total_t, direction = "two-sided")
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Commentary: Although we are conducting a two-sided test, the area in the tails
is so small that it can’t really be seen in the picture above.

19.12.4 Calculate the P-value.

total_test_p <- total_test %>%
get_p_value(obs_stat = total_t, direction = "two-sided")

total_test_p

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.000000129

19.12.5 Interpret the P-value as a probability given the
null.

𝑃 < 0.001. If teachers in the St. Louis region truly earned $63,024 on average,
there would be only a 0.0000129% chance of seeing data at least as extreme as
what we saw.
Commentary: When the P-value is this small, remember that it is traditional
to report simply 𝑃 < 0.001.
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19.13 Conclusion

19.13.1 State the statistical conclusion.

We reject the null hypothesis.

19.13.2 State (but do not overstate) a contextually mean-
ingful conclusion.

There is sufficient evidence that teachers in the St. Louis region do not earn
$63,024 on average.

19.13.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

Because we do not know how this data was collected (was it every teacher in
this region? was it a sample of some of the teachers? was it a representative
sample?), we do not know if we can generalize it to all teachers in the region.
Also, the data set was from 2010, so we know that this data cannot be applied
to teachers in St. Louis, Michigan now.

19.13.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

If we’ve made a Type I error, then the truth is that teachers in this region do
make around $63,024 on average, but our sample was way off.

19.14 Confidence interval

19.14.1 Check the relevant conditions to ensure that
model assumptions are met.

All the conditions have been checked already.

19.14.2 Calculate and graph the confidence interval.



19.14. CONFIDENCE INTERVAL 647

total_ci <- total_test %>%
get_confidence_interval(point_estimate = total_mean, level = 0.95)

total_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 68256. 73621.

total_test %>%
visualize() +
shade_confidence_interval(endpoints = total_ci)
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19.14.3 State (but do not overstate) a contextually mean-
ingful interpretation.

We are 95% confident that the true mean salary for teachers in the St. Louis
region is captured in the interval (68256.2, 73620.95).

Commentary: As these are dollar amounts, it makes sense to round them to
two decimal places. Even then, R is finicky and sometimes it will not respect
your wishes.)
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19.14.4 If running a two-sided test, explain how the con-
fidence interval reinforces the conclusion of the
hypothesis test.

Since $63,024 is not contained in the confidence interval, it is not a plausible
value for the mean teacher salary in the St Louis region of Michigan.

19.14.5 When comparing two groups, comment on the ef-
fect size and the practical significance of the re-
sult.

We are not comparing two groups.

19.15 Your turn

In the High School and Beyond survey (the hsb2 data set from the openintro
package), among the many scores that are recorded are standardized math
scores. Suppose that these scores are normalized so that a score of 50 rep-
resents some kind of international average. (This is not really true. I had to
make something up here to give you a baseline number with which to work.)
The question is, then, are American students different from this international
baseline?

The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere.

Exploratory data analysis
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Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.
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Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# IF CONDUCTING A SIMULATION...
set.seed(1)
# Add code here to simulate the null distribution.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here. {-}
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State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

Confidence interval

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

# Add code here to calculate the confidence interval.

# Add code here to graph the confidence interval.

Calculate and graph the confidence interval.

State (but do not overstate) a contextually meaningful interpretation.
Please write up your answer here.

If running a two-sided test, explain how the confidence interval rein-
forces the conclusion of the hypothesis test. [Not always applicable.]
Please write up your answer here.

When comparing two groups, comment on the effect size and the
practical significance of the result. [Not always applicable.] Please
write up your answer here.

19.16 Additional exercises

After running inference above, answer the following questions:
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Exercise 2 Even though the result was statistically significant, do you think
the result is practically significant? By this, I mean, are scores for American
students so vastly different than 50? Do we have a lot of reason to brag about
American scores based on your analysis?

Please write up your answer here.

Exercise 3 What makes it possible for a small effect like this to be statistically
significant even if it’s not practically very different from 50? In other words,
what has to be true of data to detect small but statistically significant effects?

Please write up your answer here.

19.17 Conclusion

When working with numerical data, we have to estimate a mean and a standard
deviation. The extra variability in estimating both gives rise to a sampling
distribution model with thicker tails called the Student t distribution. Using
this distribution gives us a way to calculate P-values and confidence intervals
that take this variation into account.

19.17.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 20

Inference for paired data

2.0

Functions introduced in this chapter

No new R functions are introduced here.

20.1 Introduction

In this chapter we will learn how to run inference for two paired numerical
variables.

20.1.1 Install new packages

There are no new packages used in this chapter.

20.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/20-inference_for_paired_data.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

653
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20.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

20.2 Load packages

We load the standard tidyverse and infer packages. The openintro package
will give access to the textbooks data and the hsb2 data.

library(tidyverse)
library(infer)
library(openintro)

20.3 Paired data

Sometimes data sets have two numerical variables that are related to each other.
For example, a diet study might include a pre-weight and a post-weight. The
research question is not about either of these variables directly, but rather the
difference between the variables, for example how much weight was lost during
the diet.

When this is the case, we run inference for paired data. The procedure involves
calculating a new variable d that represents the difference of the two paired vari-
ables. The null hypothesis is almost always that there is no difference between
the paired variables, and that translates into the statement that the average
value of d is zero.

20.4 Research question

The textbooks data frame (from the openintro package) has data on the price
of books at the UCLA bookstore versus Amazon.com. The question of interest
here is whether the campus bookstore charges more than Amazon.

20.5 Inference for paired data

The key idea is that we don’t actually care about the book prices themselves.
All we care about is if there is a difference between the prices for each book.
These are not two independent variables because each row represents a single
book. Therefore, the two measurements are “paired” and should be treated
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as a single numerical variable of interest, representing the difference between
ucla_new and amaz_new.

Since we’re only interested in analyzing the one numerical variable d, this process
is nothing more than a one-sample t test. Therefore, there is really nothing new
in this chapter.

Let’s go through the rubric.

20.6 Exploratory data analysis

20.6.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

You should type textbooks at the Console to read the help file. The data
was collected by a person, David Diez. A quick Google search reveals that
he is a statistician who graduated from UCLA. We presume he had access to
accurate information about the prices of books at the UCLA bookstore and
from Amazon.com at the time the data was collected.

Here is the data set:

textbooks

## # A tibble: 73 x 7
## dept_abbr course isbn ucla_new amaz_new more diff
## <fct> <fct> <fct> <dbl> <dbl> <fct> <dbl>
## 1 Am Ind " C170" 978-0803272620 27.7 28.0 Y -0.28
## 2 Anthro "9" 978-0030119194 40.6 31.1 Y 9.45
## 3 Anthro "135T" 978-0300080643 31.7 32 Y -0.32
## 4 Anthro "191HB" 978-0226206813 16 11.5 Y 4.48
## 5 Art His "M102K" 978-0892365999 19.0 14.2 Y 4.74
## 6 Art His "118E" 978-0394723693 15.0 10.2 Y 4.78
## 7 Asia Am "187B" 978-0822338437 24.7 20.1 Y 4.64
## 8 Asia Am "191E" 978-0816646135 19.5 16.7 N 2.84
## 9 Ch Engr "C125" 978-0195123401 124. 106. N 17.6
## 10 Chicano "M145B" 978-0896086265 17 13.3 Y 3.74
## # i 63 more rows

glimpse(textbooks)

## Rows: 73
## Columns: 7
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## $ dept_abbr <fct> Am Ind, Anthro, Anthro, Anthro, Art His, Art His, Asia Am, A~
## $ course <fct> C170, 9, 135T, 191HB, M102K, 118E, 187B, 191E, C125, M145B,~
## $ isbn <fct> 978-0803272620, 978-0030119194, 978-0300080643, 978-02262068~
## $ ucla_new <dbl> 27.67, 40.59, 31.68, 16.00, 18.95, 14.95, 24.70, 19.50, 123.~
## $ amaz_new <dbl> 27.95, 31.14, 32.00, 11.52, 14.21, 10.17, 20.06, 16.66, 106.~
## $ more <fct> Y, Y, Y, Y, Y, Y, Y, N, N, Y, Y, N, Y, Y, N, N, N, N, N, N, ~
## $ diff <dbl> -0.28, 9.45, -0.32, 4.48, 4.74, 4.78, 4.64, 2.84, 17.59, 3.7~

The two paired variables are ucla_new and amaz_new.

20.6.2 Prepare the data for analysis.

Generally, we will need to create a new variable d that represents the difference
between the two paired variables of interest. This uses the mutate command
that adds an extra column to our data frame. The order of subtraction usually
does not matter, but we will want to keep track of that order so that we can
interpret our test statistic correctly. In the case of a one-sided test (which this
is), it is especially important to keep track of the order of subtraction. Since
we suspect the bookstore will charge more than Amazon, let’s subtract in that
order. Our hunch is that it will be a positive number, on average.

textbooks_d <- textbooks %>%
mutate(d = ucla_new - amaz_new)

textbooks_d

## # A tibble: 73 x 8
## dept_abbr course isbn ucla_new amaz_new more diff d
## <fct> <fct> <fct> <dbl> <dbl> <fct> <dbl> <dbl>
## 1 Am Ind " C170" 978-0803272620 27.7 28.0 Y -0.28 -0.280
## 2 Anthro "9" 978-0030119194 40.6 31.1 Y 9.45 9.45
## 3 Anthro "135T" 978-0300080643 31.7 32 Y -0.32 -0.320
## 4 Anthro "191HB" 978-0226206813 16 11.5 Y 4.48 4.48
## 5 Art His "M102K" 978-0892365999 19.0 14.2 Y 4.74 4.74
## 6 Art His "118E" 978-0394723693 15.0 10.2 Y 4.78 4.78
## 7 Asia Am "187B" 978-0822338437 24.7 20.1 Y 4.64 4.64
## 8 Asia Am "191E" 978-0816646135 19.5 16.7 N 2.84 2.84
## 9 Ch Engr "C125" 978-0195123401 124. 106. N 17.6 17.6
## 10 Chicano "M145B" 978-0896086265 17 13.3 Y 3.74 3.74
## # i 63 more rows

If you look closely at the tibble above, you will see that there is a column already
in our data called diff. It is the same as the column d we just created. So in
this case, we didn’t really need to create a new difference variable. However,
since most data sets do not come pre-prepared with such a difference variable,
it is good to know how to make one if needed.
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20.6.3 Make tables or plots to explore the data visually.

Here are summary statistics, a histogram, and a QQ plot for d.

summary(textbooks_d$d)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -9.53 3.80 8.23 12.76 17.59 66.00

ggplot(textbooks_d, aes(x = d)) +
geom_histogram(binwidth = 10, boundary = 0)
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ggplot(textbooks_d, aes(sample = d)) +
geom_qq() +
geom_qq_line()
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The data is somewhat skewed to the right with one observation that might be a
bit of an outlier. If the sample size were much smaller, we might be concerned
about this point However, it’s not much higher than other points in that right
tail, and it doesn’t appear that its inclusion or exclusion will change the overall
conclusion much. If you are concerned that the point might alter the conclusion,
run the hypothesis test twice, once with and once without the outlier present
to see if the main conclusion changes.

20.7 Hypotheses

20.7.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample consists of 73 textbooks. The population is all textbooks that might
be sold both at the UCLA bookstore and on Amazon.

20.7.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ There is no difference in textbooks prices between the UCLA bookstore
and Amazon.
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𝐻𝐴 ∶ Textbook prices at the UCLA bookstore are higher on average than on
Amazon.
Commentary: Note we are performing a one-sided test. If we are conducting
our own research with our own data, we can decide whether we want to run
a two-sided or one-sided test. Remember that we only do the latter when we
have a strong hypothesis in advance that the difference should be clearly in one
direction and not the other. In this case, it’s not up to us. We have to respect
the research question as it was given to us: “The question of interest here is
whether the campus bookstore charges more than Amazon.”

Exercise 1 What would the research question say if we were supposed to run
a two-sided test instead? In other words, write down a slightly different research
question about textbook prices that would prompt us to run a two-sided test.
Please write up your answer here.

20.7.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝜇𝑑 = 0
𝐻𝐴 ∶ 𝜇𝑑 > 0
Commentary: Since we’re really just doing a one-sample t test, we could just
call this parameter 𝜇, but the subscript 𝑑 is a good reminder that it’s the mean
of the difference variable we care about (as opposed to the mean price of all
the books at the UCLA bookstore or the mean price of all the same books on
Amazon).

20.8 Model

20.8.1 Identify the sampling distribution model.

We use a t model with 72 degrees of freedom.

Exercise 2 Explain how we got 72 degrees of freedom.
Please write up your answer here.

20.8.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random
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– We do not know how exactly how David Diez obtained this sample,
but the help file claims it is a random sample.

• 10%

– We do not know how many total textbooks were available at the
UCLA bookstore at the time the sample was taken, so we do not
know if this condition is met. As long as there were at least 730
books, we are okay. We suspect that, based on the size of UCLA and
the number of course offerings there, this is a reasonable assumption.

• Nearly normal

– Although the sample distribution is skewed (with a possible mild
outlier), the sample size is more than 30.

20.9 Mechanics

20.9.1 Compute the test statistic.

d_mean <- textbooks_d %>%
specify(response = d) %>%
calculate(stat = "mean")

d_mean

## Response: d (numeric)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 12.8

d_t <- textbooks_d %>%
specify(response = d) %>%
hypothesize(null = "point", mu = 0) %>%
calculate(stat = "t")

d_t

## Response: d (numeric)
## Null Hypothesis: point
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 7.65
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20.9.2 Report the test statistic in context (when possible).

The mean difference in textbook prices is 12.7616438.

The value of t is 7.6487711. The mean difference in textbook prices is more
than 7 standard errors above a difference of zero.

20.9.3 Plot the null distribution.

price_test <- textbooks_d %>%
specify(response = d) %>%
assume("t")

price_test

## A T distribution with 72 degrees of freedom.

price_test %>%
visualize() +
shade_p_value(obs_stat = d_t, direction = "greater")
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20.9.4 Calculate the P-value.

price_test_p <- price_test %>%
get_p_value(obs_stat = d_t, direction = "greater")

price_test_p

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 3.46e-11

20.9.5 Interpret the P-value as a probability given the
null.

𝑃 < 0.001. If there were no difference in textbook prices between the UCLA
bookstore and Amazon, there is only a 0% chance of seeing data at least as
extreme as what we saw. (Note that the number is so small that it rounds to
zero in the inline code above. That zero is technically incorrect. The P-value is
never exactly zero. That’s why why also are clear to state 𝑃 < 0.001.)

20.10 Conclusion

20.10.1 State the statistical conclusion.

We reject the null hypothesis.

20.10.2 State (but do not overstate) a contextually mean-
ingful conclusion.

We have sufficient evidence that UCLA prices are higher than Amazon prices.

Commentary: Note that because we performed a one-sided test, our conclusion
is also one-sided in the hypothesized direction.

20.10.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

We can be confident about the validity of this data, and therefore the conclusion
drawn. We should be careful to limit our conclusion to the UCLA bookstore
(and not extrapolate the findings, say, to other campus bookstores.) Depending



20.11. CONFIDENCE INTERVAL 663

on when this data was collected, we may not be able to say anything about
current prices at the UCLA bookstore either.

20.10.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

If we made a Type I error, that would mean there was actually no difference in
textbook prices, but that we got an unusual sample that detected a difference.

20.11 Confidence interval

20.11.1 Check the relevant conditions to ensure that
model assumptions are met.

All necessary conditions have already been checked.

20.11.2 Calculate and graph the confidence interval.

price_ci <- price_test %>%
get_confidence_interval(point_estimate = d_mean, level = 0.95)

price_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 9.44 16.1

price_test %>%
visualize() +
shade_confidence_interval(endpoints = price_ci)
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20.11.3 State (but do not overstate) a contextually mean-
ingful interpretation.

We are 95% confident that the true difference in textbook prices between
the UCLA bookstore and Amazon is captured in the interval (9.4356361,
16.0876516). This was obtained by subtracting the Amazon price minus the
UCLA bookstore. (In other words, since all differences in the confidence
interval are positive, all plausible differences indicate that the UCLA prices are
higher than the Amazon prices.)

Commentary: Don’t forget that any time we find a number that represents a
difference, we have to be clear in the conclusion about the direction of sub-
traction. Otherwise, we have no idea how to interpret positive and negative
values.

20.11.4 If running a two-sided test, explain how the con-
fidence interval reinforces the conclusion of the
hypothesis test.

The confidence interval does not contain zero, which means that zero is not a
plausible value for the difference textbook prices.
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20.11.5 When comparing two groups, comment on the ef-
fect size and the practical significance of the re-
sult.

To think about the practical significance, imagine that you were a student at
UCLA and that every textbook you needed was (on average) $10 to $15 more
expensive in the bookstore than purchasing on Amazon. Multiplied across the
number of textbooks you need, that could amount to a significant increase in
expenses. In other words, that dollar figure is not likely a trivial amount of
money for many students who require multiple textbooks each semester.

20.12 Your turn

The hsb2 data set contains data from a random sample of 200 high school
seniors from the “High School and Beyond” survey conducted by the National
Center of Education Statistics. It contains, among other things, students’ scores
on standardized tests in math, reading, writing, science, and social studies. We
want to know if students do better on the math test or on the reading test.

Run inference to determine if there is a difference between math scores and
reading scores.

The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere.

Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here
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# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)
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Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# IF CONDUCTING A SIMULATION...
set.seed(1)
# Add code here to simulate the null distribution.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.
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Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

Confidence interval

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

# Add code here to calculate the confidence interval.

# Add code here to graph the confidence interval.

Calculate and graph the confidence interval.

State (but do not overstate) a contextually meaningful interpretation.
Please write up your answer here.

If running a two-sided test, explain how the confidence interval rein-
forces the conclusion of the hypothesis test. [Not always applicable.]
Please write up your answer here.

When comparing two groups, comment on the effect size and the
practical significance of the result. [Not always applicable.] Please
write up your answer here.

20.13 Conclusion

Paired data occurs whenever we have two numerical measurements that are re-
lated to each other, whether because they come from the same observational
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units or from closely related ones. When our data is structured as pairs of mea-
surements in this way, we can subtract the two columns and obtain a difference.
That difference variable is the object of our study, and now that it is represented
as a single numerical variable, we can apply the one-sample t test from the last
chapter.

20.13.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Chapter 21

Inference for two
independent means

2.0

Functions introduced in this chapter:

No new R functions are introduced here.

21.1 Introduction

If we have a numerical variable and a categorical variable with two categories,
we can think of the numerical variable as response and the categorical variable
as predictor. The idea is that the two categories sort your numerical data into
two groups which can be compared. Assuming the two groups are independent
of each other, we can use them as samples of two larger populations. This leads
to inference to decide if the difference between the means of the two groups
is statistically significant and then estimate the difference between the means
of the two populations represented. The relevant hypothesis test is called a
two-sample t test (or Welch’s t test, to be specific).

21.1.1 Install new packages

There are no new packages used in this chapter.

671
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21.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

https://vectorposse.github.io/intro_stats/chapter_downloads/21-inference_for_two_independent_means.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

21.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

21.2 Load packages

We load the standard tidyverse, janitor, and infer packages. We also use
the MASS package for the birthwt data.

library(tidyverse)
library(janitor)
library(infer)
library(MASS)

21.3 Research question

Recall the birthwt data that was collected at Baystate Medical Center, Spring-
field, Mass during 1986. In a previous chapter, we measured low birth weight
babies using a categorical variable that served as an indicator for low birth
weight.

Exercise 1 How was it determined if a baby was considered “low birth weight”
for purposes of constructing the variable low? Use the help file to find out.

Please write up your answer here.

We have the actual birth weight of the babies in this data. So, rather than
using a coarse classification into a binary “yes or no” variable, why not use the
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full precision of the birth weight measured in grams? This is a very precisely
measured numerical variable.

We’d like to compare mean birth weights among two groups: women who smoked
during pregnancy, and women who didn’t.

21.4 Data preparation

The actual mean weights in each sample (the smoking women and the nonsmok-
ing women) can be found using a group_by and summarise pipeline:

birthwt %>%
group_by(smoke) %>%
summarise(mean(bwt))

## # A tibble: 2 x 2
## smoke `mean(bwt)`
## <int> <dbl>
## 1 0 3056.
## 2 1 2772.

Note that 0 means “nonsmoker” and 1 means “smoker”. Looks like We need to
address the fact the smoke variable is recorded as a numerical variable instead
of a categorical variable. Here is birthwt2 that we will use from here on out:

birthwt2 <- birthwt %>%
mutate(smoke_fct = factor(smoke, levels = c(0, 1), labels = c("Nonsmoker", "Smoker")))

birthwt2

## low age lwt race smoke ptl ht ui ftv bwt smoke_fct
## 85 0 19 182 2 0 0 0 1 0 2523 Nonsmoker
## 86 0 33 155 3 0 0 0 0 3 2551 Nonsmoker
## 87 0 20 105 1 1 0 0 0 1 2557 Smoker
## 88 0 21 108 1 1 0 0 1 2 2594 Smoker
## 89 0 18 107 1 1 0 0 1 0 2600 Smoker
## 91 0 21 124 3 0 0 0 0 0 2622 Nonsmoker
## 92 0 22 118 1 0 0 0 0 1 2637 Nonsmoker
## 93 0 17 103 3 0 0 0 0 1 2637 Nonsmoker
## 94 0 29 123 1 1 0 0 0 1 2663 Smoker
## 95 0 26 113 1 1 0 0 0 0 2665 Smoker
## 96 0 19 95 3 0 0 0 0 0 2722 Nonsmoker
## 97 0 19 150 3 0 0 0 0 1 2733 Nonsmoker
## 98 0 22 95 3 0 0 1 0 0 2751 Nonsmoker
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## 99 0 30 107 3 0 1 0 1 2 2750 Nonsmoker
## 100 0 18 100 1 1 0 0 0 0 2769 Smoker
## 101 0 18 100 1 1 0 0 0 0 2769 Smoker
## 102 0 15 98 2 0 0 0 0 0 2778 Nonsmoker
## 103 0 25 118 1 1 0 0 0 3 2782 Smoker
## 104 0 20 120 3 0 0 0 1 0 2807 Nonsmoker
## 105 0 28 120 1 1 0 0 0 1 2821 Smoker
## 106 0 32 121 3 0 0 0 0 2 2835 Nonsmoker
## 107 0 31 100 1 0 0 0 1 3 2835 Nonsmoker
## 108 0 36 202 1 0 0 0 0 1 2836 Nonsmoker
## 109 0 28 120 3 0 0 0 0 0 2863 Nonsmoker
## 111 0 25 120 3 0 0 0 1 2 2877 Nonsmoker
## 112 0 28 167 1 0 0 0 0 0 2877 Nonsmoker
## 113 0 17 122 1 1 0 0 0 0 2906 Smoker
## 114 0 29 150 1 0 0 0 0 2 2920 Nonsmoker
## 115 0 26 168 2 1 0 0 0 0 2920 Smoker
## 116 0 17 113 2 0 0 0 0 1 2920 Nonsmoker
## 117 0 17 113 2 0 0 0 0 1 2920 Nonsmoker
## 118 0 24 90 1 1 1 0 0 1 2948 Smoker
## 119 0 35 121 2 1 1 0 0 1 2948 Smoker
## 120 0 25 155 1 0 0 0 0 1 2977 Nonsmoker
## 121 0 25 125 2 0 0 0 0 0 2977 Nonsmoker
## 123 0 29 140 1 1 0 0 0 2 2977 Smoker
## 124 0 19 138 1 1 0 0 0 2 2977 Smoker
## 125 0 27 124 1 1 0 0 0 0 2922 Smoker
## 126 0 31 215 1 1 0 0 0 2 3005 Smoker
## 127 0 33 109 1 1 0 0 0 1 3033 Smoker
## 128 0 21 185 2 1 0 0 0 2 3042 Smoker
## 129 0 19 189 1 0 0 0 0 2 3062 Nonsmoker
## 130 0 23 130 2 0 0 0 0 1 3062 Nonsmoker
## 131 0 21 160 1 0 0 0 0 0 3062 Nonsmoker
## 132 0 18 90 1 1 0 0 1 0 3062 Smoker
## 133 0 18 90 1 1 0 0 1 0 3062 Smoker
## 134 0 32 132 1 0 0 0 0 4 3080 Nonsmoker
## 135 0 19 132 3 0 0 0 0 0 3090 Nonsmoker
## 136 0 24 115 1 0 0 0 0 2 3090 Nonsmoker
## 137 0 22 85 3 1 0 0 0 0 3090 Smoker
## 138 0 22 120 1 0 0 1 0 1 3100 Nonsmoker
## 139 0 23 128 3 0 0 0 0 0 3104 Nonsmoker
## 140 0 22 130 1 1 0 0 0 0 3132 Smoker
## 141 0 30 95 1 1 0 0 0 2 3147 Smoker
## 142 0 19 115 3 0 0 0 0 0 3175 Nonsmoker
## 143 0 16 110 3 0 0 0 0 0 3175 Nonsmoker
## 144 0 21 110 3 1 0 0 1 0 3203 Smoker
## 145 0 30 153 3 0 0 0 0 0 3203 Nonsmoker
## 146 0 20 103 3 0 0 0 0 0 3203 Nonsmoker
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## 147 0 17 119 3 0 0 0 0 0 3225 Nonsmoker
## 148 0 17 119 3 0 0 0 0 0 3225 Nonsmoker
## 149 0 23 119 3 0 0 0 0 2 3232 Nonsmoker
## 150 0 24 110 3 0 0 0 0 0 3232 Nonsmoker
## 151 0 28 140 1 0 0 0 0 0 3234 Nonsmoker
## 154 0 26 133 3 1 2 0 0 0 3260 Smoker
## 155 0 20 169 3 0 1 0 1 1 3274 Nonsmoker
## 156 0 24 115 3 0 0 0 0 2 3274 Nonsmoker
## 159 0 28 250 3 1 0 0 0 6 3303 Smoker
## 160 0 20 141 1 0 2 0 1 1 3317 Nonsmoker
## 161 0 22 158 2 0 1 0 0 2 3317 Nonsmoker
## 162 0 22 112 1 1 2 0 0 0 3317 Smoker
## 163 0 31 150 3 1 0 0 0 2 3321 Smoker
## 164 0 23 115 3 1 0 0 0 1 3331 Smoker
## 166 0 16 112 2 0 0 0 0 0 3374 Nonsmoker
## 167 0 16 135 1 1 0 0 0 0 3374 Smoker
## 168 0 18 229 2 0 0 0 0 0 3402 Nonsmoker
## 169 0 25 140 1 0 0 0 0 1 3416 Nonsmoker
## 170 0 32 134 1 1 1 0 0 4 3430 Smoker
## 172 0 20 121 2 1 0 0 0 0 3444 Smoker
## 173 0 23 190 1 0 0 0 0 0 3459 Nonsmoker
## 174 0 22 131 1 0 0 0 0 1 3460 Nonsmoker
## 175 0 32 170 1 0 0 0 0 0 3473 Nonsmoker
## 176 0 30 110 3 0 0 0 0 0 3544 Nonsmoker
## 177 0 20 127 3 0 0 0 0 0 3487 Nonsmoker
## 179 0 23 123 3 0 0 0 0 0 3544 Nonsmoker
## 180 0 17 120 3 1 0 0 0 0 3572 Smoker
## 181 0 19 105 3 0 0 0 0 0 3572 Nonsmoker
## 182 0 23 130 1 0 0 0 0 0 3586 Nonsmoker
## 183 0 36 175 1 0 0 0 0 0 3600 Nonsmoker
## 184 0 22 125 1 0 0 0 0 1 3614 Nonsmoker
## 185 0 24 133 1 0 0 0 0 0 3614 Nonsmoker
## 186 0 21 134 3 0 0 0 0 2 3629 Nonsmoker
## 187 0 19 235 1 1 0 1 0 0 3629 Smoker
## 188 0 25 95 1 1 3 0 1 0 3637 Smoker
## 189 0 16 135 1 1 0 0 0 0 3643 Smoker
## 190 0 29 135 1 0 0 0 0 1 3651 Nonsmoker
## 191 0 29 154 1 0 0 0 0 1 3651 Nonsmoker
## 192 0 19 147 1 1 0 0 0 0 3651 Smoker
## 193 0 19 147 1 1 0 0 0 0 3651 Smoker
## 195 0 30 137 1 0 0 0 0 1 3699 Nonsmoker
## 196 0 24 110 1 0 0 0 0 1 3728 Nonsmoker
## 197 0 19 184 1 1 0 1 0 0 3756 Smoker
## 199 0 24 110 3 0 1 0 0 0 3770 Nonsmoker
## 200 0 23 110 1 0 0 0 0 1 3770 Nonsmoker
## 201 0 20 120 3 0 0 0 0 0 3770 Nonsmoker
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## 202 0 25 241 2 0 0 1 0 0 3790 Nonsmoker
## 203 0 30 112 1 0 0 0 0 1 3799 Nonsmoker
## 204 0 22 169 1 0 0 0 0 0 3827 Nonsmoker
## 205 0 18 120 1 1 0 0 0 2 3856 Smoker
## 206 0 16 170 2 0 0 0 0 4 3860 Nonsmoker
## 207 0 32 186 1 0 0 0 0 2 3860 Nonsmoker
## 208 0 18 120 3 0 0 0 0 1 3884 Nonsmoker
## 209 0 29 130 1 1 0 0 0 2 3884 Smoker
## 210 0 33 117 1 0 0 0 1 1 3912 Nonsmoker
## 211 0 20 170 1 1 0 0 0 0 3940 Smoker
## 212 0 28 134 3 0 0 0 0 1 3941 Nonsmoker
## 213 0 14 135 1 0 0 0 0 0 3941 Nonsmoker
## 214 0 28 130 3 0 0 0 0 0 3969 Nonsmoker
## 215 0 25 120 1 0 0 0 0 2 3983 Nonsmoker
## 216 0 16 95 3 0 0 0 0 1 3997 Nonsmoker
## 217 0 20 158 1 0 0 0 0 1 3997 Nonsmoker
## 218 0 26 160 3 0 0 0 0 0 4054 Nonsmoker
## 219 0 21 115 1 0 0 0 0 1 4054 Nonsmoker
## 220 0 22 129 1 0 0 0 0 0 4111 Nonsmoker
## 221 0 25 130 1 0 0 0 0 2 4153 Nonsmoker
## 222 0 31 120 1 0 0 0 0 2 4167 Nonsmoker
## 223 0 35 170 1 0 1 0 0 1 4174 Nonsmoker
## 224 0 19 120 1 1 0 0 0 0 4238 Smoker
## 225 0 24 116 1 0 0 0 0 1 4593 Nonsmoker
## 226 0 45 123 1 0 0 0 0 1 4990 Nonsmoker
## 4 1 28 120 3 1 1 0 1 0 709 Smoker
## 10 1 29 130 1 0 0 0 1 2 1021 Nonsmoker
## 11 1 34 187 2 1 0 1 0 0 1135 Smoker
## 13 1 25 105 3 0 1 1 0 0 1330 Nonsmoker
## 15 1 25 85 3 0 0 0 1 0 1474 Nonsmoker
## 16 1 27 150 3 0 0 0 0 0 1588 Nonsmoker
## 17 1 23 97 3 0 0 0 1 1 1588 Nonsmoker
## 18 1 24 128 2 0 1 0 0 1 1701 Nonsmoker
## 19 1 24 132 3 0 0 1 0 0 1729 Nonsmoker
## 20 1 21 165 1 1 0 1 0 1 1790 Smoker
## 22 1 32 105 1 1 0 0 0 0 1818 Smoker
## 23 1 19 91 1 1 2 0 1 0 1885 Smoker
## 24 1 25 115 3 0 0 0 0 0 1893 Nonsmoker
## 25 1 16 130 3 0 0 0 0 1 1899 Nonsmoker
## 26 1 25 92 1 1 0 0 0 0 1928 Smoker
## 27 1 20 150 1 1 0 0 0 2 1928 Smoker
## 28 1 21 200 2 0 0 0 1 2 1928 Nonsmoker
## 29 1 24 155 1 1 1 0 0 0 1936 Smoker
## 30 1 21 103 3 0 0 0 0 0 1970 Nonsmoker
## 31 1 20 125 3 0 0 0 1 0 2055 Nonsmoker
## 32 1 25 89 3 0 2 0 0 1 2055 Nonsmoker
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## 33 1 19 102 1 0 0 0 0 2 2082 Nonsmoker
## 34 1 19 112 1 1 0 0 1 0 2084 Smoker
## 35 1 26 117 1 1 1 0 0 0 2084 Smoker
## 36 1 24 138 1 0 0 0 0 0 2100 Nonsmoker
## 37 1 17 130 3 1 1 0 1 0 2125 Smoker
## 40 1 20 120 2 1 0 0 0 3 2126 Smoker
## 42 1 22 130 1 1 1 0 1 1 2187 Smoker
## 43 1 27 130 2 0 0 0 1 0 2187 Nonsmoker
## 44 1 20 80 3 1 0 0 1 0 2211 Smoker
## 45 1 17 110 1 1 0 0 0 0 2225 Smoker
## 46 1 25 105 3 0 1 0 0 1 2240 Nonsmoker
## 47 1 20 109 3 0 0 0 0 0 2240 Nonsmoker
## 49 1 18 148 3 0 0 0 0 0 2282 Nonsmoker
## 50 1 18 110 2 1 1 0 0 0 2296 Smoker
## 51 1 20 121 1 1 1 0 1 0 2296 Smoker
## 52 1 21 100 3 0 1 0 0 4 2301 Nonsmoker
## 54 1 26 96 3 0 0 0 0 0 2325 Nonsmoker
## 56 1 31 102 1 1 1 0 0 1 2353 Smoker
## 57 1 15 110 1 0 0 0 0 0 2353 Nonsmoker
## 59 1 23 187 2 1 0 0 0 1 2367 Smoker
## 60 1 20 122 2 1 0 0 0 0 2381 Smoker
## 61 1 24 105 2 1 0 0 0 0 2381 Smoker
## 62 1 15 115 3 0 0 0 1 0 2381 Nonsmoker
## 63 1 23 120 3 0 0 0 0 0 2410 Nonsmoker
## 65 1 30 142 1 1 1 0 0 0 2410 Smoker
## 67 1 22 130 1 1 0 0 0 1 2410 Smoker
## 68 1 17 120 1 1 0 0 0 3 2414 Smoker
## 69 1 23 110 1 1 1 0 0 0 2424 Smoker
## 71 1 17 120 2 0 0 0 0 2 2438 Nonsmoker
## 75 1 26 154 3 0 1 1 0 1 2442 Nonsmoker
## 76 1 20 105 3 0 0 0 0 3 2450 Nonsmoker
## 77 1 26 190 1 1 0 0 0 0 2466 Smoker
## 78 1 14 101 3 1 1 0 0 0 2466 Smoker
## 79 1 28 95 1 1 0 0 0 2 2466 Smoker
## 81 1 14 100 3 0 0 0 0 2 2495 Nonsmoker
## 82 1 23 94 3 1 0 0 0 0 2495 Smoker
## 83 1 17 142 2 0 0 1 0 0 2495 Nonsmoker
## 84 1 21 130 1 1 0 1 0 3 2495 Smoker

glimpse(birthwt2)

## Rows: 189
## Columns: 11
## $ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, ~
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## $ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 9~
## $ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, ~
## $ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, ~
## $ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ~
## $ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ~
## $ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, ~
## $ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, ~
## $ smoke_fct <fct> Nonsmoker, Nonsmoker, Smoker, Smoker, Smoker, Nonsmoker, Non~

The difference between the means is now calculated using infer tools. We will
store the result as obs_diff for “observed difference”.

obs_diff <- birthwt2 %>%
specify(response = bwt, explanatory = smoke_fct) %>%
calculate(stat = "diff in means", order = c("Nonsmoker", "Smoker"))

obs_diff

## Response: bwt (numeric)
## Explanatory: smoke_fct (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 284.

Exercise 2 What would happen if we used order = c("Smoker",
"Nonsmoker") instead? Why might we have a slight preference for order =
c("Nonsmoker", "Smoker")?

Please write up your answer here.

Note that it will not actually make a difference to the inferential process in
which order we subtract. However, we do have to be consistent to use the
same order throughout. When interpreting the test statistic, effect size, and
confidence interval, we will need to pay attention to the order of subtraction to
make sure we are interpreting our results correctly.

21.5 Every day I’m shuffling

Whenever there are two groups, the obvious null hypothesis is that there is no
difference between them.
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Consider the smoke variable. If there were truly no difference in mean birth
weights between women who smoked and women who didn’t, then it shouldn’t
matter if we know the smoking status or not. It becomes irrelevant under the
assumption of the null.

We can simulate this assumption by shuffling the list of smoking status. More
concretely, we can randomly assign a smoking status label to each mother and
then calculate the average birth weight in each group. Since the smoking labels
are random, there’s no reason to expect a difference between the two average
weights other than random fluctuations due to sampling variability.

For example, here is the actual smoking status of the women:

birthwt2$smoke_fct

## [1] Nonsmoker Nonsmoker Smoker Smoker Smoker Nonsmoker Nonsmoker
## [8] Nonsmoker Smoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [15] Smoker Smoker Nonsmoker Smoker Nonsmoker Smoker Nonsmoker
## [22] Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Smoker Nonsmoker
## [29] Smoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker Nonsmoker
## [36] Smoker Smoker Smoker Smoker Smoker Smoker Nonsmoker
## [43] Nonsmoker Nonsmoker Smoker Smoker Nonsmoker Nonsmoker Nonsmoker
## [50] Smoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker Nonsmoker
## [57] Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [64] Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker
## [71] Smoker Smoker Smoker Nonsmoker Smoker Nonsmoker Nonsmoker
## [78] Smoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [85] Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [92] Nonsmoker Smoker Smoker Smoker Nonsmoker Nonsmoker Smoker
## [99] Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker
## [106] Nonsmoker Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker
## [113] Smoker Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [120] Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [127] Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Smoker
## [134] Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Smoker
## [141] Smoker Smoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker
## [148] Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Smoker Smoker
## [155] Nonsmoker Smoker Smoker Smoker Nonsmoker Smoker Smoker
## [162] Nonsmoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker Nonsmoker
## [169] Smoker Nonsmoker Smoker Smoker Smoker Nonsmoker Nonsmoker
## [176] Smoker Smoker Smoker Smoker Nonsmoker Nonsmoker Nonsmoker
## [183] Smoker Smoker Smoker Nonsmoker Smoker Nonsmoker Smoker
## Levels: Nonsmoker Smoker

But we’re going to use values that have been randomly shuffled, like this one,
for example:
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set.seed(1729)
sample(birthwt2$smoke_fct)

## [1] Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Smoker
## [8] Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker
## [15] Nonsmoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker Nonsmoker
## [22] Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Smoker
## [29] Nonsmoker Nonsmoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker
## [36] Smoker Smoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [43] Nonsmoker Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker
## [50] Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Smoker Nonsmoker
## [57] Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Smoker
## [64] Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Nonsmoker
## [71] Nonsmoker Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Smoker
## [78] Smoker Smoker Smoker Smoker Smoker Smoker Nonsmoker
## [85] Smoker Nonsmoker Smoker Smoker Smoker Nonsmoker Nonsmoker
## [92] Nonsmoker Nonsmoker Smoker Smoker Nonsmoker Nonsmoker Smoker
## [99] Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Smoker Nonsmoker
## [106] Nonsmoker Nonsmoker Smoker Nonsmoker Smoker Smoker Smoker
## [113] Nonsmoker Smoker Smoker Nonsmoker Nonsmoker Smoker Nonsmoker
## [120] Nonsmoker Nonsmoker Nonsmoker Smoker Smoker Smoker Smoker
## [127] Nonsmoker Nonsmoker Nonsmoker Smoker Smoker Smoker Nonsmoker
## [134] Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Nonsmoker Smoker
## [141] Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker Smoker Nonsmoker
## [148] Smoker Nonsmoker Nonsmoker Smoker Nonsmoker Smoker Smoker
## [155] Smoker Nonsmoker Nonsmoker Nonsmoker Smoker Smoker Nonsmoker
## [162] Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [169] Nonsmoker Smoker Smoker Nonsmoker Smoker Nonsmoker Nonsmoker
## [176] Nonsmoker Smoker Smoker Nonsmoker Nonsmoker Nonsmoker Nonsmoker
## [183] Smoker Nonsmoker Nonsmoker Nonsmoker Smoker Nonsmoker Nonsmoker
## Levels: Nonsmoker Smoker

The infer package will perform this random shuffling over and over again.
Given the now arbitrary labels of “Nonsmoker” and “Smoker” (which are mean-
ingless because each women was assigned to one of these labels randomly with
no regard to her actual smoking status), infer will calculate the mean birth
weights among the first group of women (labeled “Nonsmokers” but not really
consisting of all nonsmokers) and the second group of women (labeled “Smok-
ers” but not really consisting of all smokers). Finally infer will compute the
difference between those two means. And it will do this process 1000 times.

set.seed(1729)
bwt_smoke_test <- birthwt2 %>%
specify(response = bwt, explanatory = smoke_fct) %>%
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hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in means", order = c("Nonsmoker", "Smoker"))

bwt_smoke_test

## Response: bwt (numeric)
## Explanatory: smoke_fct (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 -173.
## 2 2 -79.3
## 3 3 -95.8
## 4 4 -253.
## 5 5 31.3
## 6 6 -229.
## 7 7 63.4
## 8 8 13.8
## 9 9 22.6
## 10 10 -118.
## # i 990 more rows

Exercise 3 Before we graph these simulated values, what do you guess will be
the mean value? Keep in mind that we have computed differences in the mean
birth weights between two groups of women. But because we have shuffled the
smoking labels randomly, we aren’t really calculating the difference in mean
birth weights of nonsmokers vs smokers. We’re just computing the difference in
mean birth weights of randomly assigned groups of women.

Please write up your answer here.

Here’s the visualization:

bwt_smoke_test %>%
visualize()
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No surprise that this histogram looks nearly normal, centered at zero: the sim-
ulation is working under the assumption of the null hypothesis of no difference
between the groups.

Here is the same plot but including our sample difference:

bwt_smoke_test %>%
visualize() +
shade_p_value(obs_stat = obs_diff, direction = "two_sided")
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Our observed difference (from the sampled data) is quite far out into the tail of
this simulated sampling distribution, so it appears that our actual data would
be somewhat unlikely due to pure chance alone if the null hypothesis were true.

We can even find a P-value by calculating how many of our sampled values are
as extreme or more extreme than the observed data difference.

bwt_smoke_test %>%
get_p_value(obs_stat = obs_diff, direction = "two-sided")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.016

Indeed, this is a small P-value.

21.6 The sampling distribution model

In the previous section, we simulated the sampling distribution under the as-
sumption of a null hypothesis of no difference between the groups. It certainly
looked like a normal model, but which normal model? The center is obviously
zero, but what about the standard deviation?
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Let’s assume that both groups come from populations that are normally dis-
tributed with normal models 𝑁(𝜇1, 𝜎1) and 𝑁(𝜇2, 𝜎2). If we take samples of
size 𝑛1 from group 1 and 𝑛2 from group 2, some fancy math shows that the
distribution of the differences between sample means is

𝑁 ⎛⎜
⎝
𝜇1 − 𝜇2,√

𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

⎞⎟
⎠

.

Under the assumption of the null, the difference of the means is zero (𝜇1−𝜇2 =
0). Unfortunately, though, we make no assumption on the standard deviations.
It should be clear that the only solution is to substitute the sample standard
deviations 𝑠1 and 𝑠2 for the population standard deviations 𝜎1 and 𝜎2.1

𝑆𝐸 = √𝑠21
𝑛1

+ 𝑠22
𝑛2

.

However, 𝑠1 and 𝑠2 are not perfect estimates of 𝜎1 and 𝜎2; they are subject to
sampling variability too. This extra variability means that a normal model is
no longer appropriate as the sampling distribution model.

In the one-sample case, a Student t model with 𝑑𝑓 = 𝑛−1 was the right choice.
In the two-sample case, we don’t know the right answer. And I don’t mean
that we haven’t learned it yet in our stats class. I mean, statisticians have not
found a formula for the correct sampling distribution. It is a famous unsolved
problem, called the Behrens-Fisher problem.

Several researchers have proposed solutions that are “close” though. One com-
pelling one is called “Welch’s t test”. Welch showed that even though it’s not
quite right, a Student t model is very close as long as you pick the degrees
of freedom carefully. Unfortunately, the way to compute the right degrees of
freedom is crazy complicated. Fortunately, R is good at crazy complicated
computations.

Let’s go through the full rubric.

1When we were testing two proportions with categorical data, one option (described in an
optional appendix in that chapter) was to pool the data. With numerical data, we can calculate
a pooled mean, but that doesn’t help with the unknown standard deviations. Nothing in the
null hypothesis suggests that the standard deviations of the two groups should be the same.
In the extremely rare situation in which one can assume equal standard deviations in the two
groups, then there is a way to run a pooled t test. But this “extra” assumption of equal
standard deviations is typically questionable at best.



21.7. EXPLORATORY DATA ANALYSIS 685

21.7 Exploratory data analysis

21.7.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

Type birthwt at the Console to read the help file. We have the same concerns
about the lack of details as we did in Chapter 16.

birthwt

## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
## 91 0 21 124 3 0 0 0 0 0 2622
## 92 0 22 118 1 0 0 0 0 1 2637
## 93 0 17 103 3 0 0 0 0 1 2637
## 94 0 29 123 1 1 0 0 0 1 2663
## 95 0 26 113 1 1 0 0 0 0 2665
## 96 0 19 95 3 0 0 0 0 0 2722
## 97 0 19 150 3 0 0 0 0 1 2733
## 98 0 22 95 3 0 0 1 0 0 2751
## 99 0 30 107 3 0 1 0 1 2 2750
## 100 0 18 100 1 1 0 0 0 0 2769
## 101 0 18 100 1 1 0 0 0 0 2769
## 102 0 15 98 2 0 0 0 0 0 2778
## 103 0 25 118 1 1 0 0 0 3 2782
## 104 0 20 120 3 0 0 0 1 0 2807
## 105 0 28 120 1 1 0 0 0 1 2821
## 106 0 32 121 3 0 0 0 0 2 2835
## 107 0 31 100 1 0 0 0 1 3 2835
## 108 0 36 202 1 0 0 0 0 1 2836
## 109 0 28 120 3 0 0 0 0 0 2863
## 111 0 25 120 3 0 0 0 1 2 2877
## 112 0 28 167 1 0 0 0 0 0 2877
## 113 0 17 122 1 1 0 0 0 0 2906
## 114 0 29 150 1 0 0 0 0 2 2920
## 115 0 26 168 2 1 0 0 0 0 2920
## 116 0 17 113 2 0 0 0 0 1 2920
## 117 0 17 113 2 0 0 0 0 1 2920
## 118 0 24 90 1 1 1 0 0 1 2948
## 119 0 35 121 2 1 1 0 0 1 2948
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## 120 0 25 155 1 0 0 0 0 1 2977
## 121 0 25 125 2 0 0 0 0 0 2977
## 123 0 29 140 1 1 0 0 0 2 2977
## 124 0 19 138 1 1 0 0 0 2 2977
## 125 0 27 124 1 1 0 0 0 0 2922
## 126 0 31 215 1 1 0 0 0 2 3005
## 127 0 33 109 1 1 0 0 0 1 3033
## 128 0 21 185 2 1 0 0 0 2 3042
## 129 0 19 189 1 0 0 0 0 2 3062
## 130 0 23 130 2 0 0 0 0 1 3062
## 131 0 21 160 1 0 0 0 0 0 3062
## 132 0 18 90 1 1 0 0 1 0 3062
## 133 0 18 90 1 1 0 0 1 0 3062
## 134 0 32 132 1 0 0 0 0 4 3080
## 135 0 19 132 3 0 0 0 0 0 3090
## 136 0 24 115 1 0 0 0 0 2 3090
## 137 0 22 85 3 1 0 0 0 0 3090
## 138 0 22 120 1 0 0 1 0 1 3100
## 139 0 23 128 3 0 0 0 0 0 3104
## 140 0 22 130 1 1 0 0 0 0 3132
## 141 0 30 95 1 1 0 0 0 2 3147
## 142 0 19 115 3 0 0 0 0 0 3175
## 143 0 16 110 3 0 0 0 0 0 3175
## 144 0 21 110 3 1 0 0 1 0 3203
## 145 0 30 153 3 0 0 0 0 0 3203
## 146 0 20 103 3 0 0 0 0 0 3203
## 147 0 17 119 3 0 0 0 0 0 3225
## 148 0 17 119 3 0 0 0 0 0 3225
## 149 0 23 119 3 0 0 0 0 2 3232
## 150 0 24 110 3 0 0 0 0 0 3232
## 151 0 28 140 1 0 0 0 0 0 3234
## 154 0 26 133 3 1 2 0 0 0 3260
## 155 0 20 169 3 0 1 0 1 1 3274
## 156 0 24 115 3 0 0 0 0 2 3274
## 159 0 28 250 3 1 0 0 0 6 3303
## 160 0 20 141 1 0 2 0 1 1 3317
## 161 0 22 158 2 0 1 0 0 2 3317
## 162 0 22 112 1 1 2 0 0 0 3317
## 163 0 31 150 3 1 0 0 0 2 3321
## 164 0 23 115 3 1 0 0 0 1 3331
## 166 0 16 112 2 0 0 0 0 0 3374
## 167 0 16 135 1 1 0 0 0 0 3374
## 168 0 18 229 2 0 0 0 0 0 3402
## 169 0 25 140 1 0 0 0 0 1 3416
## 170 0 32 134 1 1 1 0 0 4 3430
## 172 0 20 121 2 1 0 0 0 0 3444
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## 173 0 23 190 1 0 0 0 0 0 3459
## 174 0 22 131 1 0 0 0 0 1 3460
## 175 0 32 170 1 0 0 0 0 0 3473
## 176 0 30 110 3 0 0 0 0 0 3544
## 177 0 20 127 3 0 0 0 0 0 3487
## 179 0 23 123 3 0 0 0 0 0 3544
## 180 0 17 120 3 1 0 0 0 0 3572
## 181 0 19 105 3 0 0 0 0 0 3572
## 182 0 23 130 1 0 0 0 0 0 3586
## 183 0 36 175 1 0 0 0 0 0 3600
## 184 0 22 125 1 0 0 0 0 1 3614
## 185 0 24 133 1 0 0 0 0 0 3614
## 186 0 21 134 3 0 0 0 0 2 3629
## 187 0 19 235 1 1 0 1 0 0 3629
## 188 0 25 95 1 1 3 0 1 0 3637
## 189 0 16 135 1 1 0 0 0 0 3643
## 190 0 29 135 1 0 0 0 0 1 3651
## 191 0 29 154 1 0 0 0 0 1 3651
## 192 0 19 147 1 1 0 0 0 0 3651
## 193 0 19 147 1 1 0 0 0 0 3651
## 195 0 30 137 1 0 0 0 0 1 3699
## 196 0 24 110 1 0 0 0 0 1 3728
## 197 0 19 184 1 1 0 1 0 0 3756
## 199 0 24 110 3 0 1 0 0 0 3770
## 200 0 23 110 1 0 0 0 0 1 3770
## 201 0 20 120 3 0 0 0 0 0 3770
## 202 0 25 241 2 0 0 1 0 0 3790
## 203 0 30 112 1 0 0 0 0 1 3799
## 204 0 22 169 1 0 0 0 0 0 3827
## 205 0 18 120 1 1 0 0 0 2 3856
## 206 0 16 170 2 0 0 0 0 4 3860
## 207 0 32 186 1 0 0 0 0 2 3860
## 208 0 18 120 3 0 0 0 0 1 3884
## 209 0 29 130 1 1 0 0 0 2 3884
## 210 0 33 117 1 0 0 0 1 1 3912
## 211 0 20 170 1 1 0 0 0 0 3940
## 212 0 28 134 3 0 0 0 0 1 3941
## 213 0 14 135 1 0 0 0 0 0 3941
## 214 0 28 130 3 0 0 0 0 0 3969
## 215 0 25 120 1 0 0 0 0 2 3983
## 216 0 16 95 3 0 0 0 0 1 3997
## 217 0 20 158 1 0 0 0 0 1 3997
## 218 0 26 160 3 0 0 0 0 0 4054
## 219 0 21 115 1 0 0 0 0 1 4054
## 220 0 22 129 1 0 0 0 0 0 4111
## 221 0 25 130 1 0 0 0 0 2 4153
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## 222 0 31 120 1 0 0 0 0 2 4167
## 223 0 35 170 1 0 1 0 0 1 4174
## 224 0 19 120 1 1 0 0 0 0 4238
## 225 0 24 116 1 0 0 0 0 1 4593
## 226 0 45 123 1 0 0 0 0 1 4990
## 4 1 28 120 3 1 1 0 1 0 709
## 10 1 29 130 1 0 0 0 1 2 1021
## 11 1 34 187 2 1 0 1 0 0 1135
## 13 1 25 105 3 0 1 1 0 0 1330
## 15 1 25 85 3 0 0 0 1 0 1474
## 16 1 27 150 3 0 0 0 0 0 1588
## 17 1 23 97 3 0 0 0 1 1 1588
## 18 1 24 128 2 0 1 0 0 1 1701
## 19 1 24 132 3 0 0 1 0 0 1729
## 20 1 21 165 1 1 0 1 0 1 1790
## 22 1 32 105 1 1 0 0 0 0 1818
## 23 1 19 91 1 1 2 0 1 0 1885
## 24 1 25 115 3 0 0 0 0 0 1893
## 25 1 16 130 3 0 0 0 0 1 1899
## 26 1 25 92 1 1 0 0 0 0 1928
## 27 1 20 150 1 1 0 0 0 2 1928
## 28 1 21 200 2 0 0 0 1 2 1928
## 29 1 24 155 1 1 1 0 0 0 1936
## 30 1 21 103 3 0 0 0 0 0 1970
## 31 1 20 125 3 0 0 0 1 0 2055
## 32 1 25 89 3 0 2 0 0 1 2055
## 33 1 19 102 1 0 0 0 0 2 2082
## 34 1 19 112 1 1 0 0 1 0 2084
## 35 1 26 117 1 1 1 0 0 0 2084
## 36 1 24 138 1 0 0 0 0 0 2100
## 37 1 17 130 3 1 1 0 1 0 2125
## 40 1 20 120 2 1 0 0 0 3 2126
## 42 1 22 130 1 1 1 0 1 1 2187
## 43 1 27 130 2 0 0 0 1 0 2187
## 44 1 20 80 3 1 0 0 1 0 2211
## 45 1 17 110 1 1 0 0 0 0 2225
## 46 1 25 105 3 0 1 0 0 1 2240
## 47 1 20 109 3 0 0 0 0 0 2240
## 49 1 18 148 3 0 0 0 0 0 2282
## 50 1 18 110 2 1 1 0 0 0 2296
## 51 1 20 121 1 1 1 0 1 0 2296
## 52 1 21 100 3 0 1 0 0 4 2301
## 54 1 26 96 3 0 0 0 0 0 2325
## 56 1 31 102 1 1 1 0 0 1 2353
## 57 1 15 110 1 0 0 0 0 0 2353
## 59 1 23 187 2 1 0 0 0 1 2367
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## 60 1 20 122 2 1 0 0 0 0 2381
## 61 1 24 105 2 1 0 0 0 0 2381
## 62 1 15 115 3 0 0 0 1 0 2381
## 63 1 23 120 3 0 0 0 0 0 2410
## 65 1 30 142 1 1 1 0 0 0 2410
## 67 1 22 130 1 1 0 0 0 1 2410
## 68 1 17 120 1 1 0 0 0 3 2414
## 69 1 23 110 1 1 1 0 0 0 2424
## 71 1 17 120 2 0 0 0 0 2 2438
## 75 1 26 154 3 0 1 1 0 1 2442
## 76 1 20 105 3 0 0 0 0 3 2450
## 77 1 26 190 1 1 0 0 0 0 2466
## 78 1 14 101 3 1 1 0 0 0 2466
## 79 1 28 95 1 1 0 0 0 2 2466
## 81 1 14 100 3 0 0 0 0 2 2495
## 82 1 23 94 3 1 0 0 0 0 2495
## 83 1 17 142 2 0 0 1 0 0 2495
## 84 1 21 130 1 1 0 1 0 3 2495

glimpse(birthwt)

## Rows: 189
## Columns: 10
## $ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, 18, ~
## $ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 95, 1~
## $ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, 3, 1~
## $ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0~
## $ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1~
## $ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 2, 3~
## $ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, 2722~

21.7.2 Prepare the data for analysis.

We need to be sure smoke is a factor variable, so we create the new tibble
birthwt2 with the mutated variable smoke_fct.

birthwt2 <- birthwt %>%
mutate(smoke_fct = factor(smoke, levels = c(0, 1), labels = c("Nonsmoker", "Smoker")))

birthwt2

## low age lwt race smoke ptl ht ui ftv bwt smoke_fct
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## 85 0 19 182 2 0 0 0 1 0 2523 Nonsmoker
## 86 0 33 155 3 0 0 0 0 3 2551 Nonsmoker
## 87 0 20 105 1 1 0 0 0 1 2557 Smoker
## 88 0 21 108 1 1 0 0 1 2 2594 Smoker
## 89 0 18 107 1 1 0 0 1 0 2600 Smoker
## 91 0 21 124 3 0 0 0 0 0 2622 Nonsmoker
## 92 0 22 118 1 0 0 0 0 1 2637 Nonsmoker
## 93 0 17 103 3 0 0 0 0 1 2637 Nonsmoker
## 94 0 29 123 1 1 0 0 0 1 2663 Smoker
## 95 0 26 113 1 1 0 0 0 0 2665 Smoker
## 96 0 19 95 3 0 0 0 0 0 2722 Nonsmoker
## 97 0 19 150 3 0 0 0 0 1 2733 Nonsmoker
## 98 0 22 95 3 0 0 1 0 0 2751 Nonsmoker
## 99 0 30 107 3 0 1 0 1 2 2750 Nonsmoker
## 100 0 18 100 1 1 0 0 0 0 2769 Smoker
## 101 0 18 100 1 1 0 0 0 0 2769 Smoker
## 102 0 15 98 2 0 0 0 0 0 2778 Nonsmoker
## 103 0 25 118 1 1 0 0 0 3 2782 Smoker
## 104 0 20 120 3 0 0 0 1 0 2807 Nonsmoker
## 105 0 28 120 1 1 0 0 0 1 2821 Smoker
## 106 0 32 121 3 0 0 0 0 2 2835 Nonsmoker
## 107 0 31 100 1 0 0 0 1 3 2835 Nonsmoker
## 108 0 36 202 1 0 0 0 0 1 2836 Nonsmoker
## 109 0 28 120 3 0 0 0 0 0 2863 Nonsmoker
## 111 0 25 120 3 0 0 0 1 2 2877 Nonsmoker
## 112 0 28 167 1 0 0 0 0 0 2877 Nonsmoker
## 113 0 17 122 1 1 0 0 0 0 2906 Smoker
## 114 0 29 150 1 0 0 0 0 2 2920 Nonsmoker
## 115 0 26 168 2 1 0 0 0 0 2920 Smoker
## 116 0 17 113 2 0 0 0 0 1 2920 Nonsmoker
## 117 0 17 113 2 0 0 0 0 1 2920 Nonsmoker
## 118 0 24 90 1 1 1 0 0 1 2948 Smoker
## 119 0 35 121 2 1 1 0 0 1 2948 Smoker
## 120 0 25 155 1 0 0 0 0 1 2977 Nonsmoker
## 121 0 25 125 2 0 0 0 0 0 2977 Nonsmoker
## 123 0 29 140 1 1 0 0 0 2 2977 Smoker
## 124 0 19 138 1 1 0 0 0 2 2977 Smoker
## 125 0 27 124 1 1 0 0 0 0 2922 Smoker
## 126 0 31 215 1 1 0 0 0 2 3005 Smoker
## 127 0 33 109 1 1 0 0 0 1 3033 Smoker
## 128 0 21 185 2 1 0 0 0 2 3042 Smoker
## 129 0 19 189 1 0 0 0 0 2 3062 Nonsmoker
## 130 0 23 130 2 0 0 0 0 1 3062 Nonsmoker
## 131 0 21 160 1 0 0 0 0 0 3062 Nonsmoker
## 132 0 18 90 1 1 0 0 1 0 3062 Smoker
## 133 0 18 90 1 1 0 0 1 0 3062 Smoker
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## 134 0 32 132 1 0 0 0 0 4 3080 Nonsmoker
## 135 0 19 132 3 0 0 0 0 0 3090 Nonsmoker
## 136 0 24 115 1 0 0 0 0 2 3090 Nonsmoker
## 137 0 22 85 3 1 0 0 0 0 3090 Smoker
## 138 0 22 120 1 0 0 1 0 1 3100 Nonsmoker
## 139 0 23 128 3 0 0 0 0 0 3104 Nonsmoker
## 140 0 22 130 1 1 0 0 0 0 3132 Smoker
## 141 0 30 95 1 1 0 0 0 2 3147 Smoker
## 142 0 19 115 3 0 0 0 0 0 3175 Nonsmoker
## 143 0 16 110 3 0 0 0 0 0 3175 Nonsmoker
## 144 0 21 110 3 1 0 0 1 0 3203 Smoker
## 145 0 30 153 3 0 0 0 0 0 3203 Nonsmoker
## 146 0 20 103 3 0 0 0 0 0 3203 Nonsmoker
## 147 0 17 119 3 0 0 0 0 0 3225 Nonsmoker
## 148 0 17 119 3 0 0 0 0 0 3225 Nonsmoker
## 149 0 23 119 3 0 0 0 0 2 3232 Nonsmoker
## 150 0 24 110 3 0 0 0 0 0 3232 Nonsmoker
## 151 0 28 140 1 0 0 0 0 0 3234 Nonsmoker
## 154 0 26 133 3 1 2 0 0 0 3260 Smoker
## 155 0 20 169 3 0 1 0 1 1 3274 Nonsmoker
## 156 0 24 115 3 0 0 0 0 2 3274 Nonsmoker
## 159 0 28 250 3 1 0 0 0 6 3303 Smoker
## 160 0 20 141 1 0 2 0 1 1 3317 Nonsmoker
## 161 0 22 158 2 0 1 0 0 2 3317 Nonsmoker
## 162 0 22 112 1 1 2 0 0 0 3317 Smoker
## 163 0 31 150 3 1 0 0 0 2 3321 Smoker
## 164 0 23 115 3 1 0 0 0 1 3331 Smoker
## 166 0 16 112 2 0 0 0 0 0 3374 Nonsmoker
## 167 0 16 135 1 1 0 0 0 0 3374 Smoker
## 168 0 18 229 2 0 0 0 0 0 3402 Nonsmoker
## 169 0 25 140 1 0 0 0 0 1 3416 Nonsmoker
## 170 0 32 134 1 1 1 0 0 4 3430 Smoker
## 172 0 20 121 2 1 0 0 0 0 3444 Smoker
## 173 0 23 190 1 0 0 0 0 0 3459 Nonsmoker
## 174 0 22 131 1 0 0 0 0 1 3460 Nonsmoker
## 175 0 32 170 1 0 0 0 0 0 3473 Nonsmoker
## 176 0 30 110 3 0 0 0 0 0 3544 Nonsmoker
## 177 0 20 127 3 0 0 0 0 0 3487 Nonsmoker
## 179 0 23 123 3 0 0 0 0 0 3544 Nonsmoker
## 180 0 17 120 3 1 0 0 0 0 3572 Smoker
## 181 0 19 105 3 0 0 0 0 0 3572 Nonsmoker
## 182 0 23 130 1 0 0 0 0 0 3586 Nonsmoker
## 183 0 36 175 1 0 0 0 0 0 3600 Nonsmoker
## 184 0 22 125 1 0 0 0 0 1 3614 Nonsmoker
## 185 0 24 133 1 0 0 0 0 0 3614 Nonsmoker
## 186 0 21 134 3 0 0 0 0 2 3629 Nonsmoker
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## 187 0 19 235 1 1 0 1 0 0 3629 Smoker
## 188 0 25 95 1 1 3 0 1 0 3637 Smoker
## 189 0 16 135 1 1 0 0 0 0 3643 Smoker
## 190 0 29 135 1 0 0 0 0 1 3651 Nonsmoker
## 191 0 29 154 1 0 0 0 0 1 3651 Nonsmoker
## 192 0 19 147 1 1 0 0 0 0 3651 Smoker
## 193 0 19 147 1 1 0 0 0 0 3651 Smoker
## 195 0 30 137 1 0 0 0 0 1 3699 Nonsmoker
## 196 0 24 110 1 0 0 0 0 1 3728 Nonsmoker
## 197 0 19 184 1 1 0 1 0 0 3756 Smoker
## 199 0 24 110 3 0 1 0 0 0 3770 Nonsmoker
## 200 0 23 110 1 0 0 0 0 1 3770 Nonsmoker
## 201 0 20 120 3 0 0 0 0 0 3770 Nonsmoker
## 202 0 25 241 2 0 0 1 0 0 3790 Nonsmoker
## 203 0 30 112 1 0 0 0 0 1 3799 Nonsmoker
## 204 0 22 169 1 0 0 0 0 0 3827 Nonsmoker
## 205 0 18 120 1 1 0 0 0 2 3856 Smoker
## 206 0 16 170 2 0 0 0 0 4 3860 Nonsmoker
## 207 0 32 186 1 0 0 0 0 2 3860 Nonsmoker
## 208 0 18 120 3 0 0 0 0 1 3884 Nonsmoker
## 209 0 29 130 1 1 0 0 0 2 3884 Smoker
## 210 0 33 117 1 0 0 0 1 1 3912 Nonsmoker
## 211 0 20 170 1 1 0 0 0 0 3940 Smoker
## 212 0 28 134 3 0 0 0 0 1 3941 Nonsmoker
## 213 0 14 135 1 0 0 0 0 0 3941 Nonsmoker
## 214 0 28 130 3 0 0 0 0 0 3969 Nonsmoker
## 215 0 25 120 1 0 0 0 0 2 3983 Nonsmoker
## 216 0 16 95 3 0 0 0 0 1 3997 Nonsmoker
## 217 0 20 158 1 0 0 0 0 1 3997 Nonsmoker
## 218 0 26 160 3 0 0 0 0 0 4054 Nonsmoker
## 219 0 21 115 1 0 0 0 0 1 4054 Nonsmoker
## 220 0 22 129 1 0 0 0 0 0 4111 Nonsmoker
## 221 0 25 130 1 0 0 0 0 2 4153 Nonsmoker
## 222 0 31 120 1 0 0 0 0 2 4167 Nonsmoker
## 223 0 35 170 1 0 1 0 0 1 4174 Nonsmoker
## 224 0 19 120 1 1 0 0 0 0 4238 Smoker
## 225 0 24 116 1 0 0 0 0 1 4593 Nonsmoker
## 226 0 45 123 1 0 0 0 0 1 4990 Nonsmoker
## 4 1 28 120 3 1 1 0 1 0 709 Smoker
## 10 1 29 130 1 0 0 0 1 2 1021 Nonsmoker
## 11 1 34 187 2 1 0 1 0 0 1135 Smoker
## 13 1 25 105 3 0 1 1 0 0 1330 Nonsmoker
## 15 1 25 85 3 0 0 0 1 0 1474 Nonsmoker
## 16 1 27 150 3 0 0 0 0 0 1588 Nonsmoker
## 17 1 23 97 3 0 0 0 1 1 1588 Nonsmoker
## 18 1 24 128 2 0 1 0 0 1 1701 Nonsmoker



21.7. EXPLORATORY DATA ANALYSIS 693

## 19 1 24 132 3 0 0 1 0 0 1729 Nonsmoker
## 20 1 21 165 1 1 0 1 0 1 1790 Smoker
## 22 1 32 105 1 1 0 0 0 0 1818 Smoker
## 23 1 19 91 1 1 2 0 1 0 1885 Smoker
## 24 1 25 115 3 0 0 0 0 0 1893 Nonsmoker
## 25 1 16 130 3 0 0 0 0 1 1899 Nonsmoker
## 26 1 25 92 1 1 0 0 0 0 1928 Smoker
## 27 1 20 150 1 1 0 0 0 2 1928 Smoker
## 28 1 21 200 2 0 0 0 1 2 1928 Nonsmoker
## 29 1 24 155 1 1 1 0 0 0 1936 Smoker
## 30 1 21 103 3 0 0 0 0 0 1970 Nonsmoker
## 31 1 20 125 3 0 0 0 1 0 2055 Nonsmoker
## 32 1 25 89 3 0 2 0 0 1 2055 Nonsmoker
## 33 1 19 102 1 0 0 0 0 2 2082 Nonsmoker
## 34 1 19 112 1 1 0 0 1 0 2084 Smoker
## 35 1 26 117 1 1 1 0 0 0 2084 Smoker
## 36 1 24 138 1 0 0 0 0 0 2100 Nonsmoker
## 37 1 17 130 3 1 1 0 1 0 2125 Smoker
## 40 1 20 120 2 1 0 0 0 3 2126 Smoker
## 42 1 22 130 1 1 1 0 1 1 2187 Smoker
## 43 1 27 130 2 0 0 0 1 0 2187 Nonsmoker
## 44 1 20 80 3 1 0 0 1 0 2211 Smoker
## 45 1 17 110 1 1 0 0 0 0 2225 Smoker
## 46 1 25 105 3 0 1 0 0 1 2240 Nonsmoker
## 47 1 20 109 3 0 0 0 0 0 2240 Nonsmoker
## 49 1 18 148 3 0 0 0 0 0 2282 Nonsmoker
## 50 1 18 110 2 1 1 0 0 0 2296 Smoker
## 51 1 20 121 1 1 1 0 1 0 2296 Smoker
## 52 1 21 100 3 0 1 0 0 4 2301 Nonsmoker
## 54 1 26 96 3 0 0 0 0 0 2325 Nonsmoker
## 56 1 31 102 1 1 1 0 0 1 2353 Smoker
## 57 1 15 110 1 0 0 0 0 0 2353 Nonsmoker
## 59 1 23 187 2 1 0 0 0 1 2367 Smoker
## 60 1 20 122 2 1 0 0 0 0 2381 Smoker
## 61 1 24 105 2 1 0 0 0 0 2381 Smoker
## 62 1 15 115 3 0 0 0 1 0 2381 Nonsmoker
## 63 1 23 120 3 0 0 0 0 0 2410 Nonsmoker
## 65 1 30 142 1 1 1 0 0 0 2410 Smoker
## 67 1 22 130 1 1 0 0 0 1 2410 Smoker
## 68 1 17 120 1 1 0 0 0 3 2414 Smoker
## 69 1 23 110 1 1 1 0 0 0 2424 Smoker
## 71 1 17 120 2 0 0 0 0 2 2438 Nonsmoker
## 75 1 26 154 3 0 1 1 0 1 2442 Nonsmoker
## 76 1 20 105 3 0 0 0 0 3 2450 Nonsmoker
## 77 1 26 190 1 1 0 0 0 0 2466 Smoker
## 78 1 14 101 3 1 1 0 0 0 2466 Smoker
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## 79 1 28 95 1 1 0 0 0 2 2466 Smoker
## 81 1 14 100 3 0 0 0 0 2 2495 Nonsmoker
## 82 1 23 94 3 1 0 0 0 0 2495 Smoker
## 83 1 17 142 2 0 0 1 0 0 2495 Nonsmoker
## 84 1 21 130 1 1 0 1 0 3 2495 Smoker

glimpse(birthwt2)

## Rows: 189
## Columns: 11
## $ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, ~
## $ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 9~
## $ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, ~
## $ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, ~
## $ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ~
## $ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ~
## $ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, ~
## $ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, ~
## $ smoke_fct <fct> Nonsmoker, Nonsmoker, Smoker, Smoker, Smoker, Nonsmoker, Non~

21.7.3 Make tables or plots to explore the data visually.

How many women are in each group?

tabyl(birthwt2, smoke_fct) %>%
adorn_totals()

## smoke_fct n percent
## Nonsmoker 115 0.6084656
## Smoker 74 0.3915344
## Total 189 1.0000000

With a numerical response variable and a categorical predictor variable, there
are two useful plots: a side-by-side boxplot and a stacked histogram.

ggplot(birthwt2, aes(y = bwt, x = smoke_fct)) +
geom_boxplot()
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The histograms for both groups look sort of normal, but the nonsmoker group
may be a little left skewed and the smoker group may have some low outliers.
Here are the QQ plots to give us another way to ascertain normality of the data.

ggplot(birthwt2, aes(sample = bwt)) +
geom_qq() +
geom_qq_line() +
facet_grid(smoke_fct ~ .)
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There’s a little deviation from normality, but nothing too crazy.
Commentary: The boxplots and histograms show why statistical inference is
so important. It’s clear that there is some difference between the two groups,
but it’s not obvious if that difference will turn out to be statistically significant.
There appears to be a lot of variability in both groups, and both groups have a
fair number of lighter and heavier babies.

21.8 Hypotheses

21.8.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The samples consist of 115 nonsmoking mothers and 74 smoking mothers. The
populations are those women who do not smoke during pregnancy and those
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women who do smoke during pregnancy.

21.8.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ There is no difference in the birth weight of babies born to mothers who
do not smoke versus mothers who do smoke.

𝐻𝐴 ∶ There is a difference in the birth weight of babies born to mothers who do
not smoke versus mothers who do smoke.

21.8.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝜇𝑁𝑜𝑛𝑠𝑚𝑜𝑘𝑒𝑟 − 𝜇𝑆𝑚𝑜𝑘𝑒𝑟 = 0
𝐻𝐴 ∶ 𝜇𝑁𝑜𝑛𝑠𝑚𝑜𝑘𝑒𝑟 − 𝜇𝑆𝑚𝑜𝑘𝑒𝑟 ≠ 0
Commentary: As mentioned before, the order in which you subtract will not
change the inference, but it will affect your interpretation of the results. Also,
once you’ve chosen a direction to subtract, be consistent about that choice
throughout the rubric.

21.9 Model

21.9.1 Identify the sampling distribution model.

We use a t model with the number of degrees of freedom to be determined.

Commentary: For Welch’s t test, the degrees of freedom won’t usually be a
whole number. Be sure you understand that the formula is no longer 𝑑𝑓 = 𝑛−1.
That doesn’t even make any sense as there isn’t a single 𝑛 in a two-sample test.
The infer package will tell us how many degrees of freedom to use later in the
Mechanics section.

21.9.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random (for both groups)
– We have very little information about these women. We hope that

the 115 nonsmoking mothers at this hospital are representative of
other nonsmoking mothers, at least in that region at that time. And
same for the 74 smoking mothers.
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• 10% (for both groups)
– 115 is less than 10% of all nonsmoking mothers and 74 is less than

10% of all smoking mothers.
• Nearly normal (for both groups)

– Since the sample sizes are more than 30 in each group, we meet the
condition.

21.10 Mechanics

21.10.1 Compute the test statistic.

obs_diff <- birthwt2 %>%
specify(response = bwt, explanatory = smoke_fct) %>%
calculate(stat = "diff in means", order = c("Nonsmoker", "Smoker"))

obs_diff

## Response: bwt (numeric)
## Explanatory: smoke_fct (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 284.

obs_diff_t <- birthwt2 %>%
specify(response = bwt, explanatory = smoke_fct) %>%
calculate(stat = "t", order = c("Nonsmoker", "Smoker"))

obs_diff_t

## Response: bwt (numeric)
## Explanatory: smoke_fct (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 2.73

21.10.2 Report the test statistic in context (when possi-
ble).

The difference in the mean birth weight of babies born to nonsmoking mothers
and smoking mothers is 283.7767333 grams. This was obtained by subtracting
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nonsmoking mothers minus smoking mothers. In other words, the fact that this
is positive indicates that nonsmoking mothers had heavier babies, on average,
than smoking mothers.
The t score is 2.7298857. The sample difference in birth weights is about 2.7
standard errors higher than the null value of zero.
Commentary: Remember that whenever you are computing the difference be-
tween two quantities, you must indicate the direction of that difference you so
your reader knows how to interpret the value, whether it is positive or negative.

21.10.3 Plot the null distribution.

bwt_smoke_test_t <- birthwt2 %>%
specify(response = bwt, explanatory = smoke_fct) %>%
hypothesise(null = "independence") %>%
assume("t")

bwt_smoke_test_t

## A T distribution with 170 degrees of freedom.

bwt_smoke_test_t %>%
visualize() +
shade_p_value(obs_stat = obs_diff_t, direction = "two-sided")
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Commentary: We use the name bwt_smoke_test_t (using the assumption of a
Student t model) as a new variable name so that it doesn’t overwrite the variable
bwt_smoke_test we performed earlier as a permutation test (the one with the
shuffling). This results of using bwt_smoke_test versus bwt_smoke_test_t will
be very similar.
Note that the infer output tells us there are 170 degrees of freedom. (It turns
out to be 170.1.) Note that this number is the result of a complicated formula,
and it’s not just a simple function of the sample sizes 115 and 74.
Finally, note that the alternative hypothesis indicated a two-sided test, so we
need to specify a “two-sided” P-value in the shade_p_value command.

21.10.4 Calculate the P-value.

bwt_smoke_p <- bwt_smoke_test_t %>%
get_p_value(obs_stat = obs_diff_t, direction = "two-sided")

bwt_smoke_p

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.00700

21.10.5 Interpret the P-value as a probability given the
null.

The P-value is 0.0070025. If there were no difference in the mean birth weights
between nonsmoking and smoking women, there would be a 0.7002548% chance
of seeing data at least as extreme as what we saw.

21.11 Conclusion

21.11.1 State the statistical conclusion.

We reject the null hypothesis.

21.11.2 State (but do not overstate) a contextually mean-
ingful conclusion.

We have sufficient evidence that there is a difference in the mean birth weight
of babies born to mothers who do not smoke versus mothers who do smoke.
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21.11.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

As when we looked at this data before, our uncertainly about the data prove-
nance means that we don’t know if the difference observed in these samples at
this one hospital at this one time are generalizable to larger populations. Also
keep in mind that this data is observational, so we cannot draw any causal
conclusion about the “effect” of smoking on birth weight.

21.11.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

If we’ve made a Type I error, then that means that there might be no difference
in the birth weights of babies from nonsmoking versus smoking mothers, but we
got some unusual samples that showed a difference.

21.12 Confidence interval

21.12.1 Check the relevant conditions to ensure that
model assumptions are met.

There are no additional conditions to check.

21.12.2 Calculate the confidence interval.

bwt_smoke_ci <- bwt_smoke_test_t %>%
get_confidence_interval(point_estimate = obs_diff, level = 0.95)

bwt_smoke_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 78.6 489.

Commentary: Pay close attention to when we use obs_diff and obs_diff_t.
In the hypothesis test, we assumed a t distribution for the null and so we have
to use the t score obs_diff_t to shade the P-value. However, for a confidence
interval, we are building the interval centered on our sample difference obs_diff.
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21.12.3 State (but do not overstate) a contextually mean-
ingful interpretation.

We are 95% confident that the true difference in birth weight between nonsmok-
ing and smoking mothers is captured in the interval (78.5748631 g, 488.9786034
g). We obtained this by subtracting nonsmokers minus smokers.

Commentary: Again, remember to indicate the direction of the difference by
indicating the order of subtraction.

21.12.4 If running a two-sided test, explain how the con-
fidence interval reinforces the conclusion of the
hypothesis test.

Since zero is not contained in the confidence interval, zero is not a plausible value
for the true difference in birth weights between the two groups of mothers.

21.12.5 When comparing two groups, comment on the ef-
fect size and the practical significance of the re-
sult.

In order to know if smoking is a risk factor for low birth weight, we would need
to know what a difference of 80 g or 490 grams means for babies. Although most
of us presumably don’t have any special training in obstetrics, we could do a
quick internet search to see that even half a kilogram is not a large amount of
weight difference between two babies. Having said that, though, any difference
in birth weight that might be attributable to smoking could be a concern to
doctors. In any event, our data is observational, so we cannot make causal
claims here.

21.13 Your turn

Continue to use the birthwt data set. This time, see if a history of hypertension
is associated with a difference in the mean birth weight of babies. In the “Pre-
pare the data for analysis” section, you will need to create a new tibble—call it
birthwt3—in which you convert the ht variable to a factor variable.

The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.
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Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.
Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere.

Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses

Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.
𝐻𝐴 ∶ Alternative hypothesis goes here.
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Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# IF CONDUCTING A SIMULATION...
set.seed(1)
# Add code here to simulate the null distribution.

# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.
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Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

Confidence interval

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

# Add code here to calculate the confidence interval.

# Add code here to graph the confidence interval.

Calculate and graph the confidence interval.

State (but do not overstate) a contextually meaningful interpretation.
Please write up your answer here.

If running a two-sided test, explain how the confidence interval rein-
forces the conclusion of the hypothesis test. [Not always applicable.]
Please write up your answer here.
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When comparing two groups, comment on the effect size and the
practical significance of the result. [Not always applicable.] Please
write up your answer here.

21.14 Conclusion

A numerical variable can be split into two groups using a categorical variable.
As long as the groups are independent of each other, we can use inference to
determine if there is a statistically significant difference between the mean values
of the response variable for each group. Such a test can be run by simulation
(using a permutation test) or by meeting the conditions for and assuming a t
distribution (with a complicated formula for the degrees of freedom).

21.14.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.



Chapter 22

ANOVA

2.0

Functions introduced in this chapter:

No new R functions are introduced here.

22.1 Introduction

ANOVA stands for “Analysis of Variance”. In this chapter, we will study the
most basic form of ANOVA, called “one-way ANOVA”. We’ve already considered
the one-sample and two-sample t tests for means. ANOVA is what you do when
you want to compare means for three or more groups.

22.1.1 Install new packages

If you are using R and RStudio on your own machine instead of accessing RStu-
dio Workbench through a browser, you’ll need to type the following command
at the Console:

install.packages("quantreg")

22.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your
intro_stats project. Then click on the following link to download this chapter
as an R notebook file (.Rmd).

707
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https://vectorposse.github.io/intro_stats/chapter_downloads/22-anova.Rmd

Once the file is downloaded, move it to your project folder in RStudio and open
it there.

22.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

22.2 Load packages

We load the standard tidyverse, janitor, and infer packages. The quantreg
package contains the uis data (which must be explicitly loaded using the data
command) and the palmerpenguins package for the penguins data.

library(tidyverse)
library(janitor)
library(infer)
library(quantreg)

## Warning: package 'quantreg' was built under R version 4.3.1

## Loading required package: SparseM

##
## Attaching package: 'SparseM'

## The following object is masked from 'package:base':
##
## backsolve

data(uis)
library(palmerpenguins)

22.3 Research question

The uis data set from the quantreg package contains data from the UIS Drug
Treatment Study. Is a history of IV drug use associated with depression?
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Exercise 1 The help file for the uis data is particularly uninformative. The
source, like so many we see in R packages, is a statistics textbook. If you happen
to have access to a copy of the textbook, it’s pretty easy to look it up and see
what the authors say about it. But it’s not likely you have such access.

See if you can find out more about where the data came from. This is tricky
and you’re going have to dig deep.

Hint #1: Your first hits will be from the University of Illinois-Springfield. That
is not the correct source.

Hint #2: You may have more success finding sources that quote from the text-
book and mention more detail about the data as it’s explained in the textbook.
In fact, you might even stumble across actual pages from the textbook with the
direct explanation, but that is much harder. You should not try to find and
download PDF files of the book itself. Not only is that illegal, but it
might also come along with nasty computer viruses.

Please write up your answer here.

22.4 Data preparation and exploration

Let’s look at the UIS data:

uis

## ID AGE BECK HC IV NDT RACE TREAT SITE LEN.T TIME CENSOR Y
## 1 1 39 9.000 4 3 1 0 1 0 123 188 1 5.236442
## 2 2 33 34.000 4 2 8 0 1 0 25 26 1 3.258097
## 3 3 33 10.000 2 3 3 0 1 0 7 207 1 5.332719
## 4 4 32 20.000 4 3 1 0 0 0 66 144 1 4.969813
## 5 5 24 5.000 2 1 5 1 1 0 173 551 0 6.311735
## 6 6 30 32.550 3 3 1 0 1 0 16 32 1 3.465736
## 7 7 39 19.000 4 3 34 0 1 0 179 459 1 6.129050
## 8 8 27 10.000 4 3 2 0 1 0 21 22 1 3.091042
## 9 9 40 29.000 2 3 3 0 1 0 176 210 1 5.347108
## 10 10 36 25.000 2 3 7 0 1 0 124 184 1 5.214936
## 11 12 38 18.900 2 3 8 0 1 0 176 212 1 5.356586
## 12 13 29 16.000 3 1 1 0 1 0 79 87 1 4.465908
## 13 14 32 36.000 3 3 2 1 1 0 182 598 0 6.393591
## 14 15 41 19.000 1 3 8 0 1 0 174 260 1 5.560682
## 15 16 31 18.000 1 3 1 0 1 0 181 210 1 5.347108
## 16 17 27 12.000 2 3 3 0 1 0 61 84 1 4.430817
## 17 18 28 34.000 1 3 6 0 1 0 177 196 1 5.278115
## 18 19 28 23.000 4 2 1 0 1 0 19 19 1 2.944439
## 19 20 36 26.000 3 1 15 1 1 0 27 441 1 6.089045
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## 20 21 32 18.900 2 3 5 0 1 0 175 449 1 6.107023
## 21 22 33 15.000 3 1 1 0 0 0 12 659 0 6.490724
## 22 23 28 25.200 1 3 8 0 0 0 21 21 1 3.044522
## 23 24 29 6.632 4 2 0 0 0 0 48 53 1 3.970292
## 24 25 35 2.100 2 3 9 0 0 0 90 225 1 5.416100
## 25 26 45 26.000 1 3 6 0 0 0 91 161 1 5.081404
## 26 27 35 39.789 4 3 5 0 0 0 87 87 1 4.465908
## 27 28 24 20.000 3 1 3 0 0 0 88 89 1 4.488636
## 28 29 36 16.000 1 3 7 0 0 0 9 44 1 3.784190
## 29 31 39 22.000 1 3 9 0 0 0 94 523 0 6.259581
## 30 32 36 9.947 4 2 10 0 0 0 91 226 1 5.420535
## 31 33 37 9.450 4 3 1 0 0 0 90 259 1 5.556828
## 32 34 30 39.000 2 3 1 0 0 0 89 289 1 5.666427
## 33 35 44 41.000 1 3 5 0 0 0 89 103 1 4.634729
## 34 36 28 31.000 3 1 6 1 0 0 100 624 0 6.436150
## 35 37 25 20.000 3 1 3 1 0 0 67 68 1 4.219508
## 36 38 30 8.000 2 3 7 0 1 0 25 57 1 4.043051
## 37 39 24 9.000 4 1 1 0 0 0 12 65 1 4.174387
## 38 40 27 20.000 3 1 1 0 0 0 79 79 1 4.369448
## 39 41 30 8.000 3 1 2 1 0 0 79 559 0 6.326149
## 40 42 34 8.000 2 3 0 0 1 0 78 79 1 4.369448
## 41 43 33 23.000 4 2 2 0 1 0 84 87 1 4.465908
## 42 44 34 18.000 3 3 6 0 1 0 91 91 1 4.510860
## 43 45 36 13.000 2 3 1 0 1 0 162 297 1 5.693732
## 44 46 27 23.000 1 3 0 0 1 0 45 45 1 3.806662
## 45 47 35 9.000 4 3 1 1 1 0 61 246 1 5.505332
## 46 48 24 14.000 1 3 0 0 1 0 19 37 1 3.610918
## 47 49 28 23.000 4 1 2 1 1 0 37 37 1 3.610918
## 48 50 46 10.000 1 3 8 0 1 0 51 538 0 6.287859
## 49 51 26 11.000 3 3 1 0 1 0 60 541 0 6.293419
## 50 52 42 16.000 1 3 25 0 1 0 177 184 1 5.214936
## 51 53 30 0.000 3 1 0 0 1 0 43 122 1 4.804021
## 52 55 30 12.000 4 1 3 1 1 0 21 156 1 5.049856
## 53 56 27 21.000 2 3 2 0 0 0 88 121 1 4.795791
## 54 57 38 0.000 1 3 6 0 0 0 96 231 1 5.442418
## 55 58 48 8.000 4 3 10 0 0 0 111 111 1 4.709530
## 56 59 36 25.000 1 3 10 0 0 0 38 38 1 3.637586
## 57 60 28 6.300 3 1 7 0 0 0 15 15 1 2.708050
## 58 61 31 20.000 4 2 5 0 0 0 50 54 1 3.988984
## 59 62 28 4.000 2 3 5 0 0 0 61 127 1 4.844187
## 60 63 28 20.000 3 1 1 0 0 0 31 105 1 4.653960
## 61 64 26 17.000 2 1 2 1 0 0 11 11 1 2.397895
## 62 65 34 3.000 4 3 6 0 0 0 90 153 1 5.030438
## 63 66 26 29.000 2 3 5 0 0 0 11 11 1 2.397895
## 64 68 31 26.000 1 3 5 0 0 0 46 46 1 3.828641
## 65 69 41 12.000 1 3 0 1 0 0 38 655 0 6.484635
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## 66 70 30 24.000 4 3 0 0 0 0 90 166 1 5.111988
## 67 72 39 15.750 4 3 5 0 0 0 88 95 1 4.553877
## 68 74 33 9.000 2 3 12 0 0 0 91 151 1 5.017280
## 69 75 33 18.000 4 2 6 0 0 0 85 220 1 5.393628
## 70 76 29 20.000 4 1 0 1 0 0 90 227 1 5.424950
## 71 77 36 17.000 1 3 5 0 0 0 52 343 1 5.837730
## 72 78 26 3.000 4 3 3 0 0 0 88 119 1 4.779123
## 73 79 37 27.000 1 3 13 0 0 0 43 43 1 3.761200
## 74 81 29 31.500 1 3 8 0 0 0 37 47 1 3.850148
## 75 83 30 19.000 3 1 0 1 0 0 87 805 0 6.690842
## 76 84 35 15.000 3 2 2 0 0 0 20 321 1 5.771441
## 77 85 33 22.000 3 1 1 0 0 0 9 167 1 5.117994
## 78 87 36 16.000 2 3 1 0 0 0 85 491 1 6.196444
## 79 88 28 17.000 1 3 2 0 0 0 18 35 1 3.555348
## 80 89 31 32.550 1 3 12 1 0 0 71 123 1 4.812184
## 81 90 23 24.000 1 3 2 0 0 0 88 597 0 6.391917
## 82 91 33 22.000 3 2 1 0 0 0 67 762 0 6.635947
## 83 93 37 18.000 2 3 4 0 0 0 30 31 1 3.433987
## 84 94 25 17.850 3 1 1 0 1 0 68 228 1 5.429346
## 85 95 56 5.000 2 2 9 1 1 0 182 553 0 6.315358
## 86 96 23 39.000 1 3 1 0 1 0 182 190 1 5.247024
## 87 97 26 21.000 3 1 1 0 1 0 146 307 1 5.726848
## 88 98 26 11.000 1 3 1 0 1 0 40 73 1 4.290459
## 89 99 23 14.000 3 1 1 0 1 0 177 208 1 5.337538
## 90 100 28 31.000 4 2 2 1 1 0 181 267 1 5.587249
## 91 102 30 14.000 1 3 15 0 1 0 168 169 1 5.129899
## 92 104 25 6.000 2 3 5 0 1 0 90 655 0 6.484635
## 93 105 33 16.000 1 3 5 0 1 0 61 70 1 4.248495
## 94 106 22 6.000 3 1 3 1 1 0 63 398 1 5.986452
## 95 108 25 20.000 4 2 8 1 1 0 121 122 1 4.804021
## 96 111 38 9.000 3 1 1 1 0 0 89 96 1 4.564348
## 97 112 35 11.000 2 1 3 0 1 0 51 1172 0 7.066467
## 98 113 35 15.000 3 1 1 0 0 0 88 734 0 6.598509
## 99 114 25 13.000 3 3 1 0 0 0 25 26 1 3.258097
## 100 115 33 31.000 3 1 3 1 0 0 83 84 1 4.430817
## 101 116 30 5.000 3 1 2 1 0 0 89 171 1 5.141664
## 102 117 45 10.000 2 3 1 0 0 0 24 159 1 5.068904
## 103 119 42 23.000 2 3 20 0 0 0 7 7 1 1.945910
## 104 120 29 16.000 4 1 1 1 0 0 85 763 0 6.637258
## 105 121 24 37.800 3 1 0 0 0 0 89 104 1 4.644391
## 106 122 33 10.000 2 3 4 0 0 0 91 162 1 5.087596
## 107 123 32 9.000 3 1 0 0 0 0 89 90 1 4.499810
## 108 124 26 15.000 3 1 0 0 0 0 82 373 1 5.921578
## 109 125 28 2.000 1 3 3 0 0 0 84 115 1 4.744932
## 110 127 37 34.000 2 3 1 0 0 0 30 30 1 3.401197
## 111 128 23 11.000 4 1 6 0 0 0 7 8 1 2.079442
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## 112 129 40 31.000 2 3 3 1 0 0 84 168 1 5.123964
## 113 130 36 36.750 3 3 0 0 0 0 70 70 1 4.248495
## 114 131 23 26.000 3 2 2 0 0 0 76 130 1 4.867534
## 115 132 35 5.000 4 1 1 1 0 0 89 285 1 5.652489
## 116 133 25 19.000 2 3 1 0 1 0 178 569 0 6.343880
## 117 134 35 21.000 2 3 6 0 1 0 87 87 1 4.465908
## 118 135 46 1.000 4 2 0 0 1 0 175 310 1 5.736572
## 119 136 32 6.000 4 1 3 0 1 0 87 87 1 4.465908
## 120 137 35 23.000 3 1 16 1 1 0 110 544 0 6.298949
## 121 138 34 38.000 3 3 1 0 1 0 21 156 1 5.049856
## 122 139 43 24.000 3 1 3 0 1 0 139 658 0 6.489205
## 123 140 39 3.000 4 3 15 0 1 0 181 273 1 5.609472
## 124 141 27 16.800 4 3 2 1 1 0 33 168 1 5.123964
## 125 142 38 35.000 1 3 1 0 1 0 39 83 1 4.418841
## 126 143 37 11.000 2 3 7 0 1 0 4 4 1 1.386294
## 127 144 44 2.000 1 3 4 1 1 0 184 708 0 6.562444
## 128 145 25 16.000 4 1 1 1 1 0 123 137 1 4.919981
## 129 146 34 15.000 3 1 1 0 1 0 176 259 1 5.556828
## 130 147 34 11.000 3 3 2 1 1 0 174 560 0 6.327937
## 131 148 38 11.000 1 3 1 1 1 0 181 586 0 6.373320
## 132 149 24 22.000 2 3 2 1 1 0 113 190 1 5.247024
## 133 151 42 18.000 2 3 3 0 1 0 164 544 0 6.298949
## 134 153 34 29.000 4 3 1 1 0 0 84 494 1 6.202536
## 135 154 45 27.000 1 3 8 0 0 0 80 541 0 6.293419
## 136 155 40 16.000 2 3 4 0 0 0 91 94 1 4.543295
## 137 156 27 9.000 4 1 3 1 0 0 97 567 0 6.340359
## 138 157 24 0.000 4 1 3 0 0 0 51 55 1 4.007333
## 139 158 27 15.000 1 3 3 0 0 0 91 93 1 4.532599
## 140 159 34 24.000 3 1 4 0 0 0 90 276 1 5.620401
## 141 160 36 3.000 2 3 6 0 0 0 46 46 1 3.828641
## 142 162 31 9.000 3 1 1 0 0 0 76 250 1 5.521461
## 143 163 40 5.000 2 3 2 0 0 0 75 106 1 4.663439
## 144 164 40 13.000 1 3 4 1 0 0 91 552 0 6.313548
## 145 165 37 29.000 2 3 5 0 0 0 90 90 1 4.499810
## 146 166 25 11.000 4 3 6 0 0 0 3 203 1 5.313206
## 147 167 41 22.000 2 3 3 1 1 0 8 67 1 4.204693
## 148 168 22 9.000 4 1 1 0 1 0 33 559 1 6.326149
## 149 169 31 18.000 2 3 8 1 1 0 31 106 1 4.663439
## 150 170 29 40.000 1 1 1 1 1 0 174 374 1 5.924256
## 151 171 27 25.000 3 1 2 0 1 0 34 630 0 6.445720
## 152 172 22 26.000 4 2 3 0 1 0 60 61 1 4.110874
## 153 174 37 11.000 1 2 5 1 1 0 78 547 0 6.304449
## 154 175 36 6.000 3 1 2 1 1 0 182 568 0 6.342121
## 155 176 24 20.000 3 1 1 0 1 0 182 490 1 6.194405
## 156 177 28 9.000 4 1 0 1 1 0 78 222 1 5.402677
## 157 178 24 6.000 4 1 1 0 1 0 55 56 1 4.025352
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## 158 179 28 0.000 3 1 2 0 1 0 223 282 1 5.641907
## 159 180 24 5.000 3 1 20 1 1 0 25 35 1 3.555348
## 160 181 24 15.000 4 1 0 0 1 0 63 603 0 6.401917
## 161 183 29 14.700 3 1 1 0 1 0 133 148 1 4.997212
## 162 184 37 3.000 1 3 5 1 1 0 154 354 1 5.869297
## 163 185 26 31.000 1 1 2 0 1 0 70 164 1 5.099866
## 164 186 29 14.000 3 2 1 0 1 0 66 94 1 4.543295
## 165 187 29 28.000 2 3 4 0 1 0 40 65 1 4.174387
## 166 188 33 18.000 4 1 1 0 1 0 75 567 0 6.340359
## 167 189 29 12.000 4 2 2 0 1 0 187 634 0 6.452049
## 168 190 32 5.000 1 1 2 1 1 0 183 633 0 6.450470
## 169 192 33 11.000 4 1 8 1 1 0 182 477 1 6.167516
## 170 193 26 21.000 4 2 2 0 1 0 192 436 1 6.077642
## 171 195 24 23.000 2 3 4 1 1 0 162 362 1 5.891644
## 172 196 46 32.000 2 3 2 0 1 0 193 552 0 6.313548
## 173 197 23 26.000 4 1 2 0 1 0 111 144 1 4.969813
## 174 198 40 19.950 4 3 8 0 1 0 182 242 1 5.488938
## 175 199 48 17.000 3 1 4 0 1 0 180 564 0 6.335054
## 176 200 33 16.000 3 1 0 0 1 0 93 299 1 5.700444
## 177 201 21 26.250 4 1 7 0 1 0 167 167 1 5.117994
## 178 202 38 29.000 3 1 2 0 1 0 196 380 1 5.940171
## 179 203 28 23.000 4 2 4 0 1 0 106 120 1 4.787492
## 180 205 39 9.000 1 3 6 0 1 0 158 218 1 5.384495
## 181 206 37 26.000 1 2 1 1 0 0 91 115 1 4.744932
## 182 207 32 22.000 3 1 4 1 0 0 89 224 1 5.411646
## 183 208 39 23.000 3 2 2 1 0 0 89 132 1 4.882802
## 184 209 28 0.000 1 3 10 0 0 0 88 148 1 4.997212
## 185 210 26 30.000 3 1 0 1 0 0 95 593 0 6.385194
## 186 211 31 21.000 1 3 0 0 0 0 5 26 1 3.258097
## 187 213 34 19.000 4 3 8 0 0 0 32 32 1 3.465736
## 188 214 26 28.000 4 2 2 1 0 0 92 292 1 5.676754
## 189 215 29 8.000 4 1 3 0 0 0 66 89 1 4.488636
## 190 217 25 11.000 3 1 8 0 0 0 90 364 1 5.897154
## 191 218 34 15.000 3 2 3 1 0 0 93 142 1 4.955827
## 192 219 32 8.000 3 1 2 0 0 0 89 188 1 5.236442
## 193 221 38 14.000 4 2 0 0 0 0 91 92 1 4.521789
## 194 222 32 7.000 1 3 8 0 0 0 56 56 1 4.025352
## 195 223 31 13.000 2 3 7 0 0 0 90 110 1 4.700480
## 196 224 40 10.000 3 1 3 0 0 0 73 555 0 6.318968
## 197 225 28 17.000 4 1 5 1 0 0 85 220 1 5.393628
## 198 226 40 18.000 1 3 3 0 0 0 23 23 1 3.135494
## 199 227 32 5.000 2 3 3 0 0 0 85 285 1 5.652489
## 200 228 29 20.000 3 3 5 0 0 0 90 90 1 4.499810
## 201 229 25 31.000 3 1 4 0 0 0 53 59 1 4.077537
## 202 230 32 15.000 2 3 2 0 0 0 96 156 1 5.049856
## 203 232 37 4.000 2 2 2 0 0 0 83 142 1 4.955827
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## 204 233 38 15.000 3 3 8 0 0 0 54 57 1 4.043051
## 205 234 31 14.000 3 2 9 0 0 0 79 279 1 5.631212
## 206 235 30 27.000 1 3 3 1 0 0 81 118 1 4.770685
## 207 236 34 30.000 4 1 4 1 0 0 18 567 0 6.340359
## 208 237 33 23.000 1 3 4 0 1 0 184 562 0 6.331502
## 209 238 36 13.000 3 2 10 1 1 0 39 239 1 5.476464
## 210 239 32 26.000 4 1 0 0 1 0 177 578 0 6.359574
## 211 240 29 10.000 2 3 2 1 1 0 122 551 0 6.311735
## 212 241 32 4.000 1 1 4 1 1 0 178 313 1 5.746203
## 213 242 34 0.000 3 1 7 0 1 0 173 560 0 6.327937
## 214 243 26 35.000 1 3 31 0 1 0 53 54 1 3.988984
## 215 244 25 32.000 1 3 5 1 1 0 94 198 1 5.288267
## 216 245 30 2.000 4 1 2 1 1 0 163 164 1 5.099866
## 217 246 33 15.000 3 2 6 0 1 0 160 325 1 5.783825
## 218 247 40 23.000 4 2 6 0 1 0 61 62 1 4.127134
## 219 248 26 13.000 3 1 12 0 1 0 41 45 1 3.806662
## 220 249 26 29.000 1 3 5 1 1 0 53 53 1 3.970292
## 221 250 35 22.105 4 3 4 0 1 0 53 253 1 5.533389
## 222 251 26 15.000 2 2 11 0 1 0 13 51 1 3.931826
## 223 252 33 7.000 4 1 3 1 1 0 183 540 0 6.291569
## 224 253 27 7.000 1 3 4 0 1 0 182 317 1 5.758902
## 225 254 29 33.000 3 3 3 0 1 0 183 437 1 6.079933
## 226 255 29 23.000 3 3 9 0 1 0 63 136 1 4.912655
## 227 256 39 21.000 2 3 7 0 1 0 111 115 1 4.744932
## 228 257 43 19.000 3 2 2 1 1 0 174 175 1 5.164786
## 229 258 35 8.000 3 3 3 0 1 0 173 442 1 6.091310
## 230 259 26 24.000 4 1 2 1 1 0 119 122 1 4.804021
## 231 260 27 28.737 4 1 3 0 1 0 180 181 1 5.198497
## 232 261 28 20.000 4 1 2 1 1 0 98 180 1 5.192957
## 233 262 30 14.000 3 1 4 0 1 0 50 51 1 3.931826
## 234 263 31 17.000 4 2 1 1 1 0 178 541 0 6.293419
## 235 264 26 19.000 2 3 16 0 1 0 100 121 1 4.795791
## 236 265 36 5.000 4 2 4 0 1 0 93 328 1 5.793014
## 237 267 25 8.000 2 3 3 0 1 0 165 166 1 5.111988
## 238 268 26 22.000 3 1 0 1 1 0 93 556 0 6.320768
## 239 269 30 11.000 2 3 5 0 0 0 44 104 1 4.644391
## 240 270 28 13.000 3 1 5 0 0 0 77 102 1 4.624973
## 241 272 34 11.053 3 1 0 1 0 0 91 144 1 4.969813
## 242 273 31 24.000 3 1 2 0 0 0 95 545 0 6.300786
## 243 274 30 19.000 4 3 1 0 0 0 82 537 0 6.285998
## 244 275 35 27.000 3 2 5 1 0 0 76 625 0 6.437752
## 245 276 30 4.000 4 2 3 1 0 0 5 6 1 1.791759
## 246 277 37 38.000 1 3 7 0 0 0 69 307 1 5.726848
## 247 278 29 11.000 4 1 12 1 0 0 90 290 1 5.669881
## 248 279 23 21.000 4 1 8 0 0 0 19 20 1 2.995732
## 249 280 23 1.000 1 1 4 0 0 0 60 74 1 4.304065



22.4. DATA PREPARATION AND EXPLORATION 715

## 250 281 44 4.000 4 1 0 0 0 0 69 100 1 4.605170
## 251 282 43 7.000 4 2 8 1 0 0 85 555 0 6.318968
## 252 283 38 20.000 2 3 3 0 0 0 92 152 1 5.023881
## 253 284 33 17.000 3 1 3 1 0 0 55 115 1 4.744932
## 254 285 36 6.300 1 3 9 0 0 0 20 92 1 4.521789
## 255 286 26 12.000 1 3 2 0 0 0 87 554 0 6.317165
## 256 287 30 16.000 4 1 0 0 0 0 91 92 1 4.521789
## 257 288 34 31.500 4 1 0 0 0 0 9 69 1 4.234107
## 258 289 32 30.000 2 3 6 0 0 0 22 25 1 3.218876
## 259 290 30 1.000 3 1 1 0 0 0 87 501 0 6.216606
## 260 291 37 32.000 2 3 10 1 0 0 86 86 1 4.454347
## 261 292 35 29.000 2 3 7 0 0 0 85 99 1 4.595120
## 262 293 30 6.000 3 1 0 0 0 0 83 87 1 4.465908
## 263 294 34 17.000 4 1 6 1 0 0 83 136 1 4.912655
## 264 295 40 13.000 1 2 6 0 0 0 92 106 1 4.663439
## 265 296 28 15.000 4 2 3 1 0 0 85 220 1 5.393628
## 266 297 32 11.000 3 1 6 0 0 0 36 36 1 3.583519
## 267 298 45 17.000 1 3 2 1 0 0 87 162 1 5.087596
## 268 299 24 23.000 2 1 0 0 1 0 56 116 1 4.753590
## 269 300 43 23.000 1 3 5 1 1 0 94 175 1 5.164786
## 270 301 38 15.000 1 3 0 1 1 0 74 209 1 5.342334
## 271 302 33 19.000 2 3 1 0 1 0 186 545 0 6.300786
## 272 303 26 21.000 4 2 2 1 1 0 178 245 1 5.501258
## 273 304 40 8.000 4 3 3 0 1 0 84 176 1 5.170484
## 274 305 27 34.000 4 2 0 0 1 0 13 14 1 2.639057
## 275 306 39 21.000 2 3 12 0 1 0 85 113 1 4.727388
## 276 308 29 27.000 4 2 3 1 1 0 9 354 1 5.869297
## 277 309 28 32.000 4 2 4 0 1 0 162 174 1 5.159055
## 278 310 37 29.000 1 3 20 0 0 0 23 23 1 3.135494
## 279 311 37 22.000 2 3 20 0 0 0 26 26 1 3.258097
## 280 312 40 12.000 4 2 9 0 0 0 84 98 1 4.584967
## 281 313 25 36.000 1 3 5 0 0 0 23 23 1 3.135494
## 282 314 40 15.000 1 1 2 0 0 0 86 555 0 6.318968
## 283 315 40 3.000 1 3 4 1 0 0 90 290 1 5.669881
## 284 316 34 24.000 2 3 8 0 0 0 73 543 0 6.297109
## 285 317 41 18.000 2 3 7 0 0 0 76 274 1 5.613128
## 286 321 23 2.000 4 1 1 0 1 0 18 119 1 4.779123
## 287 322 36 14.000 3 1 3 0 1 0 94 164 1 5.099866
## 288 323 28 19.000 4 1 2 1 1 0 76 548 0 6.306275
## 289 324 23 7.000 3 1 3 0 1 0 40 175 1 5.164786
## 290 325 27 8.000 3 1 3 0 1 0 176 539 0 6.289716
## 291 326 32 27.000 4 2 0 0 1 0 104 155 1 5.043425
## 292 327 38 25.000 4 3 15 0 1 0 5 14 1 2.639057
## 293 328 38 28.000 4 1 6 1 1 0 179 187 1 5.231109
## 294 329 45 39.000 1 3 8 0 1 0 35 65 1 4.174387
## 295 330 26 18.000 2 2 1 0 1 0 24 159 1 5.068904
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## 296 331 29 8.000 1 3 35 0 1 0 82 96 1 4.564348
## 297 332 33 31.000 4 1 3 0 1 0 28 243 1 5.493061
## 298 333 25 6.000 3 1 0 1 1 0 81 85 1 4.442651
## 299 334 36 19.000 4 1 2 0 1 0 4 4 1 1.386294
## 300 335 37 19.000 2 3 4 0 1 0 97 121 1 4.795791
## 301 336 29 16.000 4 1 0 1 1 0 78 659 1 6.490724
## 302 337 29 15.000 4 1 3 1 1 0 181 260 1 5.560682
## 303 338 35 54.000 4 2 1 0 1 0 29 621 0 6.431331
## 304 339 33 19.000 4 1 1 0 1 0 139 199 1 5.293305
## 305 340 31 12.000 4 3 2 0 1 0 152 565 0 6.336826
## 306 341 37 24.000 3 2 5 1 1 0 90 183 1 5.209486
## 307 342 32 37.000 3 3 4 0 1 0 62 122 1 4.804021
## 308 343 33 9.000 3 2 13 0 1 0 110 170 1 5.135798
## 309 344 36 18.000 3 1 14 1 1 0 15 15 1 2.708050
## 310 345 26 4.000 1 1 5 0 1 0 68 268 1 5.590987
## 311 346 35 15.000 3 1 0 1 1 0 19 79 1 4.369448
## 312 347 25 19.000 1 3 6 1 0 0 23 23 1 3.135494
## 313 348 33 26.000 1 3 30 0 0 0 92 100 1 4.605170
## 314 349 36 28.000 2 3 8 0 0 0 94 98 1 4.584967
## 315 350 38 14.000 3 3 6 0 0 0 31 81 1 4.394449
## 316 351 36 15.000 3 2 3 1 0 0 28 546 0 6.302619
## 317 352 36 18.000 2 3 10 0 0 0 58 58 1 4.060443
## 318 353 35 29.000 3 3 6 0 0 0 113 569 0 6.343880
## 319 354 35 10.000 3 1 3 1 0 0 70 575 0 6.354370
## 320 356 39 16.000 2 3 4 0 0 0 90 91 1 4.510860
## 321 357 37 0.000 4 3 6 0 0 0 55 57 1 4.043051
## 322 358 30 31.000 2 3 5 0 0 0 89 499 1 6.212606
## 323 359 26 33.000 1 3 7 1 0 0 71 123 1 4.812184
## 324 360 39 21.000 4 1 5 0 0 0 84 143 1 4.962845
## 325 362 32 18.000 3 1 4 0 0 0 78 471 1 6.154858
## 326 363 26 37.800 3 1 4 1 0 0 60 74 1 4.304065
## 327 364 33 20.000 2 3 6 0 0 0 82 85 1 4.442651
## 328 365 36 11.000 4 2 5 0 0 0 81 95 1 4.553877
## 329 366 42 26.000 2 3 3 0 1 0 35 36 1 3.583519
## 330 367 37 43.000 1 3 22 0 1 0 16 19 1 2.944439
## 331 368 37 12.000 2 2 1 1 1 0 7 38 1 3.637586
## 332 369 32 22.000 3 1 4 1 1 0 30 539 0 6.289716
## 333 370 23 36.000 4 1 3 1 1 0 106 567 0 6.340359
## 334 371 21 16.000 4 1 10 0 1 0 174 186 1 5.225747
## 335 372 23 41.000 3 1 1 0 1 0 144 546 0 6.302619
## 336 373 34 16.000 4 2 1 0 1 0 24 24 1 3.178054
## 337 374 33 8.000 4 2 3 0 1 0 17 540 0 6.291569
## 338 375 33 10.000 3 1 4 1 1 0 97 157 1 5.056246
## 339 376 26 18.000 3 3 0 0 1 0 26 86 1 4.454347
## 340 377 28 27.000 4 1 2 1 1 0 31 231 1 5.442418
## 341 379 27 28.000 1 3 3 0 0 0 14 14 1 2.639057
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## 342 380 22 23.000 1 3 2 0 0 0 75 75 1 4.317488
## 343 381 31 32.000 3 3 6 1 0 0 20 147 1 4.990433
## 344 382 29 23.100 3 1 4 0 0 0 104 105 1 4.653960
## 345 383 44 11.000 4 3 12 0 0 0 85 324 1 5.780744
## 346 384 26 7.000 3 1 0 1 0 0 110 538 0 6.287859
## 347 385 44 24.000 2 3 16 0 0 0 100 300 1 5.703782
## 348 386 34 12.000 1 3 1 0 0 0 73 73 1 4.290459
## 349 387 36 25.000 2 3 6 0 0 0 65 65 1 4.174387
## 350 388 43 4.000 2 3 20 0 0 0 75 568 1 6.342121
## 351 389 37 5.000 3 1 1 0 0 0 83 84 1 4.430817
## 352 390 44 13.000 4 2 17 0 1 0 15 22 1 3.091042
## 353 391 31 17.000 1 3 30 1 1 0 44 44 1 3.784190
## 354 392 24 24.000 2 1 3 0 1 0 7 7 1 1.945910
## 355 394 37 32.000 3 3 4 0 1 0 20 21 1 3.044522
## 356 395 41 19.000 1 3 12 1 1 0 175 537 0 6.285998
## 357 396 32 9.000 3 1 3 1 1 0 71 186 1 5.225747
## 358 397 23 6.000 3 1 2 0 1 0 26 40 1 3.688879
## 359 398 33 10.000 2 3 3 0 1 0 161 287 1 5.659482
## 360 399 43 11.000 4 1 9 0 1 0 36 538 0 6.287859
## 361 400 33 16.000 4 3 8 0 1 0 30 30 1 3.401197
## 362 401 41 25.000 4 2 3 0 1 0 179 516 1 6.246107
## 363 402 41 17.000 2 3 2 0 1 0 199 268 1 5.590987
## 364 403 37 24.000 2 3 3 0 1 0 182 568 0 6.342121
## 365 404 26 27.000 1 1 3 0 0 0 112 131 1 4.875197
## 366 405 33 24.000 1 3 6 0 0 0 8 399 1 5.988961
## 367 406 30 26.000 3 1 2 0 0 0 18 78 1 4.356709
## 368 407 33 17.000 4 1 6 1 0 0 20 80 1 4.382027
## 369 408 33 26.000 2 3 3 0 0 0 88 102 1 4.624973
## 370 410 37 13.000 3 1 6 0 0 0 88 124 1 4.820282
## 371 411 44 11.000 2 3 20 0 0 0 76 80 1 4.382027
## 372 412 20 8.000 4 1 1 0 0 0 22 23 1 3.135494
## 373 413 33 12.000 1 3 4 0 0 0 110 274 1 5.613128
## 374 415 36 31.000 2 3 3 0 0 0 85 459 1 6.129050
## 375 416 34 8.400 2 3 3 0 0 0 10 10 1 2.302585
## 376 417 35 10.000 1 3 17 0 1 0 157 176 1 5.170484
## 377 418 38 16.000 2 3 26 0 1 0 133 332 1 5.805135
## 378 419 24 13.000 3 1 3 0 1 0 83 119 1 4.779123
## 379 420 24 18.000 3 1 4 0 1 0 152 217 1 5.379897
## 380 421 32 13.000 3 1 4 0 1 0 169 285 1 5.652489
## 381 422 35 11.000 4 2 3 0 1 0 89 576 0 6.356108
## 382 423 33 21.000 1 3 5 0 1 0 92 106 1 4.663439
## 383 424 29 37.000 2 2 4 1 1 0 21 81 1 4.394449
## 384 425 42 32.000 2 3 30 0 1 0 31 47 1 3.850148
## 385 426 23 33.000 4 1 1 0 1 0 31 76 1 4.330733
## 386 427 28 11.000 4 3 16 0 1 0 133 348 1 5.852202
## 387 429 43 29.000 2 3 4 0 1 0 153 306 1 5.723585
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## 388 430 33 23.000 2 1 0 0 0 0 90 192 1 5.257495
## 389 431 37 15.000 1 3 20 0 0 0 102 216 1 5.375278
## 390 432 49 22.000 2 3 7 0 0 0 85 189 1 5.241747
## 391 434 36 25.000 3 1 1 1 0 0 89 193 1 5.262690
## 392 435 27 30.000 1 3 13 0 0 0 28 28 1 3.332205
## 393 436 35 23.000 1 3 1 0 0 0 90 150 1 5.010635
## 394 437 25 10.000 3 2 3 0 0 0 84 99 1 4.595120
## 395 438 33 8.000 1 3 3 0 0 0 85 510 0 6.234411
## 396 439 34 16.000 1 3 7 0 0 0 36 306 1 5.723585
## 397 440 38 9.000 1 3 10 1 0 0 74 101 1 4.615121
## 398 441 36 12.158 2 3 0 1 0 0 42 102 1 4.624973
## 399 442 27 5.000 1 3 1 0 0 0 90 510 0 6.234411
## 400 444 40 19.000 1 3 0 1 0 0 108 503 0 6.220590
## 401 445 32 23.000 3 3 3 0 0 1 49 52 1 3.951244
## 402 446 38 28.000 3 3 1 1 0 1 219 547 0 6.304449
## 403 447 38 16.000 1 3 6 0 0 1 108 168 1 5.123964
## 404 448 23 25.000 4 1 0 0 0 1 178 461 1 6.133398
## 405 449 26 22.000 4 2 2 0 0 1 42 538 0 6.287859
## 406 450 36 28.000 2 3 7 0 0 1 182 349 1 5.855072
## 407 451 30 28.000 4 1 5 0 0 1 6 44 1 3.784190
## 408 452 31 18.000 4 2 3 0 1 1 351 548 0 6.306275
## 409 453 23 15.000 3 1 1 0 1 1 12 12 1 2.484907
## 410 454 43 9.000 1 3 0 1 1 1 6 6 1 1.791759
## 411 455 24 26.000 4 1 1 0 1 1 91 575 0 6.354370
## 412 456 42 19.000 4 1 1 0 1 1 245 589 0 6.378426
## 413 457 35 26.000 4 2 1 0 1 1 372 408 1 6.011267
## 414 458 21 10.000 4 1 0 0 1 1 218 232 1 5.446737
## 415 459 45 1.000 4 2 0 1 1 1 46 143 1 4.962845
## 416 460 43 30.000 2 3 6 0 1 1 363 582 0 6.366470
## 417 461 24 7.000 4 1 0 1 1 1 133 134 1 4.897840
## 418 462 37 11.000 3 3 1 0 1 1 7 7 1 1.945910
## 419 463 40 10.000 4 2 0 0 1 1 112 548 0 6.306275
## 420 464 27 11.000 3 2 2 0 0 1 21 81 1 4.394449
## 421 465 29 11.000 2 3 1 0 0 1 169 170 1 5.135798
## 422 466 34 12.000 4 3 6 0 0 1 28 29 1 3.367296
## 423 467 29 29.000 3 3 20 0 0 1 47 78 1 4.356709
## 424 468 35 27.000 1 3 5 0 0 1 20 81 1 4.394449
## 425 469 39 20.000 1 3 4 0 1 1 352 369 1 5.910797
## 426 470 41 9.000 4 2 0 0 1 1 66 69 1 4.234107
## 427 471 37 18.000 4 1 6 1 1 1 55 115 1 4.744932
## 428 472 30 10.000 3 2 7 0 1 1 344 361 1 5.888878
## 429 473 31 1.000 4 1 0 0 1 1 153 245 1 5.501258
## 430 474 40 5.000 4 2 8 0 0 1 184 233 1 5.451038
## 431 475 32 20.000 4 1 0 0 0 1 183 227 1 5.424950
## 432 476 32 7.000 4 2 3 1 0 1 22 97 1 4.574711
## 433 477 27 7.000 4 1 0 0 0 1 183 547 0 6.304449
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## 434 478 23 26.000 3 1 0 0 0 1 140 224 1 5.411646
## 435 479 23 4.000 4 1 2 0 0 1 19 211 1 5.351858
## 436 480 43 11.000 2 3 12 0 0 1 184 220 1 5.393628
## 437 481 24 20.000 4 1 0 0 0 1 50 54 1 3.988984
## 438 482 36 11.000 4 1 2 1 0 1 132 192 1 5.257495
## 439 483 29 31.000 1 3 1 0 0 1 128 138 1 4.927254
## 440 484 39 13.000 4 2 1 0 1 1 107 107 1 4.672829
## 441 485 23 6.000 4 1 0 0 1 1 368 597 0 6.391917
## 442 486 27 17.000 3 3 4 0 1 1 219 226 1 5.420535
## 443 487 26 5.000 4 2 5 0 1 1 374 434 1 6.073045
## 444 488 26 27.000 3 1 1 1 1 1 92 106 1 4.663439
## 445 489 25 9.000 4 1 0 0 1 1 45 180 1 5.192957
## 446 490 34 10.000 3 1 0 0 1 1 366 557 0 6.322565
## 447 491 45 5.000 4 3 2 0 1 1 368 556 0 6.320768
## 448 492 23 17.000 4 1 1 0 0 1 78 619 0 6.428105
## 449 493 26 7.000 4 1 0 0 0 1 184 546 0 6.302619
## 450 495 24 27.000 1 2 2 0 0 1 187 233 1 5.451038
## 451 496 30 23.000 2 3 2 1 0 1 101 102 1 4.624973
## 452 497 22 26.000 3 1 0 0 0 1 141 548 0 6.306275
## 453 498 25 10.000 3 1 1 0 0 1 24 99 1 4.595120
## 454 499 30 8.400 3 2 40 0 0 1 36 36 1 3.583519
## 455 501 33 23.000 4 1 0 1 1 1 56 78 1 4.356709
## 456 502 34 15.000 3 2 8 0 1 1 367 502 1 6.218600
## 457 503 29 24.000 3 1 2 0 1 1 70 71 1 4.262680
## 458 504 39 33.000 4 2 6 0 1 1 58 59 1 4.077537
## 459 506 26 21.000 3 1 4 0 1 1 366 533 0 6.278521
## 460 507 32 23.000 2 3 6 0 1 1 10 10 1 2.302585
## 461 508 42 23.100 1 3 2 0 0 1 214 274 1 5.613128
## 462 509 39 25.000 1 2 8 0 0 1 197 255 1 5.541264
## 463 510 36 2.000 4 1 0 1 0 1 89 503 0 6.220590
## 464 511 22 20.000 3 1 1 0 0 1 56 256 1 5.545177
## 465 512 27 23.000 4 1 1 0 0 1 9 9 1 2.197225
## 466 514 28 9.000 4 1 0 0 0 1 186 386 1 5.955837
## 467 515 36 28.000 3 2 1 0 1 1 303 547 0 6.304449
## 468 516 31 13.000 3 1 3 0 1 1 32 45 1 3.806662
## 469 517 27 22.000 3 2 4 0 1 1 8 58 1 4.060443
## 470 518 23 17.000 3 1 1 0 1 1 63 124 1 4.820282
## 471 519 24 20.000 3 2 20 0 0 1 108 540 0 6.291569
## 472 520 38 5.000 3 2 1 0 0 1 183 243 1 5.493061
## 473 521 25 8.000 4 1 1 0 1 1 151 549 0 6.308098
## 474 522 26 20.000 3 1 0 0 0 1 7 12 1 2.484907
## 475 523 22 34.000 3 1 2 0 0 1 38 51 1 3.931826
## 476 524 33 13.000 4 1 2 0 1 1 176 562 0 6.331502
## 477 525 30 23.000 1 3 7 0 1 1 93 94 1 4.543295
## 478 526 45 8.000 4 3 3 0 0 1 200 204 1 5.318120
## 479 527 24 15.000 3 2 0 0 0 1 178 238 1 5.472271
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## 480 528 27 22.000 4 1 0 0 1 1 78 140 1 4.941642
## 481 529 36 19.000 4 2 10 0 1 1 119 120 1 4.787492
## 482 530 38 23.000 4 2 2 1 0 1 154 154 1 5.036953
## 483 531 31 17.000 2 3 2 0 1 1 163 177 1 5.176150
## 484 532 40 22.000 4 2 7 0 1 1 118 119 1 4.779123
## 485 533 22 12.000 3 1 0 1 1 1 76 83 1 4.418841
## 486 534 31 13.000 4 1 0 1 1 1 116 130 1 4.867534
## 487 536 39 7.000 3 3 3 1 0 1 88 159 1 5.068904
## 488 538 33 14.000 3 1 1 0 0 1 33 33 1 3.496508
## 489 539 27 10.000 3 3 2 0 1 1 70 72 1 4.276666
## 490 540 37 7.000 4 1 2 1 1 1 68 161 1 5.081404
## 491 541 35 16.000 4 2 25 0 0 1 191 191 1 5.252273
## 492 542 25 11.000 3 1 5 0 0 1 35 181 1 5.198497
## 493 543 27 11.000 3 1 1 1 1 1 32 546 0 6.302619
## 494 544 34 15.000 4 1 0 0 0 1 28 540 0 6.291569
## 495 545 30 15.000 3 1 3 0 0 1 15 76 1 4.330733
## 496 546 35 17.000 1 3 7 0 0 1 7 7 1 1.945910
## 497 547 34 23.000 4 1 0 0 0 1 43 44 1 3.784190
## 498 548 25 23.000 3 2 5 0 0 1 89 103 1 4.634729
## 499 549 34 18.000 3 1 1 0 0 1 38 79 1 4.369448
## 500 550 24 23.000 4 3 3 0 0 1 204 339 1 5.826000
## 501 551 24 20.000 4 1 2 0 0 1 76 90 1 4.499810
## 502 552 40 36.000 4 1 3 0 0 1 195 542 0 6.295266
## 503 553 33 9.000 3 1 1 1 0 1 184 384 1 5.950643
## 504 554 38 14.000 4 2 1 1 1 1 254 255 1 5.541264
## 505 555 32 1.000 3 1 0 0 1 1 371 431 1 6.066108
## 506 556 33 3.000 4 1 1 0 0 1 196 587 0 6.375025
## 507 557 28 40.000 3 1 2 1 0 1 198 198 1 5.288267
## 508 558 31 13.000 3 3 2 0 0 1 170 551 0 6.311735
## 509 559 31 39.000 2 3 4 0 1 1 50 110 1 4.700480
## 510 560 33 24.000 4 1 0 0 1 1 163 541 0 6.293419
## 511 561 24 26.000 3 1 11 0 0 1 182 242 1 5.488938
## 512 562 26 18.000 3 1 3 0 0 1 150 537 0 6.285998
## 513 563 31 19.000 2 3 7 0 1 1 34 56 1 4.025352
## 514 564 40 14.700 2 3 4 0 1 1 34 34 1 3.526361
## 515 566 34 2.000 3 1 3 0 1 1 366 549 0 6.308098
## 516 567 30 11.000 3 2 7 0 0 1 133 133 1 4.890349
## 517 568 36 0.000 3 2 3 0 0 1 69 226 1 5.420535
## 518 569 38 17.000 2 3 6 0 1 1 366 401 1 5.993961
## 519 570 31 20.000 1 3 6 1 1 1 14 14 1 2.639057
## 520 571 27 22.000 2 2 2 0 0 1 184 548 0 6.306275
## 521 572 32 21.000 1 3 15 0 1 1 89 224 1 5.411646
## 522 573 35 23.000 3 1 5 1 0 1 183 540 0 6.291569
## 523 574 44 29.000 2 3 13 0 0 1 177 237 1 5.468060
## 524 575 31 5.000 2 3 10 0 1 1 154 354 1 5.869297
## 525 576 28 23.000 3 2 20 0 0 1 123 123 1 4.812184
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## 526 577 40 8.000 4 2 1 0 0 1 146 170 1 5.135798
## 527 578 25 12.000 3 1 10 1 1 1 203 203 1 5.313206
## 528 579 32 10.000 1 3 6 0 1 1 360 360 1 5.886104
## 529 580 29 15.750 4 1 2 0 0 1 79 139 1 4.934474
## 530 581 40 2.000 2 2 5 0 1 1 201 215 1 5.370638
## 531 582 27 9.000 4 2 0 0 1 1 129 129 1 4.859812
## 532 583 26 2.000 3 1 1 0 1 1 365 396 1 5.981414
## 533 584 34 15.000 3 1 4 1 1 1 159 547 0 6.304449
## 534 585 49 4.000 4 2 2 0 0 1 177 547 0 6.304449
## 535 586 21 25.000 1 3 1 0 1 1 71 71 1 4.262680
## 536 587 39 23.000 3 3 2 0 1 1 108 168 1 5.123964
## 537 588 33 15.000 4 2 4 0 1 1 198 228 1 5.429346
## 538 589 32 3.000 3 1 1 0 1 1 372 551 0 6.311735
## 539 590 35 9.000 4 2 6 0 0 1 25 654 0 6.483107
## 540 591 31 20.000 4 1 0 1 1 1 48 51 1 3.931826
## 541 592 28 5.000 4 1 3 0 0 1 191 548 0 6.306275
## 542 593 27 29.000 3 2 5 0 1 1 171 231 1 5.442418
## 543 594 29 21.000 2 1 1 1 1 1 145 280 1 5.634790
## 544 595 30 1.000 2 1 20 0 0 1 183 184 1 5.214936
## 545 596 27 18.000 4 1 3 1 0 1 72 86 1 4.454347
## 546 598 40 15.000 4 2 1 0 1 1 44 46 1 3.828641
## 547 599 37 20.000 3 1 2 1 1 1 140 200 1 5.298317
## 548 600 33 10.000 4 1 0 0 0 1 184 244 1 5.497168
## 549 601 28 20.000 4 1 2 0 0 1 94 182 1 5.204007
## 550 602 40 15.000 4 2 8 0 1 1 296 296 1 5.690359
## 551 603 48 20.000 4 1 0 1 0 1 23 24 1 3.178054
## 552 604 38 25.000 3 1 1 0 0 1 128 142 1 4.955827
## 553 605 35 13.000 4 1 0 0 0 1 106 120 1 4.787492
## 554 606 37 13.000 4 2 0 0 0 1 46 47 1 3.850148
## 555 607 25 15.000 3 1 0 1 1 1 150 519 1 6.251904
## 556 608 26 8.000 4 1 2 0 1 1 48 248 1 5.513429
## 557 609 30 9.000 3 3 3 0 0 1 29 31 1 3.433987
## 558 610 28 16.000 4 2 2 0 0 1 179 567 0 6.340359
## 559 611 23 11.000 2 3 4 0 0 1 170 353 1 5.866468
## 560 612 36 31.000 4 1 1 0 1 1 365 458 1 6.126869
## 561 613 36 13.000 4 2 4 0 1 1 400 554 0 6.317165
## 562 614 24 5.000 4 1 0 1 0 1 56 116 1 4.753590
## 563 615 33 9.000 3 2 5 0 0 1 24 74 1 4.304065
## 564 616 38 15.000 4 2 6 0 0 1 10 10 1 2.302585
## 565 617 41 20.000 3 3 21 0 1 1 354 355 1 5.872118
## 566 618 31 21.000 3 1 0 1 1 1 232 232 1 5.446737
## 567 619 31 23.000 4 2 11 0 1 1 54 68 1 4.219508
## 568 620 37 5.000 4 1 0 1 1 1 48 48 1 3.871201
## 569 621 37 17.000 4 2 4 1 0 1 57 60 1 4.094345
## 570 622 33 13.000 4 1 0 0 0 1 46 50 1 3.912023
## 571 624 53 9.000 4 2 6 0 0 1 39 126 1 4.836282
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## 572 625 37 20.000 2 3 4 0 0 1 17 18 1 2.890372
## 573 626 28 10.000 4 2 3 0 1 1 21 35 1 3.555348
## 574 627 35 17.000 1 3 2 0 0 1 184 379 1 5.937536
## 575 628 46 31.500 1 3 15 1 1 1 9 377 1 5.932245
## ND1 ND2 LNDT FRAC IV3
## 1 5.0000000 -8.04718956 0.6931472 0.68333333 1
## 2 1.1111111 -0.11706724 2.1972246 0.13888889 0
## 3 2.5000000 -2.29072683 1.3862944 0.03888889 1
## 4 5.0000000 -8.04718956 0.6931472 0.73333333 1
## 5 1.6666667 -0.85137604 1.7917595 0.96111111 0
## 6 5.0000000 -8.04718956 0.6931472 0.08888889 1
## 7 0.2857143 0.35793228 3.5553481 0.99444444 1
## 8 3.3333333 -4.01324268 1.0986123 0.11666667 1
## 9 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 10 1.2500000 -0.27892944 2.0794415 0.68888889 1
## 11 1.1111111 -0.11706724 2.1972246 0.97777778 1
## 12 5.0000000 -8.04718956 0.6931472 0.43888889 0
## 13 3.3333333 -4.01324268 1.0986123 1.01111111 1
## 14 1.1111111 -0.11706724 2.1972246 0.96666667 1
## 15 5.0000000 -8.04718956 0.6931472 1.00555556 1
## 16 2.5000000 -2.29072683 1.3862944 0.33888889 1
## 17 1.4285714 -0.50953563 1.9459101 0.98333333 1
## 18 5.0000000 -8.04718956 0.6931472 0.10555556 0
## 19 0.6250000 0.29375227 2.7725887 0.15000000 0
## 20 1.6666667 -0.85137604 1.7917595 0.97222222 1
## 21 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 22 1.1111111 -0.11706724 2.1972246 0.23333333 1
## 23 10.0000000 -23.02585093 0.0000000 0.53333333 0
## 24 1.0000000 0.00000000 2.3025851 1.00000000 1
## 25 1.4285714 -0.50953563 1.9459101 1.01111111 1
## 26 1.6666667 -0.85137604 1.7917595 0.96666667 1
## 27 2.5000000 -2.29072683 1.3862944 0.97777778 0
## 28 1.2500000 -0.27892944 2.0794415 0.10000000 1
## 29 1.0000000 0.00000000 2.3025851 1.04444444 1
## 30 0.9090909 0.08664562 2.3978953 1.01111111 0
## 31 5.0000000 -8.04718956 0.6931472 1.00000000 1
## 32 5.0000000 -8.04718956 0.6931472 0.98888889 1
## 33 1.6666667 -0.85137604 1.7917595 0.98888889 1
## 34 1.4285714 -0.50953563 1.9459101 1.11111111 0
## 35 2.5000000 -2.29072683 1.3862944 0.74444444 0
## 36 1.2500000 -0.27892944 2.0794415 0.13888889 1
## 37 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 38 5.0000000 -8.04718956 0.6931472 0.87777778 0
## 39 3.3333333 -4.01324268 1.0986123 0.87777778 0
## 40 10.0000000 -23.02585093 0.0000000 0.43333333 1
## 41 3.3333333 -4.01324268 1.0986123 0.46666667 0
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## 42 1.4285714 -0.50953563 1.9459101 0.50555556 1
## 43 5.0000000 -8.04718956 0.6931472 0.90000000 1
## 44 10.0000000 -23.02585093 0.0000000 0.25000000 1
## 45 5.0000000 -8.04718956 0.6931472 0.33888889 1
## 46 10.0000000 -23.02585093 0.0000000 0.10555556 1
## 47 3.3333333 -4.01324268 1.0986123 0.20555556 0
## 48 1.1111111 -0.11706724 2.1972246 0.28333333 1
## 49 5.0000000 -8.04718956 0.6931472 0.33333333 1
## 50 0.3846154 0.36750440 3.2580965 0.98333333 1
## 51 10.0000000 -23.02585093 0.0000000 0.23888889 0
## 52 2.5000000 -2.29072683 1.3862944 0.11666667 0
## 53 3.3333333 -4.01324268 1.0986123 0.97777778 1
## 54 1.4285714 -0.50953563 1.9459101 1.06666667 1
## 55 0.9090909 0.08664562 2.3978953 1.23333333 1
## 56 0.9090909 0.08664562 2.3978953 0.42222222 1
## 57 1.2500000 -0.27892944 2.0794415 0.16666667 0
## 58 1.6666667 -0.85137604 1.7917595 0.55555556 0
## 59 1.6666667 -0.85137604 1.7917595 0.67777778 1
## 60 5.0000000 -8.04718956 0.6931472 0.34444444 0
## 61 3.3333333 -4.01324268 1.0986123 0.12222222 0
## 62 1.4285714 -0.50953563 1.9459101 1.00000000 1
## 63 1.6666667 -0.85137604 1.7917595 0.12222222 1
## 64 1.6666667 -0.85137604 1.7917595 0.51111111 1
## 65 10.0000000 -23.02585093 0.0000000 0.42222222 1
## 66 10.0000000 -23.02585093 0.0000000 1.00000000 1
## 67 1.6666667 -0.85137604 1.7917595 0.97777778 1
## 68 0.7692308 0.20181866 2.5649494 1.01111111 1
## 69 1.4285714 -0.50953563 1.9459101 0.94444444 0
## 70 10.0000000 -23.02585093 0.0000000 1.00000000 0
## 71 1.6666667 -0.85137604 1.7917595 0.57777778 1
## 72 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 73 0.7142857 0.24033731 2.6390573 0.47777778 1
## 74 1.1111111 -0.11706724 2.1972246 0.41111111 1
## 75 10.0000000 -23.02585093 0.0000000 0.96666667 0
## 76 3.3333333 -4.01324268 1.0986123 0.22222222 0
## 77 5.0000000 -8.04718956 0.6931472 0.10000000 0
## 78 5.0000000 -8.04718956 0.6931472 0.94444444 1
## 79 3.3333333 -4.01324268 1.0986123 0.20000000 1
## 80 0.7692308 0.20181866 2.5649494 0.78888889 1
## 81 3.3333333 -4.01324268 1.0986123 0.97777778 1
## 82 5.0000000 -8.04718956 0.6931472 0.74444444 0
## 83 2.0000000 -1.38629436 1.6094379 0.33333333 1
## 84 5.0000000 -8.04718956 0.6931472 0.37777778 0
## 85 1.0000000 0.00000000 2.3025851 1.01111111 0
## 86 5.0000000 -8.04718956 0.6931472 1.01111111 1
## 87 5.0000000 -8.04718956 0.6931472 0.81111111 0
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## 88 5.0000000 -8.04718956 0.6931472 0.22222222 1
## 89 5.0000000 -8.04718956 0.6931472 0.98333333 0
## 90 3.3333333 -4.01324268 1.0986123 1.00555556 0
## 91 0.6250000 0.29375227 2.7725887 0.93333333 1
## 92 1.6666667 -0.85137604 1.7917595 0.50000000 1
## 93 1.6666667 -0.85137604 1.7917595 0.33888889 1
## 94 2.5000000 -2.29072683 1.3862944 0.35000000 0
## 95 1.1111111 -0.11706724 2.1972246 0.67222222 0
## 96 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 97 2.5000000 -2.29072683 1.3862944 0.28333333 0
## 98 5.0000000 -8.04718956 0.6931472 0.97777778 0
## 99 5.0000000 -8.04718956 0.6931472 0.27777778 1
## 100 2.5000000 -2.29072683 1.3862944 0.92222222 0
## 101 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 102 5.0000000 -8.04718956 0.6931472 0.26666667 1
## 103 0.4761905 0.35330350 3.0445224 0.07777778 1
## 104 5.0000000 -8.04718956 0.6931472 0.94444444 0
## 105 10.0000000 -23.02585093 0.0000000 0.98888889 0
## 106 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 107 10.0000000 -23.02585093 0.0000000 0.98888889 0
## 108 10.0000000 -23.02585093 0.0000000 0.91111111 0
## 109 2.5000000 -2.29072683 1.3862944 0.93333333 1
## 110 5.0000000 -8.04718956 0.6931472 0.33333333 1
## 111 1.4285714 -0.50953563 1.9459101 0.07777778 0
## 112 2.5000000 -2.29072683 1.3862944 0.93333333 1
## 113 10.0000000 -23.02585093 0.0000000 0.77777778 1
## 114 3.3333333 -4.01324268 1.0986123 0.84444444 0
## 115 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 116 5.0000000 -8.04718956 0.6931472 0.98888889 1
## 117 1.4285714 -0.50953563 1.9459101 0.48333333 1
## 118 10.0000000 -23.02585093 0.0000000 0.97222222 0
## 119 2.5000000 -2.29072683 1.3862944 0.48333333 0
## 120 0.5882353 0.31213427 2.8332133 0.61111111 0
## 121 5.0000000 -8.04718956 0.6931472 0.11666667 1
## 122 2.5000000 -2.29072683 1.3862944 0.77222222 0
## 123 0.6250000 0.29375227 2.7725887 1.00555556 1
## 124 3.3333333 -4.01324268 1.0986123 0.18333333 1
## 125 5.0000000 -8.04718956 0.6931472 0.21666667 1
## 126 1.2500000 -0.27892944 2.0794415 0.02222222 1
## 127 2.0000000 -1.38629436 1.6094379 1.02222222 1
## 128 5.0000000 -8.04718956 0.6931472 0.68333333 0
## 129 5.0000000 -8.04718956 0.6931472 0.97777778 0
## 130 3.3333333 -4.01324268 1.0986123 0.96666667 1
## 131 5.0000000 -8.04718956 0.6931472 1.00555556 1
## 132 3.3333333 -4.01324268 1.0986123 0.62777778 1
## 133 2.5000000 -2.29072683 1.3862944 0.91111111 1
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## 134 5.0000000 -8.04718956 0.6931472 0.93333333 1
## 135 1.1111111 -0.11706724 2.1972246 0.88888889 1
## 136 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 137 2.5000000 -2.29072683 1.3862944 1.07777778 0
## 138 2.5000000 -2.29072683 1.3862944 0.56666667 0
## 139 2.5000000 -2.29072683 1.3862944 1.01111111 1
## 140 2.0000000 -1.38629436 1.6094379 1.00000000 0
## 141 1.4285714 -0.50953563 1.9459101 0.51111111 1
## 142 5.0000000 -8.04718956 0.6931472 0.84444444 0
## 143 3.3333333 -4.01324268 1.0986123 0.83333333 1
## 144 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 145 1.6666667 -0.85137604 1.7917595 1.00000000 1
## 146 1.4285714 -0.50953563 1.9459101 0.03333333 1
## 147 2.5000000 -2.29072683 1.3862944 0.04444444 1
## 148 5.0000000 -8.04718956 0.6931472 0.18333333 0
## 149 1.1111111 -0.11706724 2.1972246 0.17222222 1
## 150 5.0000000 -8.04718956 0.6931472 0.96666667 0
## 151 3.3333333 -4.01324268 1.0986123 0.18888889 0
## 152 2.5000000 -2.29072683 1.3862944 0.33333333 0
## 153 1.6666667 -0.85137604 1.7917595 0.43333333 0
## 154 3.3333333 -4.01324268 1.0986123 1.01111111 0
## 155 5.0000000 -8.04718956 0.6931472 1.01111111 0
## 156 10.0000000 -23.02585093 0.0000000 0.43333333 0
## 157 5.0000000 -8.04718956 0.6931472 0.30555556 0
## 158 3.3333333 -4.01324268 1.0986123 1.23888889 0
## 159 0.4761905 0.35330350 3.0445224 0.13888889 0
## 160 10.0000000 -23.02585093 0.0000000 0.35000000 0
## 161 5.0000000 -8.04718956 0.6931472 0.73888889 0
## 162 1.6666667 -0.85137604 1.7917595 0.85555556 1
## 163 3.3333333 -4.01324268 1.0986123 0.38888889 0
## 164 5.0000000 -8.04718956 0.6931472 0.36666667 0
## 165 2.0000000 -1.38629436 1.6094379 0.22222222 1
## 166 5.0000000 -8.04718956 0.6931472 0.41666667 0
## 167 3.3333333 -4.01324268 1.0986123 1.03888889 0
## 168 3.3333333 -4.01324268 1.0986123 1.01666667 0
## 169 1.1111111 -0.11706724 2.1972246 1.01111111 0
## 170 3.3333333 -4.01324268 1.0986123 1.06666667 0
## 171 2.0000000 -1.38629436 1.6094379 0.90000000 1
## 172 3.3333333 -4.01324268 1.0986123 1.07222222 1
## 173 3.3333333 -4.01324268 1.0986123 0.61666667 0
## 174 1.1111111 -0.11706724 2.1972246 1.01111111 1
## 175 2.0000000 -1.38629436 1.6094379 1.00000000 0
## 176 10.0000000 -23.02585093 0.0000000 0.51666667 0
## 177 1.2500000 -0.27892944 2.0794415 0.92777778 0
## 178 3.3333333 -4.01324268 1.0986123 1.08888889 0
## 179 2.0000000 -1.38629436 1.6094379 0.58888889 0
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## 180 1.4285714 -0.50953563 1.9459101 0.87777778 1
## 181 5.0000000 -8.04718956 0.6931472 1.01111111 0
## 182 2.0000000 -1.38629436 1.6094379 0.98888889 0
## 183 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 184 0.9090909 0.08664562 2.3978953 0.97777778 1
## 185 10.0000000 -23.02585093 0.0000000 1.05555556 0
## 186 10.0000000 -23.02585093 0.0000000 0.05555556 1
## 187 1.1111111 -0.11706724 2.1972246 0.35555556 1
## 188 3.3333333 -4.01324268 1.0986123 1.02222222 0
## 189 2.5000000 -2.29072683 1.3862944 0.73333333 0
## 190 1.1111111 -0.11706724 2.1972246 1.00000000 0
## 191 2.5000000 -2.29072683 1.3862944 1.03333333 0
## 192 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 193 10.0000000 -23.02585093 0.0000000 1.01111111 0
## 194 1.1111111 -0.11706724 2.1972246 0.62222222 1
## 195 1.2500000 -0.27892944 2.0794415 1.00000000 1
## 196 2.5000000 -2.29072683 1.3862944 0.81111111 0
## 197 1.6666667 -0.85137604 1.7917595 0.94444444 0
## 198 2.5000000 -2.29072683 1.3862944 0.25555556 1
## 199 2.5000000 -2.29072683 1.3862944 0.94444444 1
## 200 1.6666667 -0.85137604 1.7917595 1.00000000 1
## 201 2.0000000 -1.38629436 1.6094379 0.58888889 0
## 202 3.3333333 -4.01324268 1.0986123 1.06666667 1
## 203 3.3333333 -4.01324268 1.0986123 0.92222222 0
## 204 1.1111111 -0.11706724 2.1972246 0.60000000 1
## 205 1.0000000 0.00000000 2.3025851 0.87777778 0
## 206 2.5000000 -2.29072683 1.3862944 0.90000000 1
## 207 2.0000000 -1.38629436 1.6094379 0.20000000 0
## 208 2.0000000 -1.38629436 1.6094379 1.02222222 1
## 209 0.9090909 0.08664562 2.3978953 0.21666667 0
## 210 10.0000000 -23.02585093 0.0000000 0.98333333 0
## 211 3.3333333 -4.01324268 1.0986123 0.67777778 1
## 212 2.0000000 -1.38629436 1.6094379 0.98888889 0
## 213 1.2500000 -0.27892944 2.0794415 0.96111111 0
## 214 0.3125000 0.36348463 3.4657359 0.29444444 1
## 215 1.6666667 -0.85137604 1.7917595 0.52222222 1
## 216 3.3333333 -4.01324268 1.0986123 0.90555556 0
## 217 1.4285714 -0.50953563 1.9459101 0.88888889 0
## 218 1.4285714 -0.50953563 1.9459101 0.33888889 0
## 219 0.7692308 0.20181866 2.5649494 0.22777778 0
## 220 1.6666667 -0.85137604 1.7917595 0.29444444 1
## 221 2.0000000 -1.38629436 1.6094379 0.29444444 1
## 222 0.8333333 0.15193463 2.4849066 0.07222222 0
## 223 2.5000000 -2.29072683 1.3862944 1.01666667 0
## 224 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 225 2.5000000 -2.29072683 1.3862944 1.01666667 1
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## 226 1.0000000 0.00000000 2.3025851 0.35000000 1
## 227 1.2500000 -0.27892944 2.0794415 0.61666667 1
## 228 3.3333333 -4.01324268 1.0986123 0.96666667 0
## 229 2.5000000 -2.29072683 1.3862944 0.96111111 1
## 230 3.3333333 -4.01324268 1.0986123 0.66111111 0
## 231 2.5000000 -2.29072683 1.3862944 1.00000000 0
## 232 3.3333333 -4.01324268 1.0986123 0.54444444 0
## 233 2.0000000 -1.38629436 1.6094379 0.27777778 0
## 234 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 235 0.5882353 0.31213427 2.8332133 0.55555556 1
## 236 2.0000000 -1.38629436 1.6094379 0.51666667 0
## 237 2.5000000 -2.29072683 1.3862944 0.91666667 1
## 238 10.0000000 -23.02585093 0.0000000 0.51666667 0
## 239 1.6666667 -0.85137604 1.7917595 0.48888889 1
## 240 1.6666667 -0.85137604 1.7917595 0.85555556 0
## 241 10.0000000 -23.02585093 0.0000000 1.01111111 0
## 242 3.3333333 -4.01324268 1.0986123 1.05555556 0
## 243 5.0000000 -8.04718956 0.6931472 0.91111111 1
## 244 1.6666667 -0.85137604 1.7917595 0.84444444 0
## 245 2.5000000 -2.29072683 1.3862944 0.05555556 0
## 246 1.2500000 -0.27892944 2.0794415 0.76666667 1
## 247 0.7692308 0.20181866 2.5649494 1.00000000 0
## 248 1.1111111 -0.11706724 2.1972246 0.21111111 0
## 249 2.0000000 -1.38629436 1.6094379 0.66666667 0
## 250 10.0000000 -23.02585093 0.0000000 0.76666667 0
## 251 1.1111111 -0.11706724 2.1972246 0.94444444 0
## 252 2.5000000 -2.29072683 1.3862944 1.02222222 1
## 253 2.5000000 -2.29072683 1.3862944 0.61111111 0
## 254 1.0000000 0.00000000 2.3025851 0.22222222 1
## 255 3.3333333 -4.01324268 1.0986123 0.96666667 1
## 256 10.0000000 -23.02585093 0.0000000 1.01111111 0
## 257 10.0000000 -23.02585093 0.0000000 0.10000000 0
## 258 1.4285714 -0.50953563 1.9459101 0.24444444 1
## 259 5.0000000 -8.04718956 0.6931472 0.96666667 0
## 260 0.9090909 0.08664562 2.3978953 0.95555556 1
## 261 1.2500000 -0.27892944 2.0794415 0.94444444 1
## 262 10.0000000 -23.02585093 0.0000000 0.92222222 0
## 263 1.4285714 -0.50953563 1.9459101 0.92222222 0
## 264 1.4285714 -0.50953563 1.9459101 1.02222222 0
## 265 2.5000000 -2.29072683 1.3862944 0.94444444 0
## 266 1.4285714 -0.50953563 1.9459101 0.40000000 0
## 267 3.3333333 -4.01324268 1.0986123 0.96666667 1
## 268 10.0000000 -23.02585093 0.0000000 0.31111111 0
## 269 1.6666667 -0.85137604 1.7917595 0.52222222 1
## 270 10.0000000 -23.02585093 0.0000000 0.41111111 1
## 271 5.0000000 -8.04718956 0.6931472 1.03333333 1
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## 272 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 273 2.5000000 -2.29072683 1.3862944 0.46666667 1
## 274 10.0000000 -23.02585093 0.0000000 0.07222222 0
## 275 0.7692308 0.20181866 2.5649494 0.47222222 1
## 276 2.5000000 -2.29072683 1.3862944 0.05000000 0
## 277 2.0000000 -1.38629436 1.6094379 0.90000000 0
## 278 0.4761905 0.35330350 3.0445224 0.25555556 1
## 279 0.4761905 0.35330350 3.0445224 0.28888889 1
## 280 1.0000000 0.00000000 2.3025851 0.93333333 0
## 281 1.6666667 -0.85137604 1.7917595 0.25555556 1
## 282 3.3333333 -4.01324268 1.0986123 0.95555556 0
## 283 2.0000000 -1.38629436 1.6094379 1.00000000 1
## 284 1.1111111 -0.11706724 2.1972246 0.81111111 1
## 285 1.2500000 -0.27892944 2.0794415 0.84444444 1
## 286 5.0000000 -8.04718956 0.6931472 0.10000000 0
## 287 2.5000000 -2.29072683 1.3862944 0.52222222 0
## 288 3.3333333 -4.01324268 1.0986123 0.42222222 0
## 289 2.5000000 -2.29072683 1.3862944 0.22222222 0
## 290 2.5000000 -2.29072683 1.3862944 0.97777778 0
## 291 10.0000000 -23.02585093 0.0000000 0.57777778 0
## 292 0.6250000 0.29375227 2.7725887 0.02777778 1
## 293 1.4285714 -0.50953563 1.9459101 0.99444444 0
## 294 1.1111111 -0.11706724 2.1972246 0.19444444 1
## 295 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 296 0.2777778 0.35581496 3.5835189 0.45555556 1
## 297 2.5000000 -2.29072683 1.3862944 0.15555556 0
## 298 10.0000000 -23.02585093 0.0000000 0.45000000 0
## 299 3.3333333 -4.01324268 1.0986123 0.02222222 0
## 300 2.0000000 -1.38629436 1.6094379 0.53888889 1
## 301 10.0000000 -23.02585093 0.0000000 0.43333333 0
## 302 2.5000000 -2.29072683 1.3862944 1.00555556 0
## 303 5.0000000 -8.04718956 0.6931472 0.16111111 0
## 304 5.0000000 -8.04718956 0.6931472 0.77222222 0
## 305 3.3333333 -4.01324268 1.0986123 0.84444444 1
## 306 1.6666667 -0.85137604 1.7917595 0.50000000 0
## 307 2.0000000 -1.38629436 1.6094379 0.34444444 1
## 308 0.7142857 0.24033731 2.6390573 0.61111111 0
## 309 0.6666667 0.27031007 2.7080502 0.08333333 0
## 310 1.6666667 -0.85137604 1.7917595 0.37777778 0
## 311 10.0000000 -23.02585093 0.0000000 0.10555556 0
## 312 1.4285714 -0.50953563 1.9459101 0.25555556 1
## 313 0.3225806 0.36496842 3.4339872 1.02222222 1
## 314 1.1111111 -0.11706724 2.1972246 1.04444444 1
## 315 1.4285714 -0.50953563 1.9459101 0.34444444 1
## 316 2.5000000 -2.29072683 1.3862944 0.31111111 0
## 317 0.9090909 0.08664562 2.3978953 0.64444444 1
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## 318 1.4285714 -0.50953563 1.9459101 1.25555556 1
## 319 2.5000000 -2.29072683 1.3862944 0.77777778 0
## 320 2.0000000 -1.38629436 1.6094379 1.00000000 1
## 321 1.4285714 -0.50953563 1.9459101 0.61111111 1
## 322 1.6666667 -0.85137604 1.7917595 0.98888889 1
## 323 1.2500000 -0.27892944 2.0794415 0.78888889 1
## 324 1.6666667 -0.85137604 1.7917595 0.93333333 0
## 325 2.0000000 -1.38629436 1.6094379 0.86666667 0
## 326 2.0000000 -1.38629436 1.6094379 0.66666667 0
## 327 1.4285714 -0.50953563 1.9459101 0.91111111 1
## 328 1.6666667 -0.85137604 1.7917595 0.90000000 0
## 329 2.5000000 -2.29072683 1.3862944 0.19444444 1
## 330 0.4347826 0.36213440 3.1354942 0.08888889 1
## 331 5.0000000 -8.04718956 0.6931472 0.03888889 0
## 332 2.0000000 -1.38629436 1.6094379 0.16666667 0
## 333 2.5000000 -2.29072683 1.3862944 0.58888889 0
## 334 0.9090909 0.08664562 2.3978953 0.96666667 0
## 335 5.0000000 -8.04718956 0.6931472 0.80000000 0
## 336 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 337 2.5000000 -2.29072683 1.3862944 0.09444444 0
## 338 2.0000000 -1.38629436 1.6094379 0.53888889 0
## 339 10.0000000 -23.02585093 0.0000000 0.14444444 1
## 340 3.3333333 -4.01324268 1.0986123 0.17222222 0
## 341 2.5000000 -2.29072683 1.3862944 0.15555556 1
## 342 3.3333333 -4.01324268 1.0986123 0.83333333 1
## 343 1.4285714 -0.50953563 1.9459101 0.22222222 1
## 344 2.0000000 -1.38629436 1.6094379 1.15555556 0
## 345 0.7692308 0.20181866 2.5649494 0.94444444 1
## 346 10.0000000 -23.02585093 0.0000000 1.22222222 0
## 347 0.5882353 0.31213427 2.8332133 1.11111111 1
## 348 5.0000000 -8.04718956 0.6931472 0.81111111 1
## 349 1.4285714 -0.50953563 1.9459101 0.72222222 1
## 350 0.4761905 0.35330350 3.0445224 0.83333333 1
## 351 5.0000000 -8.04718956 0.6931472 0.92222222 0
## 352 0.5555556 0.32654815 2.8903718 0.08333333 0
## 353 0.3225806 0.36496842 3.4339872 0.24444444 1
## 354 2.5000000 -2.29072683 1.3862944 0.03888889 0
## 355 2.0000000 -1.38629436 1.6094379 0.11111111 1
## 356 0.7692308 0.20181866 2.5649494 0.97222222 1
## 357 2.5000000 -2.29072683 1.3862944 0.39444444 0
## 358 3.3333333 -4.01324268 1.0986123 0.14444444 0
## 359 2.5000000 -2.29072683 1.3862944 0.89444444 1
## 360 1.0000000 0.00000000 2.3025851 0.20000000 0
## 361 1.1111111 -0.11706724 2.1972246 0.16666667 1
## 362 2.5000000 -2.29072683 1.3862944 0.99444444 0
## 363 3.3333333 -4.01324268 1.0986123 1.10555556 1
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## 364 2.5000000 -2.29072683 1.3862944 1.01111111 1
## 365 2.5000000 -2.29072683 1.3862944 1.24444444 0
## 366 1.4285714 -0.50953563 1.9459101 0.08888889 1
## 367 3.3333333 -4.01324268 1.0986123 0.20000000 0
## 368 1.4285714 -0.50953563 1.9459101 0.22222222 0
## 369 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 370 1.4285714 -0.50953563 1.9459101 0.97777778 0
## 371 0.4761905 0.35330350 3.0445224 0.84444444 1
## 372 5.0000000 -8.04718956 0.6931472 0.24444444 0
## 373 2.0000000 -1.38629436 1.6094379 1.22222222 1
## 374 2.5000000 -2.29072683 1.3862944 0.94444444 1
## 375 2.5000000 -2.29072683 1.3862944 0.11111111 1
## 376 0.5555556 0.32654815 2.8903718 0.87222222 1
## 377 0.3703704 0.36787103 3.2958369 0.73888889 1
## 378 2.5000000 -2.29072683 1.3862944 0.46111111 0
## 379 2.0000000 -1.38629436 1.6094379 0.84444444 0
## 380 2.0000000 -1.38629436 1.6094379 0.93888889 0
## 381 2.5000000 -2.29072683 1.3862944 0.49444444 0
## 382 1.6666667 -0.85137604 1.7917595 0.51111111 1
## 383 2.0000000 -1.38629436 1.6094379 0.11666667 0
## 384 0.3225806 0.36496842 3.4339872 0.17222222 1
## 385 5.0000000 -8.04718956 0.6931472 0.17222222 0
## 386 0.5882353 0.31213427 2.8332133 0.73888889 1
## 387 2.0000000 -1.38629436 1.6094379 0.85000000 1
## 388 10.0000000 -23.02585093 0.0000000 1.00000000 0
## 389 0.4761905 0.35330350 3.0445224 1.13333333 1
## 390 1.2500000 -0.27892944 2.0794415 0.94444444 1
## 391 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 392 0.7142857 0.24033731 2.6390573 0.31111111 1
## 393 5.0000000 -8.04718956 0.6931472 1.00000000 1
## 394 2.5000000 -2.29072683 1.3862944 0.93333333 0
## 395 2.5000000 -2.29072683 1.3862944 0.94444444 1
## 396 1.2500000 -0.27892944 2.0794415 0.40000000 1
## 397 0.9090909 0.08664562 2.3978953 0.82222222 1
## 398 10.0000000 -23.02585093 0.0000000 0.46666667 1
## 399 5.0000000 -8.04718956 0.6931472 1.00000000 1
## 400 10.0000000 -23.02585093 0.0000000 1.20000000 1
## 401 2.5000000 -2.29072683 1.3862944 0.54444444 1
## 402 5.0000000 -8.04718956 0.6931472 2.43333333 1
## 403 1.4285714 -0.50953563 1.9459101 1.20000000 1
## 404 10.0000000 -23.02585093 0.0000000 1.97777778 0
## 405 3.3333333 -4.01324268 1.0986123 0.46666667 0
## 406 1.2500000 -0.27892944 2.0794415 2.02222222 1
## 407 1.6666667 -0.85137604 1.7917595 0.06666667 0
## 408 2.5000000 -2.29072683 1.3862944 1.95000000 0
## 409 5.0000000 -8.04718956 0.6931472 0.06666667 0
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## 410 10.0000000 -23.02585093 0.0000000 0.03333333 1
## 411 5.0000000 -8.04718956 0.6931472 0.50555556 0
## 412 5.0000000 -8.04718956 0.6931472 1.36111111 0
## 413 5.0000000 -8.04718956 0.6931472 2.06666667 0
## 414 10.0000000 -23.02585093 0.0000000 1.21111111 0
## 415 10.0000000 -23.02585093 0.0000000 0.25555556 0
## 416 1.4285714 -0.50953563 1.9459101 2.01666667 1
## 417 10.0000000 -23.02585093 0.0000000 0.73888889 0
## 418 5.0000000 -8.04718956 0.6931472 0.03888889 1
## 419 10.0000000 -23.02585093 0.0000000 0.62222222 0
## 420 3.3333333 -4.01324268 1.0986123 0.23333333 0
## 421 5.0000000 -8.04718956 0.6931472 1.87777778 1
## 422 1.4285714 -0.50953563 1.9459101 0.31111111 1
## 423 0.4761905 0.35330350 3.0445224 0.52222222 1
## 424 1.6666667 -0.85137604 1.7917595 0.22222222 1
## 425 2.0000000 -1.38629436 1.6094379 1.95555556 1
## 426 10.0000000 -23.02585093 0.0000000 0.36666667 0
## 427 1.4285714 -0.50953563 1.9459101 0.30555556 0
## 428 1.2500000 -0.27892944 2.0794415 1.91111111 0
## 429 10.0000000 -23.02585093 0.0000000 0.85000000 0
## 430 1.1111111 -0.11706724 2.1972246 2.04444444 0
## 431 10.0000000 -23.02585093 0.0000000 2.03333333 0
## 432 2.5000000 -2.29072683 1.3862944 0.24444444 0
## 433 10.0000000 -23.02585093 0.0000000 2.03333333 0
## 434 10.0000000 -23.02585093 0.0000000 1.55555556 0
## 435 3.3333333 -4.01324268 1.0986123 0.21111111 0
## 436 0.7692308 0.20181866 2.5649494 2.04444444 1
## 437 10.0000000 -23.02585093 0.0000000 0.55555556 0
## 438 3.3333333 -4.01324268 1.0986123 1.46666667 0
## 439 5.0000000 -8.04718956 0.6931472 1.42222222 1
## 440 5.0000000 -8.04718956 0.6931472 0.59444444 0
## 441 10.0000000 -23.02585093 0.0000000 2.04444444 0
## 442 2.0000000 -1.38629436 1.6094379 1.21666667 1
## 443 1.6666667 -0.85137604 1.7917595 2.07777778 0
## 444 5.0000000 -8.04718956 0.6931472 0.51111111 0
## 445 10.0000000 -23.02585093 0.0000000 0.25000000 0
## 446 10.0000000 -23.02585093 0.0000000 2.03333333 0
## 447 3.3333333 -4.01324268 1.0986123 2.04444444 1
## 448 5.0000000 -8.04718956 0.6931472 0.86666667 0
## 449 10.0000000 -23.02585093 0.0000000 2.04444444 0
## 450 3.3333333 -4.01324268 1.0986123 2.07777778 0
## 451 3.3333333 -4.01324268 1.0986123 1.12222222 1
## 452 10.0000000 -23.02585093 0.0000000 1.56666667 0
## 453 5.0000000 -8.04718956 0.6931472 0.26666667 0
## 454 0.2439024 0.34414316 3.7135721 0.40000000 0
## 455 10.0000000 -23.02585093 0.0000000 0.31111111 0
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## 456 1.1111111 -0.11706724 2.1972246 2.03888889 0
## 457 3.3333333 -4.01324268 1.0986123 0.38888889 0
## 458 1.4285714 -0.50953563 1.9459101 0.32222222 0
## 459 2.0000000 -1.38629436 1.6094379 2.03333333 0
## 460 1.4285714 -0.50953563 1.9459101 0.05555556 1
## 461 3.3333333 -4.01324268 1.0986123 2.37777778 1
## 462 1.1111111 -0.11706724 2.1972246 2.18888889 0
## 463 10.0000000 -23.02585093 0.0000000 0.98888889 0
## 464 5.0000000 -8.04718956 0.6931472 0.62222222 0
## 465 5.0000000 -8.04718956 0.6931472 0.10000000 0
## 466 10.0000000 -23.02585093 0.0000000 2.06666667 0
## 467 5.0000000 -8.04718956 0.6931472 1.68333333 0
## 468 2.5000000 -2.29072683 1.3862944 0.17777778 0
## 469 2.0000000 -1.38629436 1.6094379 0.04444444 0
## 470 5.0000000 -8.04718956 0.6931472 0.35000000 0
## 471 0.4761905 0.35330350 3.0445224 1.20000000 0
## 472 5.0000000 -8.04718956 0.6931472 2.03333333 0
## 473 5.0000000 -8.04718956 0.6931472 0.83888889 0
## 474 10.0000000 -23.02585093 0.0000000 0.07777778 0
## 475 3.3333333 -4.01324268 1.0986123 0.42222222 0
## 476 3.3333333 -4.01324268 1.0986123 0.97777778 0
## 477 1.2500000 -0.27892944 2.0794415 0.51666667 1
## 478 2.5000000 -2.29072683 1.3862944 2.22222222 1
## 479 10.0000000 -23.02585093 0.0000000 1.97777778 0
## 480 10.0000000 -23.02585093 0.0000000 0.43333333 0
## 481 0.9090909 0.08664562 2.3978953 0.66111111 0
## 482 3.3333333 -4.01324268 1.0986123 1.71111111 0
## 483 3.3333333 -4.01324268 1.0986123 0.90555556 1
## 484 1.2500000 -0.27892944 2.0794415 0.65555556 0
## 485 10.0000000 -23.02585093 0.0000000 0.42222222 0
## 486 10.0000000 -23.02585093 0.0000000 0.64444444 0
## 487 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 488 5.0000000 -8.04718956 0.6931472 0.36666667 0
## 489 3.3333333 -4.01324268 1.0986123 0.38888889 1
## 490 3.3333333 -4.01324268 1.0986123 0.37777778 0
## 491 0.3846154 0.36750440 3.2580965 2.12222222 0
## 492 1.6666667 -0.85137604 1.7917595 0.38888889 0
## 493 5.0000000 -8.04718956 0.6931472 0.17777778 0
## 494 10.0000000 -23.02585093 0.0000000 0.31111111 0
## 495 2.5000000 -2.29072683 1.3862944 0.16666667 0
## 496 1.2500000 -0.27892944 2.0794415 0.07777778 1
## 497 10.0000000 -23.02585093 0.0000000 0.47777778 0
## 498 1.6666667 -0.85137604 1.7917595 0.98888889 0
## 499 5.0000000 -8.04718956 0.6931472 0.42222222 0
## 500 2.5000000 -2.29072683 1.3862944 2.26666667 1
## 501 3.3333333 -4.01324268 1.0986123 0.84444444 0
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## 502 2.5000000 -2.29072683 1.3862944 2.16666667 0
## 503 5.0000000 -8.04718956 0.6931472 2.04444444 0
## 504 5.0000000 -8.04718956 0.6931472 1.41111111 0
## 505 10.0000000 -23.02585093 0.0000000 2.06111111 0
## 506 5.0000000 -8.04718956 0.6931472 2.17777778 0
## 507 3.3333333 -4.01324268 1.0986123 2.20000000 0
## 508 3.3333333 -4.01324268 1.0986123 1.88888889 1
## 509 2.0000000 -1.38629436 1.6094379 0.27777778 1
## 510 10.0000000 -23.02585093 0.0000000 0.90555556 0
## 511 0.8333333 0.15193463 2.4849066 2.02222222 0
## 512 2.5000000 -2.29072683 1.3862944 1.66666667 0
## 513 1.2500000 -0.27892944 2.0794415 0.18888889 1
## 514 2.0000000 -1.38629436 1.6094379 0.18888889 1
## 515 2.5000000 -2.29072683 1.3862944 2.03333333 0
## 516 1.2500000 -0.27892944 2.0794415 1.47777778 0
## 517 2.5000000 -2.29072683 1.3862944 0.76666667 0
## 518 1.4285714 -0.50953563 1.9459101 2.03333333 1
## 519 1.4285714 -0.50953563 1.9459101 0.07777778 1
## 520 3.3333333 -4.01324268 1.0986123 2.04444444 0
## 521 0.6250000 0.29375227 2.7725887 0.49444444 1
## 522 1.6666667 -0.85137604 1.7917595 2.03333333 0
## 523 0.7142857 0.24033731 2.6390573 1.96666667 1
## 524 0.9090909 0.08664562 2.3978953 0.85555556 1
## 525 0.4761905 0.35330350 3.0445224 1.36666667 0
## 526 5.0000000 -8.04718956 0.6931472 1.62222222 0
## 527 0.9090909 0.08664562 2.3978953 1.12777778 0
## 528 1.4285714 -0.50953563 1.9459101 2.00000000 1
## 529 3.3333333 -4.01324268 1.0986123 0.87777778 0
## 530 1.6666667 -0.85137604 1.7917595 1.11666667 0
## 531 10.0000000 -23.02585093 0.0000000 0.71666667 0
## 532 5.0000000 -8.04718956 0.6931472 2.02777778 0
## 533 2.0000000 -1.38629436 1.6094379 0.88333333 0
## 534 3.3333333 -4.01324268 1.0986123 1.96666667 0
## 535 5.0000000 -8.04718956 0.6931472 0.39444444 1
## 536 3.3333333 -4.01324268 1.0986123 0.60000000 1
## 537 2.0000000 -1.38629436 1.6094379 1.10000000 0
## 538 5.0000000 -8.04718956 0.6931472 2.06666667 0
## 539 1.4285714 -0.50953563 1.9459101 0.27777778 0
## 540 10.0000000 -23.02585093 0.0000000 0.26666667 0
## 541 2.5000000 -2.29072683 1.3862944 2.12222222 0
## 542 1.6666667 -0.85137604 1.7917595 0.95000000 0
## 543 5.0000000 -8.04718956 0.6931472 0.80555556 0
## 544 0.4761905 0.35330350 3.0445224 2.03333333 0
## 545 2.5000000 -2.29072683 1.3862944 0.80000000 0
## 546 5.0000000 -8.04718956 0.6931472 0.24444444 0
## 547 3.3333333 -4.01324268 1.0986123 0.77777778 0
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## 548 10.0000000 -23.02585093 0.0000000 2.04444444 0
## 549 3.3333333 -4.01324268 1.0986123 1.04444444 0
## 550 1.1111111 -0.11706724 2.1972246 1.64444444 0
## 551 10.0000000 -23.02585093 0.0000000 0.25555556 0
## 552 5.0000000 -8.04718956 0.6931472 1.42222222 0
## 553 10.0000000 -23.02585093 0.0000000 1.17777778 0
## 554 10.0000000 -23.02585093 0.0000000 0.51111111 0
## 555 10.0000000 -23.02585093 0.0000000 0.83333333 0
## 556 3.3333333 -4.01324268 1.0986123 0.26666667 0
## 557 2.5000000 -2.29072683 1.3862944 0.32222222 1
## 558 3.3333333 -4.01324268 1.0986123 1.98888889 0
## 559 2.0000000 -1.38629436 1.6094379 1.88888889 1
## 560 5.0000000 -8.04718956 0.6931472 2.02777778 0
## 561 2.0000000 -1.38629436 1.6094379 2.22222222 0
## 562 10.0000000 -23.02585093 0.0000000 0.62222222 0
## 563 1.6666667 -0.85137604 1.7917595 0.26666667 0
## 564 1.4285714 -0.50953563 1.9459101 0.11111111 0
## 565 0.4545455 0.35838971 3.0910425 1.96666667 1
## 566 10.0000000 -23.02585093 0.0000000 1.28888889 0
## 567 0.8333333 0.15193463 2.4849066 0.30000000 0
## 568 10.0000000 -23.02585093 0.0000000 0.26666667 0
## 569 2.0000000 -1.38629436 1.6094379 0.63333333 0
## 570 10.0000000 -23.02585093 0.0000000 0.51111111 0
## 571 1.4285714 -0.50953563 1.9459101 0.43333333 0
## 572 2.0000000 -1.38629436 1.6094379 0.18888889 1
## 573 2.5000000 -2.29072683 1.3862944 0.11666667 0
## 574 3.3333333 -4.01324268 1.0986123 2.04444444 1
## 575 0.6250000 0.29375227 2.7725887 0.05000000 1

glimpse(uis)

## Rows: 575
## Columns: 18
## $ ID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, ~
## $ AGE <dbl> 39, 33, 33, 32, 24, 30, 39, 27, 40, 36, 38, 29, 32, 41, 31, 27,~
## $ BECK <dbl> 9.000, 34.000, 10.000, 20.000, 5.000, 32.550, 19.000, 10.000, 2~
## $ HC <dbl> 4, 4, 2, 4, 2, 3, 4, 4, 2, 2, 2, 3, 3, 1, 1, 2, 1, 4, 3, 2, 3, ~
## $ IV <dbl> 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 2, 1, 3, 1, ~
## $ NDT <dbl> 1, 8, 3, 1, 5, 1, 34, 2, 3, 7, 8, 1, 2, 8, 1, 3, 6, 1, 15, 5, 1~
## $ RACE <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, ~
## $ TREAT <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ SITE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ LEN.T <dbl> 123, 25, 7, 66, 173, 16, 179, 21, 176, 124, 176, 79, 182, 174, ~
## $ TIME <dbl> 188, 26, 207, 144, 551, 32, 459, 22, 210, 184, 212, 87, 598, 26~
## $ CENSOR <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, ~
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## $ Y <dbl> 5.236442, 3.258097, 5.332719, 4.969813, 6.311735, 3.465736, 6.1~
## $ ND1 <dbl> 5.0000000, 1.1111111, 2.5000000, 5.0000000, 1.6666667, 5.000000~
## $ ND2 <dbl> -8.0471896, -0.1170672, -2.2907268, -8.0471896, -0.8513760, -8.~
## $ LNDT <dbl> 0.6931472, 2.1972246, 1.3862944, 0.6931472, 1.7917595, 0.693147~
## $ FRAC <dbl> 0.68333333, 0.13888889, 0.03888889, 0.73333333, 0.96111111, 0.0~
## $ IV3 <dbl> 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, ~

To talk about the ANOVA procedure, we’ll use the BECK and IV variables. We
need to convert IV to a factor variable first (using the help file for guidance).
We’ll add it to a new tibble called uis2.

uis2 <- uis %>%
mutate(IV_fct = factor(IV, levels = c(1, 2, 3),

labels = c("Never", "Previous", "Recent")))
uis2

## ID AGE BECK HC IV NDT RACE TREAT SITE LEN.T TIME CENSOR Y
## 1 1 39 9.000 4 3 1 0 1 0 123 188 1 5.236442
## 2 2 33 34.000 4 2 8 0 1 0 25 26 1 3.258097
## 3 3 33 10.000 2 3 3 0 1 0 7 207 1 5.332719
## 4 4 32 20.000 4 3 1 0 0 0 66 144 1 4.969813
## 5 5 24 5.000 2 1 5 1 1 0 173 551 0 6.311735
## 6 6 30 32.550 3 3 1 0 1 0 16 32 1 3.465736
## 7 7 39 19.000 4 3 34 0 1 0 179 459 1 6.129050
## 8 8 27 10.000 4 3 2 0 1 0 21 22 1 3.091042
## 9 9 40 29.000 2 3 3 0 1 0 176 210 1 5.347108
## 10 10 36 25.000 2 3 7 0 1 0 124 184 1 5.214936
## 11 12 38 18.900 2 3 8 0 1 0 176 212 1 5.356586
## 12 13 29 16.000 3 1 1 0 1 0 79 87 1 4.465908
## 13 14 32 36.000 3 3 2 1 1 0 182 598 0 6.393591
## 14 15 41 19.000 1 3 8 0 1 0 174 260 1 5.560682
## 15 16 31 18.000 1 3 1 0 1 0 181 210 1 5.347108
## 16 17 27 12.000 2 3 3 0 1 0 61 84 1 4.430817
## 17 18 28 34.000 1 3 6 0 1 0 177 196 1 5.278115
## 18 19 28 23.000 4 2 1 0 1 0 19 19 1 2.944439
## 19 20 36 26.000 3 1 15 1 1 0 27 441 1 6.089045
## 20 21 32 18.900 2 3 5 0 1 0 175 449 1 6.107023
## 21 22 33 15.000 3 1 1 0 0 0 12 659 0 6.490724
## 22 23 28 25.200 1 3 8 0 0 0 21 21 1 3.044522
## 23 24 29 6.632 4 2 0 0 0 0 48 53 1 3.970292
## 24 25 35 2.100 2 3 9 0 0 0 90 225 1 5.416100
## 25 26 45 26.000 1 3 6 0 0 0 91 161 1 5.081404
## 26 27 35 39.789 4 3 5 0 0 0 87 87 1 4.465908
## 27 28 24 20.000 3 1 3 0 0 0 88 89 1 4.488636
## 28 29 36 16.000 1 3 7 0 0 0 9 44 1 3.784190
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## 29 31 39 22.000 1 3 9 0 0 0 94 523 0 6.259581
## 30 32 36 9.947 4 2 10 0 0 0 91 226 1 5.420535
## 31 33 37 9.450 4 3 1 0 0 0 90 259 1 5.556828
## 32 34 30 39.000 2 3 1 0 0 0 89 289 1 5.666427
## 33 35 44 41.000 1 3 5 0 0 0 89 103 1 4.634729
## 34 36 28 31.000 3 1 6 1 0 0 100 624 0 6.436150
## 35 37 25 20.000 3 1 3 1 0 0 67 68 1 4.219508
## 36 38 30 8.000 2 3 7 0 1 0 25 57 1 4.043051
## 37 39 24 9.000 4 1 1 0 0 0 12 65 1 4.174387
## 38 40 27 20.000 3 1 1 0 0 0 79 79 1 4.369448
## 39 41 30 8.000 3 1 2 1 0 0 79 559 0 6.326149
## 40 42 34 8.000 2 3 0 0 1 0 78 79 1 4.369448
## 41 43 33 23.000 4 2 2 0 1 0 84 87 1 4.465908
## 42 44 34 18.000 3 3 6 0 1 0 91 91 1 4.510860
## 43 45 36 13.000 2 3 1 0 1 0 162 297 1 5.693732
## 44 46 27 23.000 1 3 0 0 1 0 45 45 1 3.806662
## 45 47 35 9.000 4 3 1 1 1 0 61 246 1 5.505332
## 46 48 24 14.000 1 3 0 0 1 0 19 37 1 3.610918
## 47 49 28 23.000 4 1 2 1 1 0 37 37 1 3.610918
## 48 50 46 10.000 1 3 8 0 1 0 51 538 0 6.287859
## 49 51 26 11.000 3 3 1 0 1 0 60 541 0 6.293419
## 50 52 42 16.000 1 3 25 0 1 0 177 184 1 5.214936
## 51 53 30 0.000 3 1 0 0 1 0 43 122 1 4.804021
## 52 55 30 12.000 4 1 3 1 1 0 21 156 1 5.049856
## 53 56 27 21.000 2 3 2 0 0 0 88 121 1 4.795791
## 54 57 38 0.000 1 3 6 0 0 0 96 231 1 5.442418
## 55 58 48 8.000 4 3 10 0 0 0 111 111 1 4.709530
## 56 59 36 25.000 1 3 10 0 0 0 38 38 1 3.637586
## 57 60 28 6.300 3 1 7 0 0 0 15 15 1 2.708050
## 58 61 31 20.000 4 2 5 0 0 0 50 54 1 3.988984
## 59 62 28 4.000 2 3 5 0 0 0 61 127 1 4.844187
## 60 63 28 20.000 3 1 1 0 0 0 31 105 1 4.653960
## 61 64 26 17.000 2 1 2 1 0 0 11 11 1 2.397895
## 62 65 34 3.000 4 3 6 0 0 0 90 153 1 5.030438
## 63 66 26 29.000 2 3 5 0 0 0 11 11 1 2.397895
## 64 68 31 26.000 1 3 5 0 0 0 46 46 1 3.828641
## 65 69 41 12.000 1 3 0 1 0 0 38 655 0 6.484635
## 66 70 30 24.000 4 3 0 0 0 0 90 166 1 5.111988
## 67 72 39 15.750 4 3 5 0 0 0 88 95 1 4.553877
## 68 74 33 9.000 2 3 12 0 0 0 91 151 1 5.017280
## 69 75 33 18.000 4 2 6 0 0 0 85 220 1 5.393628
## 70 76 29 20.000 4 1 0 1 0 0 90 227 1 5.424950
## 71 77 36 17.000 1 3 5 0 0 0 52 343 1 5.837730
## 72 78 26 3.000 4 3 3 0 0 0 88 119 1 4.779123
## 73 79 37 27.000 1 3 13 0 0 0 43 43 1 3.761200
## 74 81 29 31.500 1 3 8 0 0 0 37 47 1 3.850148
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## 75 83 30 19.000 3 1 0 1 0 0 87 805 0 6.690842
## 76 84 35 15.000 3 2 2 0 0 0 20 321 1 5.771441
## 77 85 33 22.000 3 1 1 0 0 0 9 167 1 5.117994
## 78 87 36 16.000 2 3 1 0 0 0 85 491 1 6.196444
## 79 88 28 17.000 1 3 2 0 0 0 18 35 1 3.555348
## 80 89 31 32.550 1 3 12 1 0 0 71 123 1 4.812184
## 81 90 23 24.000 1 3 2 0 0 0 88 597 0 6.391917
## 82 91 33 22.000 3 2 1 0 0 0 67 762 0 6.635947
## 83 93 37 18.000 2 3 4 0 0 0 30 31 1 3.433987
## 84 94 25 17.850 3 1 1 0 1 0 68 228 1 5.429346
## 85 95 56 5.000 2 2 9 1 1 0 182 553 0 6.315358
## 86 96 23 39.000 1 3 1 0 1 0 182 190 1 5.247024
## 87 97 26 21.000 3 1 1 0 1 0 146 307 1 5.726848
## 88 98 26 11.000 1 3 1 0 1 0 40 73 1 4.290459
## 89 99 23 14.000 3 1 1 0 1 0 177 208 1 5.337538
## 90 100 28 31.000 4 2 2 1 1 0 181 267 1 5.587249
## 91 102 30 14.000 1 3 15 0 1 0 168 169 1 5.129899
## 92 104 25 6.000 2 3 5 0 1 0 90 655 0 6.484635
## 93 105 33 16.000 1 3 5 0 1 0 61 70 1 4.248495
## 94 106 22 6.000 3 1 3 1 1 0 63 398 1 5.986452
## 95 108 25 20.000 4 2 8 1 1 0 121 122 1 4.804021
## 96 111 38 9.000 3 1 1 1 0 0 89 96 1 4.564348
## 97 112 35 11.000 2 1 3 0 1 0 51 1172 0 7.066467
## 98 113 35 15.000 3 1 1 0 0 0 88 734 0 6.598509
## 99 114 25 13.000 3 3 1 0 0 0 25 26 1 3.258097
## 100 115 33 31.000 3 1 3 1 0 0 83 84 1 4.430817
## 101 116 30 5.000 3 1 2 1 0 0 89 171 1 5.141664
## 102 117 45 10.000 2 3 1 0 0 0 24 159 1 5.068904
## 103 119 42 23.000 2 3 20 0 0 0 7 7 1 1.945910
## 104 120 29 16.000 4 1 1 1 0 0 85 763 0 6.637258
## 105 121 24 37.800 3 1 0 0 0 0 89 104 1 4.644391
## 106 122 33 10.000 2 3 4 0 0 0 91 162 1 5.087596
## 107 123 32 9.000 3 1 0 0 0 0 89 90 1 4.499810
## 108 124 26 15.000 3 1 0 0 0 0 82 373 1 5.921578
## 109 125 28 2.000 1 3 3 0 0 0 84 115 1 4.744932
## 110 127 37 34.000 2 3 1 0 0 0 30 30 1 3.401197
## 111 128 23 11.000 4 1 6 0 0 0 7 8 1 2.079442
## 112 129 40 31.000 2 3 3 1 0 0 84 168 1 5.123964
## 113 130 36 36.750 3 3 0 0 0 0 70 70 1 4.248495
## 114 131 23 26.000 3 2 2 0 0 0 76 130 1 4.867534
## 115 132 35 5.000 4 1 1 1 0 0 89 285 1 5.652489
## 116 133 25 19.000 2 3 1 0 1 0 178 569 0 6.343880
## 117 134 35 21.000 2 3 6 0 1 0 87 87 1 4.465908
## 118 135 46 1.000 4 2 0 0 1 0 175 310 1 5.736572
## 119 136 32 6.000 4 1 3 0 1 0 87 87 1 4.465908
## 120 137 35 23.000 3 1 16 1 1 0 110 544 0 6.298949
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## 121 138 34 38.000 3 3 1 0 1 0 21 156 1 5.049856
## 122 139 43 24.000 3 1 3 0 1 0 139 658 0 6.489205
## 123 140 39 3.000 4 3 15 0 1 0 181 273 1 5.609472
## 124 141 27 16.800 4 3 2 1 1 0 33 168 1 5.123964
## 125 142 38 35.000 1 3 1 0 1 0 39 83 1 4.418841
## 126 143 37 11.000 2 3 7 0 1 0 4 4 1 1.386294
## 127 144 44 2.000 1 3 4 1 1 0 184 708 0 6.562444
## 128 145 25 16.000 4 1 1 1 1 0 123 137 1 4.919981
## 129 146 34 15.000 3 1 1 0 1 0 176 259 1 5.556828
## 130 147 34 11.000 3 3 2 1 1 0 174 560 0 6.327937
## 131 148 38 11.000 1 3 1 1 1 0 181 586 0 6.373320
## 132 149 24 22.000 2 3 2 1 1 0 113 190 1 5.247024
## 133 151 42 18.000 2 3 3 0 1 0 164 544 0 6.298949
## 134 153 34 29.000 4 3 1 1 0 0 84 494 1 6.202536
## 135 154 45 27.000 1 3 8 0 0 0 80 541 0 6.293419
## 136 155 40 16.000 2 3 4 0 0 0 91 94 1 4.543295
## 137 156 27 9.000 4 1 3 1 0 0 97 567 0 6.340359
## 138 157 24 0.000 4 1 3 0 0 0 51 55 1 4.007333
## 139 158 27 15.000 1 3 3 0 0 0 91 93 1 4.532599
## 140 159 34 24.000 3 1 4 0 0 0 90 276 1 5.620401
## 141 160 36 3.000 2 3 6 0 0 0 46 46 1 3.828641
## 142 162 31 9.000 3 1 1 0 0 0 76 250 1 5.521461
## 143 163 40 5.000 2 3 2 0 0 0 75 106 1 4.663439
## 144 164 40 13.000 1 3 4 1 0 0 91 552 0 6.313548
## 145 165 37 29.000 2 3 5 0 0 0 90 90 1 4.499810
## 146 166 25 11.000 4 3 6 0 0 0 3 203 1 5.313206
## 147 167 41 22.000 2 3 3 1 1 0 8 67 1 4.204693
## 148 168 22 9.000 4 1 1 0 1 0 33 559 1 6.326149
## 149 169 31 18.000 2 3 8 1 1 0 31 106 1 4.663439
## 150 170 29 40.000 1 1 1 1 1 0 174 374 1 5.924256
## 151 171 27 25.000 3 1 2 0 1 0 34 630 0 6.445720
## 152 172 22 26.000 4 2 3 0 1 0 60 61 1 4.110874
## 153 174 37 11.000 1 2 5 1 1 0 78 547 0 6.304449
## 154 175 36 6.000 3 1 2 1 1 0 182 568 0 6.342121
## 155 176 24 20.000 3 1 1 0 1 0 182 490 1 6.194405
## 156 177 28 9.000 4 1 0 1 1 0 78 222 1 5.402677
## 157 178 24 6.000 4 1 1 0 1 0 55 56 1 4.025352
## 158 179 28 0.000 3 1 2 0 1 0 223 282 1 5.641907
## 159 180 24 5.000 3 1 20 1 1 0 25 35 1 3.555348
## 160 181 24 15.000 4 1 0 0 1 0 63 603 0 6.401917
## 161 183 29 14.700 3 1 1 0 1 0 133 148 1 4.997212
## 162 184 37 3.000 1 3 5 1 1 0 154 354 1 5.869297
## 163 185 26 31.000 1 1 2 0 1 0 70 164 1 5.099866
## 164 186 29 14.000 3 2 1 0 1 0 66 94 1 4.543295
## 165 187 29 28.000 2 3 4 0 1 0 40 65 1 4.174387
## 166 188 33 18.000 4 1 1 0 1 0 75 567 0 6.340359
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## 167 189 29 12.000 4 2 2 0 1 0 187 634 0 6.452049
## 168 190 32 5.000 1 1 2 1 1 0 183 633 0 6.450470
## 169 192 33 11.000 4 1 8 1 1 0 182 477 1 6.167516
## 170 193 26 21.000 4 2 2 0 1 0 192 436 1 6.077642
## 171 195 24 23.000 2 3 4 1 1 0 162 362 1 5.891644
## 172 196 46 32.000 2 3 2 0 1 0 193 552 0 6.313548
## 173 197 23 26.000 4 1 2 0 1 0 111 144 1 4.969813
## 174 198 40 19.950 4 3 8 0 1 0 182 242 1 5.488938
## 175 199 48 17.000 3 1 4 0 1 0 180 564 0 6.335054
## 176 200 33 16.000 3 1 0 0 1 0 93 299 1 5.700444
## 177 201 21 26.250 4 1 7 0 1 0 167 167 1 5.117994
## 178 202 38 29.000 3 1 2 0 1 0 196 380 1 5.940171
## 179 203 28 23.000 4 2 4 0 1 0 106 120 1 4.787492
## 180 205 39 9.000 1 3 6 0 1 0 158 218 1 5.384495
## 181 206 37 26.000 1 2 1 1 0 0 91 115 1 4.744932
## 182 207 32 22.000 3 1 4 1 0 0 89 224 1 5.411646
## 183 208 39 23.000 3 2 2 1 0 0 89 132 1 4.882802
## 184 209 28 0.000 1 3 10 0 0 0 88 148 1 4.997212
## 185 210 26 30.000 3 1 0 1 0 0 95 593 0 6.385194
## 186 211 31 21.000 1 3 0 0 0 0 5 26 1 3.258097
## 187 213 34 19.000 4 3 8 0 0 0 32 32 1 3.465736
## 188 214 26 28.000 4 2 2 1 0 0 92 292 1 5.676754
## 189 215 29 8.000 4 1 3 0 0 0 66 89 1 4.488636
## 190 217 25 11.000 3 1 8 0 0 0 90 364 1 5.897154
## 191 218 34 15.000 3 2 3 1 0 0 93 142 1 4.955827
## 192 219 32 8.000 3 1 2 0 0 0 89 188 1 5.236442
## 193 221 38 14.000 4 2 0 0 0 0 91 92 1 4.521789
## 194 222 32 7.000 1 3 8 0 0 0 56 56 1 4.025352
## 195 223 31 13.000 2 3 7 0 0 0 90 110 1 4.700480
## 196 224 40 10.000 3 1 3 0 0 0 73 555 0 6.318968
## 197 225 28 17.000 4 1 5 1 0 0 85 220 1 5.393628
## 198 226 40 18.000 1 3 3 0 0 0 23 23 1 3.135494
## 199 227 32 5.000 2 3 3 0 0 0 85 285 1 5.652489
## 200 228 29 20.000 3 3 5 0 0 0 90 90 1 4.499810
## 201 229 25 31.000 3 1 4 0 0 0 53 59 1 4.077537
## 202 230 32 15.000 2 3 2 0 0 0 96 156 1 5.049856
## 203 232 37 4.000 2 2 2 0 0 0 83 142 1 4.955827
## 204 233 38 15.000 3 3 8 0 0 0 54 57 1 4.043051
## 205 234 31 14.000 3 2 9 0 0 0 79 279 1 5.631212
## 206 235 30 27.000 1 3 3 1 0 0 81 118 1 4.770685
## 207 236 34 30.000 4 1 4 1 0 0 18 567 0 6.340359
## 208 237 33 23.000 1 3 4 0 1 0 184 562 0 6.331502
## 209 238 36 13.000 3 2 10 1 1 0 39 239 1 5.476464
## 210 239 32 26.000 4 1 0 0 1 0 177 578 0 6.359574
## 211 240 29 10.000 2 3 2 1 1 0 122 551 0 6.311735
## 212 241 32 4.000 1 1 4 1 1 0 178 313 1 5.746203
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## 213 242 34 0.000 3 1 7 0 1 0 173 560 0 6.327937
## 214 243 26 35.000 1 3 31 0 1 0 53 54 1 3.988984
## 215 244 25 32.000 1 3 5 1 1 0 94 198 1 5.288267
## 216 245 30 2.000 4 1 2 1 1 0 163 164 1 5.099866
## 217 246 33 15.000 3 2 6 0 1 0 160 325 1 5.783825
## 218 247 40 23.000 4 2 6 0 1 0 61 62 1 4.127134
## 219 248 26 13.000 3 1 12 0 1 0 41 45 1 3.806662
## 220 249 26 29.000 1 3 5 1 1 0 53 53 1 3.970292
## 221 250 35 22.105 4 3 4 0 1 0 53 253 1 5.533389
## 222 251 26 15.000 2 2 11 0 1 0 13 51 1 3.931826
## 223 252 33 7.000 4 1 3 1 1 0 183 540 0 6.291569
## 224 253 27 7.000 1 3 4 0 1 0 182 317 1 5.758902
## 225 254 29 33.000 3 3 3 0 1 0 183 437 1 6.079933
## 226 255 29 23.000 3 3 9 0 1 0 63 136 1 4.912655
## 227 256 39 21.000 2 3 7 0 1 0 111 115 1 4.744932
## 228 257 43 19.000 3 2 2 1 1 0 174 175 1 5.164786
## 229 258 35 8.000 3 3 3 0 1 0 173 442 1 6.091310
## 230 259 26 24.000 4 1 2 1 1 0 119 122 1 4.804021
## 231 260 27 28.737 4 1 3 0 1 0 180 181 1 5.198497
## 232 261 28 20.000 4 1 2 1 1 0 98 180 1 5.192957
## 233 262 30 14.000 3 1 4 0 1 0 50 51 1 3.931826
## 234 263 31 17.000 4 2 1 1 1 0 178 541 0 6.293419
## 235 264 26 19.000 2 3 16 0 1 0 100 121 1 4.795791
## 236 265 36 5.000 4 2 4 0 1 0 93 328 1 5.793014
## 237 267 25 8.000 2 3 3 0 1 0 165 166 1 5.111988
## 238 268 26 22.000 3 1 0 1 1 0 93 556 0 6.320768
## 239 269 30 11.000 2 3 5 0 0 0 44 104 1 4.644391
## 240 270 28 13.000 3 1 5 0 0 0 77 102 1 4.624973
## 241 272 34 11.053 3 1 0 1 0 0 91 144 1 4.969813
## 242 273 31 24.000 3 1 2 0 0 0 95 545 0 6.300786
## 243 274 30 19.000 4 3 1 0 0 0 82 537 0 6.285998
## 244 275 35 27.000 3 2 5 1 0 0 76 625 0 6.437752
## 245 276 30 4.000 4 2 3 1 0 0 5 6 1 1.791759
## 246 277 37 38.000 1 3 7 0 0 0 69 307 1 5.726848
## 247 278 29 11.000 4 1 12 1 0 0 90 290 1 5.669881
## 248 279 23 21.000 4 1 8 0 0 0 19 20 1 2.995732
## 249 280 23 1.000 1 1 4 0 0 0 60 74 1 4.304065
## 250 281 44 4.000 4 1 0 0 0 0 69 100 1 4.605170
## 251 282 43 7.000 4 2 8 1 0 0 85 555 0 6.318968
## 252 283 38 20.000 2 3 3 0 0 0 92 152 1 5.023881
## 253 284 33 17.000 3 1 3 1 0 0 55 115 1 4.744932
## 254 285 36 6.300 1 3 9 0 0 0 20 92 1 4.521789
## 255 286 26 12.000 1 3 2 0 0 0 87 554 0 6.317165
## 256 287 30 16.000 4 1 0 0 0 0 91 92 1 4.521789
## 257 288 34 31.500 4 1 0 0 0 0 9 69 1 4.234107
## 258 289 32 30.000 2 3 6 0 0 0 22 25 1 3.218876
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## 259 290 30 1.000 3 1 1 0 0 0 87 501 0 6.216606
## 260 291 37 32.000 2 3 10 1 0 0 86 86 1 4.454347
## 261 292 35 29.000 2 3 7 0 0 0 85 99 1 4.595120
## 262 293 30 6.000 3 1 0 0 0 0 83 87 1 4.465908
## 263 294 34 17.000 4 1 6 1 0 0 83 136 1 4.912655
## 264 295 40 13.000 1 2 6 0 0 0 92 106 1 4.663439
## 265 296 28 15.000 4 2 3 1 0 0 85 220 1 5.393628
## 266 297 32 11.000 3 1 6 0 0 0 36 36 1 3.583519
## 267 298 45 17.000 1 3 2 1 0 0 87 162 1 5.087596
## 268 299 24 23.000 2 1 0 0 1 0 56 116 1 4.753590
## 269 300 43 23.000 1 3 5 1 1 0 94 175 1 5.164786
## 270 301 38 15.000 1 3 0 1 1 0 74 209 1 5.342334
## 271 302 33 19.000 2 3 1 0 1 0 186 545 0 6.300786
## 272 303 26 21.000 4 2 2 1 1 0 178 245 1 5.501258
## 273 304 40 8.000 4 3 3 0 1 0 84 176 1 5.170484
## 274 305 27 34.000 4 2 0 0 1 0 13 14 1 2.639057
## 275 306 39 21.000 2 3 12 0 1 0 85 113 1 4.727388
## 276 308 29 27.000 4 2 3 1 1 0 9 354 1 5.869297
## 277 309 28 32.000 4 2 4 0 1 0 162 174 1 5.159055
## 278 310 37 29.000 1 3 20 0 0 0 23 23 1 3.135494
## 279 311 37 22.000 2 3 20 0 0 0 26 26 1 3.258097
## 280 312 40 12.000 4 2 9 0 0 0 84 98 1 4.584967
## 281 313 25 36.000 1 3 5 0 0 0 23 23 1 3.135494
## 282 314 40 15.000 1 1 2 0 0 0 86 555 0 6.318968
## 283 315 40 3.000 1 3 4 1 0 0 90 290 1 5.669881
## 284 316 34 24.000 2 3 8 0 0 0 73 543 0 6.297109
## 285 317 41 18.000 2 3 7 0 0 0 76 274 1 5.613128
## 286 321 23 2.000 4 1 1 0 1 0 18 119 1 4.779123
## 287 322 36 14.000 3 1 3 0 1 0 94 164 1 5.099866
## 288 323 28 19.000 4 1 2 1 1 0 76 548 0 6.306275
## 289 324 23 7.000 3 1 3 0 1 0 40 175 1 5.164786
## 290 325 27 8.000 3 1 3 0 1 0 176 539 0 6.289716
## 291 326 32 27.000 4 2 0 0 1 0 104 155 1 5.043425
## 292 327 38 25.000 4 3 15 0 1 0 5 14 1 2.639057
## 293 328 38 28.000 4 1 6 1 1 0 179 187 1 5.231109
## 294 329 45 39.000 1 3 8 0 1 0 35 65 1 4.174387
## 295 330 26 18.000 2 2 1 0 1 0 24 159 1 5.068904
## 296 331 29 8.000 1 3 35 0 1 0 82 96 1 4.564348
## 297 332 33 31.000 4 1 3 0 1 0 28 243 1 5.493061
## 298 333 25 6.000 3 1 0 1 1 0 81 85 1 4.442651
## 299 334 36 19.000 4 1 2 0 1 0 4 4 1 1.386294
## 300 335 37 19.000 2 3 4 0 1 0 97 121 1 4.795791
## 301 336 29 16.000 4 1 0 1 1 0 78 659 1 6.490724
## 302 337 29 15.000 4 1 3 1 1 0 181 260 1 5.560682
## 303 338 35 54.000 4 2 1 0 1 0 29 621 0 6.431331
## 304 339 33 19.000 4 1 1 0 1 0 139 199 1 5.293305
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## 305 340 31 12.000 4 3 2 0 1 0 152 565 0 6.336826
## 306 341 37 24.000 3 2 5 1 1 0 90 183 1 5.209486
## 307 342 32 37.000 3 3 4 0 1 0 62 122 1 4.804021
## 308 343 33 9.000 3 2 13 0 1 0 110 170 1 5.135798
## 309 344 36 18.000 3 1 14 1 1 0 15 15 1 2.708050
## 310 345 26 4.000 1 1 5 0 1 0 68 268 1 5.590987
## 311 346 35 15.000 3 1 0 1 1 0 19 79 1 4.369448
## 312 347 25 19.000 1 3 6 1 0 0 23 23 1 3.135494
## 313 348 33 26.000 1 3 30 0 0 0 92 100 1 4.605170
## 314 349 36 28.000 2 3 8 0 0 0 94 98 1 4.584967
## 315 350 38 14.000 3 3 6 0 0 0 31 81 1 4.394449
## 316 351 36 15.000 3 2 3 1 0 0 28 546 0 6.302619
## 317 352 36 18.000 2 3 10 0 0 0 58 58 1 4.060443
## 318 353 35 29.000 3 3 6 0 0 0 113 569 0 6.343880
## 319 354 35 10.000 3 1 3 1 0 0 70 575 0 6.354370
## 320 356 39 16.000 2 3 4 0 0 0 90 91 1 4.510860
## 321 357 37 0.000 4 3 6 0 0 0 55 57 1 4.043051
## 322 358 30 31.000 2 3 5 0 0 0 89 499 1 6.212606
## 323 359 26 33.000 1 3 7 1 0 0 71 123 1 4.812184
## 324 360 39 21.000 4 1 5 0 0 0 84 143 1 4.962845
## 325 362 32 18.000 3 1 4 0 0 0 78 471 1 6.154858
## 326 363 26 37.800 3 1 4 1 0 0 60 74 1 4.304065
## 327 364 33 20.000 2 3 6 0 0 0 82 85 1 4.442651
## 328 365 36 11.000 4 2 5 0 0 0 81 95 1 4.553877
## 329 366 42 26.000 2 3 3 0 1 0 35 36 1 3.583519
## 330 367 37 43.000 1 3 22 0 1 0 16 19 1 2.944439
## 331 368 37 12.000 2 2 1 1 1 0 7 38 1 3.637586
## 332 369 32 22.000 3 1 4 1 1 0 30 539 0 6.289716
## 333 370 23 36.000 4 1 3 1 1 0 106 567 0 6.340359
## 334 371 21 16.000 4 1 10 0 1 0 174 186 1 5.225747
## 335 372 23 41.000 3 1 1 0 1 0 144 546 0 6.302619
## 336 373 34 16.000 4 2 1 0 1 0 24 24 1 3.178054
## 337 374 33 8.000 4 2 3 0 1 0 17 540 0 6.291569
## 338 375 33 10.000 3 1 4 1 1 0 97 157 1 5.056246
## 339 376 26 18.000 3 3 0 0 1 0 26 86 1 4.454347
## 340 377 28 27.000 4 1 2 1 1 0 31 231 1 5.442418
## 341 379 27 28.000 1 3 3 0 0 0 14 14 1 2.639057
## 342 380 22 23.000 1 3 2 0 0 0 75 75 1 4.317488
## 343 381 31 32.000 3 3 6 1 0 0 20 147 1 4.990433
## 344 382 29 23.100 3 1 4 0 0 0 104 105 1 4.653960
## 345 383 44 11.000 4 3 12 0 0 0 85 324 1 5.780744
## 346 384 26 7.000 3 1 0 1 0 0 110 538 0 6.287859
## 347 385 44 24.000 2 3 16 0 0 0 100 300 1 5.703782
## 348 386 34 12.000 1 3 1 0 0 0 73 73 1 4.290459
## 349 387 36 25.000 2 3 6 0 0 0 65 65 1 4.174387
## 350 388 43 4.000 2 3 20 0 0 0 75 568 1 6.342121



22.4. DATA PREPARATION AND EXPLORATION 743

## 351 389 37 5.000 3 1 1 0 0 0 83 84 1 4.430817
## 352 390 44 13.000 4 2 17 0 1 0 15 22 1 3.091042
## 353 391 31 17.000 1 3 30 1 1 0 44 44 1 3.784190
## 354 392 24 24.000 2 1 3 0 1 0 7 7 1 1.945910
## 355 394 37 32.000 3 3 4 0 1 0 20 21 1 3.044522
## 356 395 41 19.000 1 3 12 1 1 0 175 537 0 6.285998
## 357 396 32 9.000 3 1 3 1 1 0 71 186 1 5.225747
## 358 397 23 6.000 3 1 2 0 1 0 26 40 1 3.688879
## 359 398 33 10.000 2 3 3 0 1 0 161 287 1 5.659482
## 360 399 43 11.000 4 1 9 0 1 0 36 538 0 6.287859
## 361 400 33 16.000 4 3 8 0 1 0 30 30 1 3.401197
## 362 401 41 25.000 4 2 3 0 1 0 179 516 1 6.246107
## 363 402 41 17.000 2 3 2 0 1 0 199 268 1 5.590987
## 364 403 37 24.000 2 3 3 0 1 0 182 568 0 6.342121
## 365 404 26 27.000 1 1 3 0 0 0 112 131 1 4.875197
## 366 405 33 24.000 1 3 6 0 0 0 8 399 1 5.988961
## 367 406 30 26.000 3 1 2 0 0 0 18 78 1 4.356709
## 368 407 33 17.000 4 1 6 1 0 0 20 80 1 4.382027
## 369 408 33 26.000 2 3 3 0 0 0 88 102 1 4.624973
## 370 410 37 13.000 3 1 6 0 0 0 88 124 1 4.820282
## 371 411 44 11.000 2 3 20 0 0 0 76 80 1 4.382027
## 372 412 20 8.000 4 1 1 0 0 0 22 23 1 3.135494
## 373 413 33 12.000 1 3 4 0 0 0 110 274 1 5.613128
## 374 415 36 31.000 2 3 3 0 0 0 85 459 1 6.129050
## 375 416 34 8.400 2 3 3 0 0 0 10 10 1 2.302585
## 376 417 35 10.000 1 3 17 0 1 0 157 176 1 5.170484
## 377 418 38 16.000 2 3 26 0 1 0 133 332 1 5.805135
## 378 419 24 13.000 3 1 3 0 1 0 83 119 1 4.779123
## 379 420 24 18.000 3 1 4 0 1 0 152 217 1 5.379897
## 380 421 32 13.000 3 1 4 0 1 0 169 285 1 5.652489
## 381 422 35 11.000 4 2 3 0 1 0 89 576 0 6.356108
## 382 423 33 21.000 1 3 5 0 1 0 92 106 1 4.663439
## 383 424 29 37.000 2 2 4 1 1 0 21 81 1 4.394449
## 384 425 42 32.000 2 3 30 0 1 0 31 47 1 3.850148
## 385 426 23 33.000 4 1 1 0 1 0 31 76 1 4.330733
## 386 427 28 11.000 4 3 16 0 1 0 133 348 1 5.852202
## 387 429 43 29.000 2 3 4 0 1 0 153 306 1 5.723585
## 388 430 33 23.000 2 1 0 0 0 0 90 192 1 5.257495
## 389 431 37 15.000 1 3 20 0 0 0 102 216 1 5.375278
## 390 432 49 22.000 2 3 7 0 0 0 85 189 1 5.241747
## 391 434 36 25.000 3 1 1 1 0 0 89 193 1 5.262690
## 392 435 27 30.000 1 3 13 0 0 0 28 28 1 3.332205
## 393 436 35 23.000 1 3 1 0 0 0 90 150 1 5.010635
## 394 437 25 10.000 3 2 3 0 0 0 84 99 1 4.595120
## 395 438 33 8.000 1 3 3 0 0 0 85 510 0 6.234411
## 396 439 34 16.000 1 3 7 0 0 0 36 306 1 5.723585
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## 397 440 38 9.000 1 3 10 1 0 0 74 101 1 4.615121
## 398 441 36 12.158 2 3 0 1 0 0 42 102 1 4.624973
## 399 442 27 5.000 1 3 1 0 0 0 90 510 0 6.234411
## 400 444 40 19.000 1 3 0 1 0 0 108 503 0 6.220590
## 401 445 32 23.000 3 3 3 0 0 1 49 52 1 3.951244
## 402 446 38 28.000 3 3 1 1 0 1 219 547 0 6.304449
## 403 447 38 16.000 1 3 6 0 0 1 108 168 1 5.123964
## 404 448 23 25.000 4 1 0 0 0 1 178 461 1 6.133398
## 405 449 26 22.000 4 2 2 0 0 1 42 538 0 6.287859
## 406 450 36 28.000 2 3 7 0 0 1 182 349 1 5.855072
## 407 451 30 28.000 4 1 5 0 0 1 6 44 1 3.784190
## 408 452 31 18.000 4 2 3 0 1 1 351 548 0 6.306275
## 409 453 23 15.000 3 1 1 0 1 1 12 12 1 2.484907
## 410 454 43 9.000 1 3 0 1 1 1 6 6 1 1.791759
## 411 455 24 26.000 4 1 1 0 1 1 91 575 0 6.354370
## 412 456 42 19.000 4 1 1 0 1 1 245 589 0 6.378426
## 413 457 35 26.000 4 2 1 0 1 1 372 408 1 6.011267
## 414 458 21 10.000 4 1 0 0 1 1 218 232 1 5.446737
## 415 459 45 1.000 4 2 0 1 1 1 46 143 1 4.962845
## 416 460 43 30.000 2 3 6 0 1 1 363 582 0 6.366470
## 417 461 24 7.000 4 1 0 1 1 1 133 134 1 4.897840
## 418 462 37 11.000 3 3 1 0 1 1 7 7 1 1.945910
## 419 463 40 10.000 4 2 0 0 1 1 112 548 0 6.306275
## 420 464 27 11.000 3 2 2 0 0 1 21 81 1 4.394449
## 421 465 29 11.000 2 3 1 0 0 1 169 170 1 5.135798
## 422 466 34 12.000 4 3 6 0 0 1 28 29 1 3.367296
## 423 467 29 29.000 3 3 20 0 0 1 47 78 1 4.356709
## 424 468 35 27.000 1 3 5 0 0 1 20 81 1 4.394449
## 425 469 39 20.000 1 3 4 0 1 1 352 369 1 5.910797
## 426 470 41 9.000 4 2 0 0 1 1 66 69 1 4.234107
## 427 471 37 18.000 4 1 6 1 1 1 55 115 1 4.744932
## 428 472 30 10.000 3 2 7 0 1 1 344 361 1 5.888878
## 429 473 31 1.000 4 1 0 0 1 1 153 245 1 5.501258
## 430 474 40 5.000 4 2 8 0 0 1 184 233 1 5.451038
## 431 475 32 20.000 4 1 0 0 0 1 183 227 1 5.424950
## 432 476 32 7.000 4 2 3 1 0 1 22 97 1 4.574711
## 433 477 27 7.000 4 1 0 0 0 1 183 547 0 6.304449
## 434 478 23 26.000 3 1 0 0 0 1 140 224 1 5.411646
## 435 479 23 4.000 4 1 2 0 0 1 19 211 1 5.351858
## 436 480 43 11.000 2 3 12 0 0 1 184 220 1 5.393628
## 437 481 24 20.000 4 1 0 0 0 1 50 54 1 3.988984
## 438 482 36 11.000 4 1 2 1 0 1 132 192 1 5.257495
## 439 483 29 31.000 1 3 1 0 0 1 128 138 1 4.927254
## 440 484 39 13.000 4 2 1 0 1 1 107 107 1 4.672829
## 441 485 23 6.000 4 1 0 0 1 1 368 597 0 6.391917
## 442 486 27 17.000 3 3 4 0 1 1 219 226 1 5.420535
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## 443 487 26 5.000 4 2 5 0 1 1 374 434 1 6.073045
## 444 488 26 27.000 3 1 1 1 1 1 92 106 1 4.663439
## 445 489 25 9.000 4 1 0 0 1 1 45 180 1 5.192957
## 446 490 34 10.000 3 1 0 0 1 1 366 557 0 6.322565
## 447 491 45 5.000 4 3 2 0 1 1 368 556 0 6.320768
## 448 492 23 17.000 4 1 1 0 0 1 78 619 0 6.428105
## 449 493 26 7.000 4 1 0 0 0 1 184 546 0 6.302619
## 450 495 24 27.000 1 2 2 0 0 1 187 233 1 5.451038
## 451 496 30 23.000 2 3 2 1 0 1 101 102 1 4.624973
## 452 497 22 26.000 3 1 0 0 0 1 141 548 0 6.306275
## 453 498 25 10.000 3 1 1 0 0 1 24 99 1 4.595120
## 454 499 30 8.400 3 2 40 0 0 1 36 36 1 3.583519
## 455 501 33 23.000 4 1 0 1 1 1 56 78 1 4.356709
## 456 502 34 15.000 3 2 8 0 1 1 367 502 1 6.218600
## 457 503 29 24.000 3 1 2 0 1 1 70 71 1 4.262680
## 458 504 39 33.000 4 2 6 0 1 1 58 59 1 4.077537
## 459 506 26 21.000 3 1 4 0 1 1 366 533 0 6.278521
## 460 507 32 23.000 2 3 6 0 1 1 10 10 1 2.302585
## 461 508 42 23.100 1 3 2 0 0 1 214 274 1 5.613128
## 462 509 39 25.000 1 2 8 0 0 1 197 255 1 5.541264
## 463 510 36 2.000 4 1 0 1 0 1 89 503 0 6.220590
## 464 511 22 20.000 3 1 1 0 0 1 56 256 1 5.545177
## 465 512 27 23.000 4 1 1 0 0 1 9 9 1 2.197225
## 466 514 28 9.000 4 1 0 0 0 1 186 386 1 5.955837
## 467 515 36 28.000 3 2 1 0 1 1 303 547 0 6.304449
## 468 516 31 13.000 3 1 3 0 1 1 32 45 1 3.806662
## 469 517 27 22.000 3 2 4 0 1 1 8 58 1 4.060443
## 470 518 23 17.000 3 1 1 0 1 1 63 124 1 4.820282
## 471 519 24 20.000 3 2 20 0 0 1 108 540 0 6.291569
## 472 520 38 5.000 3 2 1 0 0 1 183 243 1 5.493061
## 473 521 25 8.000 4 1 1 0 1 1 151 549 0 6.308098
## 474 522 26 20.000 3 1 0 0 0 1 7 12 1 2.484907
## 475 523 22 34.000 3 1 2 0 0 1 38 51 1 3.931826
## 476 524 33 13.000 4 1 2 0 1 1 176 562 0 6.331502
## 477 525 30 23.000 1 3 7 0 1 1 93 94 1 4.543295
## 478 526 45 8.000 4 3 3 0 0 1 200 204 1 5.318120
## 479 527 24 15.000 3 2 0 0 0 1 178 238 1 5.472271
## 480 528 27 22.000 4 1 0 0 1 1 78 140 1 4.941642
## 481 529 36 19.000 4 2 10 0 1 1 119 120 1 4.787492
## 482 530 38 23.000 4 2 2 1 0 1 154 154 1 5.036953
## 483 531 31 17.000 2 3 2 0 1 1 163 177 1 5.176150
## 484 532 40 22.000 4 2 7 0 1 1 118 119 1 4.779123
## 485 533 22 12.000 3 1 0 1 1 1 76 83 1 4.418841
## 486 534 31 13.000 4 1 0 1 1 1 116 130 1 4.867534
## 487 536 39 7.000 3 3 3 1 0 1 88 159 1 5.068904
## 488 538 33 14.000 3 1 1 0 0 1 33 33 1 3.496508
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## 489 539 27 10.000 3 3 2 0 1 1 70 72 1 4.276666
## 490 540 37 7.000 4 1 2 1 1 1 68 161 1 5.081404
## 491 541 35 16.000 4 2 25 0 0 1 191 191 1 5.252273
## 492 542 25 11.000 3 1 5 0 0 1 35 181 1 5.198497
## 493 543 27 11.000 3 1 1 1 1 1 32 546 0 6.302619
## 494 544 34 15.000 4 1 0 0 0 1 28 540 0 6.291569
## 495 545 30 15.000 3 1 3 0 0 1 15 76 1 4.330733
## 496 546 35 17.000 1 3 7 0 0 1 7 7 1 1.945910
## 497 547 34 23.000 4 1 0 0 0 1 43 44 1 3.784190
## 498 548 25 23.000 3 2 5 0 0 1 89 103 1 4.634729
## 499 549 34 18.000 3 1 1 0 0 1 38 79 1 4.369448
## 500 550 24 23.000 4 3 3 0 0 1 204 339 1 5.826000
## 501 551 24 20.000 4 1 2 0 0 1 76 90 1 4.499810
## 502 552 40 36.000 4 1 3 0 0 1 195 542 0 6.295266
## 503 553 33 9.000 3 1 1 1 0 1 184 384 1 5.950643
## 504 554 38 14.000 4 2 1 1 1 1 254 255 1 5.541264
## 505 555 32 1.000 3 1 0 0 1 1 371 431 1 6.066108
## 506 556 33 3.000 4 1 1 0 0 1 196 587 0 6.375025
## 507 557 28 40.000 3 1 2 1 0 1 198 198 1 5.288267
## 508 558 31 13.000 3 3 2 0 0 1 170 551 0 6.311735
## 509 559 31 39.000 2 3 4 0 1 1 50 110 1 4.700480
## 510 560 33 24.000 4 1 0 0 1 1 163 541 0 6.293419
## 511 561 24 26.000 3 1 11 0 0 1 182 242 1 5.488938
## 512 562 26 18.000 3 1 3 0 0 1 150 537 0 6.285998
## 513 563 31 19.000 2 3 7 0 1 1 34 56 1 4.025352
## 514 564 40 14.700 2 3 4 0 1 1 34 34 1 3.526361
## 515 566 34 2.000 3 1 3 0 1 1 366 549 0 6.308098
## 516 567 30 11.000 3 2 7 0 0 1 133 133 1 4.890349
## 517 568 36 0.000 3 2 3 0 0 1 69 226 1 5.420535
## 518 569 38 17.000 2 3 6 0 1 1 366 401 1 5.993961
## 519 570 31 20.000 1 3 6 1 1 1 14 14 1 2.639057
## 520 571 27 22.000 2 2 2 0 0 1 184 548 0 6.306275
## 521 572 32 21.000 1 3 15 0 1 1 89 224 1 5.411646
## 522 573 35 23.000 3 1 5 1 0 1 183 540 0 6.291569
## 523 574 44 29.000 2 3 13 0 0 1 177 237 1 5.468060
## 524 575 31 5.000 2 3 10 0 1 1 154 354 1 5.869297
## 525 576 28 23.000 3 2 20 0 0 1 123 123 1 4.812184
## 526 577 40 8.000 4 2 1 0 0 1 146 170 1 5.135798
## 527 578 25 12.000 3 1 10 1 1 1 203 203 1 5.313206
## 528 579 32 10.000 1 3 6 0 1 1 360 360 1 5.886104
## 529 580 29 15.750 4 1 2 0 0 1 79 139 1 4.934474
## 530 581 40 2.000 2 2 5 0 1 1 201 215 1 5.370638
## 531 582 27 9.000 4 2 0 0 1 1 129 129 1 4.859812
## 532 583 26 2.000 3 1 1 0 1 1 365 396 1 5.981414
## 533 584 34 15.000 3 1 4 1 1 1 159 547 0 6.304449
## 534 585 49 4.000 4 2 2 0 0 1 177 547 0 6.304449
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## 535 586 21 25.000 1 3 1 0 1 1 71 71 1 4.262680
## 536 587 39 23.000 3 3 2 0 1 1 108 168 1 5.123964
## 537 588 33 15.000 4 2 4 0 1 1 198 228 1 5.429346
## 538 589 32 3.000 3 1 1 0 1 1 372 551 0 6.311735
## 539 590 35 9.000 4 2 6 0 0 1 25 654 0 6.483107
## 540 591 31 20.000 4 1 0 1 1 1 48 51 1 3.931826
## 541 592 28 5.000 4 1 3 0 0 1 191 548 0 6.306275
## 542 593 27 29.000 3 2 5 0 1 1 171 231 1 5.442418
## 543 594 29 21.000 2 1 1 1 1 1 145 280 1 5.634790
## 544 595 30 1.000 2 1 20 0 0 1 183 184 1 5.214936
## 545 596 27 18.000 4 1 3 1 0 1 72 86 1 4.454347
## 546 598 40 15.000 4 2 1 0 1 1 44 46 1 3.828641
## 547 599 37 20.000 3 1 2 1 1 1 140 200 1 5.298317
## 548 600 33 10.000 4 1 0 0 0 1 184 244 1 5.497168
## 549 601 28 20.000 4 1 2 0 0 1 94 182 1 5.204007
## 550 602 40 15.000 4 2 8 0 1 1 296 296 1 5.690359
## 551 603 48 20.000 4 1 0 1 0 1 23 24 1 3.178054
## 552 604 38 25.000 3 1 1 0 0 1 128 142 1 4.955827
## 553 605 35 13.000 4 1 0 0 0 1 106 120 1 4.787492
## 554 606 37 13.000 4 2 0 0 0 1 46 47 1 3.850148
## 555 607 25 15.000 3 1 0 1 1 1 150 519 1 6.251904
## 556 608 26 8.000 4 1 2 0 1 1 48 248 1 5.513429
## 557 609 30 9.000 3 3 3 0 0 1 29 31 1 3.433987
## 558 610 28 16.000 4 2 2 0 0 1 179 567 0 6.340359
## 559 611 23 11.000 2 3 4 0 0 1 170 353 1 5.866468
## 560 612 36 31.000 4 1 1 0 1 1 365 458 1 6.126869
## 561 613 36 13.000 4 2 4 0 1 1 400 554 0 6.317165
## 562 614 24 5.000 4 1 0 1 0 1 56 116 1 4.753590
## 563 615 33 9.000 3 2 5 0 0 1 24 74 1 4.304065
## 564 616 38 15.000 4 2 6 0 0 1 10 10 1 2.302585
## 565 617 41 20.000 3 3 21 0 1 1 354 355 1 5.872118
## 566 618 31 21.000 3 1 0 1 1 1 232 232 1 5.446737
## 567 619 31 23.000 4 2 11 0 1 1 54 68 1 4.219508
## 568 620 37 5.000 4 1 0 1 1 1 48 48 1 3.871201
## 569 621 37 17.000 4 2 4 1 0 1 57 60 1 4.094345
## 570 622 33 13.000 4 1 0 0 0 1 46 50 1 3.912023
## 571 624 53 9.000 4 2 6 0 0 1 39 126 1 4.836282
## 572 625 37 20.000 2 3 4 0 0 1 17 18 1 2.890372
## 573 626 28 10.000 4 2 3 0 1 1 21 35 1 3.555348
## 574 627 35 17.000 1 3 2 0 0 1 184 379 1 5.937536
## 575 628 46 31.500 1 3 15 1 1 1 9 377 1 5.932245
## ND1 ND2 LNDT FRAC IV3 IV_fct
## 1 5.0000000 -8.04718956 0.6931472 0.68333333 1 Recent
## 2 1.1111111 -0.11706724 2.1972246 0.13888889 0 Previous
## 3 2.5000000 -2.29072683 1.3862944 0.03888889 1 Recent
## 4 5.0000000 -8.04718956 0.6931472 0.73333333 1 Recent
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## 5 1.6666667 -0.85137604 1.7917595 0.96111111 0 Never
## 6 5.0000000 -8.04718956 0.6931472 0.08888889 1 Recent
## 7 0.2857143 0.35793228 3.5553481 0.99444444 1 Recent
## 8 3.3333333 -4.01324268 1.0986123 0.11666667 1 Recent
## 9 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 10 1.2500000 -0.27892944 2.0794415 0.68888889 1 Recent
## 11 1.1111111 -0.11706724 2.1972246 0.97777778 1 Recent
## 12 5.0000000 -8.04718956 0.6931472 0.43888889 0 Never
## 13 3.3333333 -4.01324268 1.0986123 1.01111111 1 Recent
## 14 1.1111111 -0.11706724 2.1972246 0.96666667 1 Recent
## 15 5.0000000 -8.04718956 0.6931472 1.00555556 1 Recent
## 16 2.5000000 -2.29072683 1.3862944 0.33888889 1 Recent
## 17 1.4285714 -0.50953563 1.9459101 0.98333333 1 Recent
## 18 5.0000000 -8.04718956 0.6931472 0.10555556 0 Previous
## 19 0.6250000 0.29375227 2.7725887 0.15000000 0 Never
## 20 1.6666667 -0.85137604 1.7917595 0.97222222 1 Recent
## 21 5.0000000 -8.04718956 0.6931472 0.13333333 0 Never
## 22 1.1111111 -0.11706724 2.1972246 0.23333333 1 Recent
## 23 10.0000000 -23.02585093 0.0000000 0.53333333 0 Previous
## 24 1.0000000 0.00000000 2.3025851 1.00000000 1 Recent
## 25 1.4285714 -0.50953563 1.9459101 1.01111111 1 Recent
## 26 1.6666667 -0.85137604 1.7917595 0.96666667 1 Recent
## 27 2.5000000 -2.29072683 1.3862944 0.97777778 0 Never
## 28 1.2500000 -0.27892944 2.0794415 0.10000000 1 Recent
## 29 1.0000000 0.00000000 2.3025851 1.04444444 1 Recent
## 30 0.9090909 0.08664562 2.3978953 1.01111111 0 Previous
## 31 5.0000000 -8.04718956 0.6931472 1.00000000 1 Recent
## 32 5.0000000 -8.04718956 0.6931472 0.98888889 1 Recent
## 33 1.6666667 -0.85137604 1.7917595 0.98888889 1 Recent
## 34 1.4285714 -0.50953563 1.9459101 1.11111111 0 Never
## 35 2.5000000 -2.29072683 1.3862944 0.74444444 0 Never
## 36 1.2500000 -0.27892944 2.0794415 0.13888889 1 Recent
## 37 5.0000000 -8.04718956 0.6931472 0.13333333 0 Never
## 38 5.0000000 -8.04718956 0.6931472 0.87777778 0 Never
## 39 3.3333333 -4.01324268 1.0986123 0.87777778 0 Never
## 40 10.0000000 -23.02585093 0.0000000 0.43333333 1 Recent
## 41 3.3333333 -4.01324268 1.0986123 0.46666667 0 Previous
## 42 1.4285714 -0.50953563 1.9459101 0.50555556 1 Recent
## 43 5.0000000 -8.04718956 0.6931472 0.90000000 1 Recent
## 44 10.0000000 -23.02585093 0.0000000 0.25000000 1 Recent
## 45 5.0000000 -8.04718956 0.6931472 0.33888889 1 Recent
## 46 10.0000000 -23.02585093 0.0000000 0.10555556 1 Recent
## 47 3.3333333 -4.01324268 1.0986123 0.20555556 0 Never
## 48 1.1111111 -0.11706724 2.1972246 0.28333333 1 Recent
## 49 5.0000000 -8.04718956 0.6931472 0.33333333 1 Recent
## 50 0.3846154 0.36750440 3.2580965 0.98333333 1 Recent
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## 51 10.0000000 -23.02585093 0.0000000 0.23888889 0 Never
## 52 2.5000000 -2.29072683 1.3862944 0.11666667 0 Never
## 53 3.3333333 -4.01324268 1.0986123 0.97777778 1 Recent
## 54 1.4285714 -0.50953563 1.9459101 1.06666667 1 Recent
## 55 0.9090909 0.08664562 2.3978953 1.23333333 1 Recent
## 56 0.9090909 0.08664562 2.3978953 0.42222222 1 Recent
## 57 1.2500000 -0.27892944 2.0794415 0.16666667 0 Never
## 58 1.6666667 -0.85137604 1.7917595 0.55555556 0 Previous
## 59 1.6666667 -0.85137604 1.7917595 0.67777778 1 Recent
## 60 5.0000000 -8.04718956 0.6931472 0.34444444 0 Never
## 61 3.3333333 -4.01324268 1.0986123 0.12222222 0 Never
## 62 1.4285714 -0.50953563 1.9459101 1.00000000 1 Recent
## 63 1.6666667 -0.85137604 1.7917595 0.12222222 1 Recent
## 64 1.6666667 -0.85137604 1.7917595 0.51111111 1 Recent
## 65 10.0000000 -23.02585093 0.0000000 0.42222222 1 Recent
## 66 10.0000000 -23.02585093 0.0000000 1.00000000 1 Recent
## 67 1.6666667 -0.85137604 1.7917595 0.97777778 1 Recent
## 68 0.7692308 0.20181866 2.5649494 1.01111111 1 Recent
## 69 1.4285714 -0.50953563 1.9459101 0.94444444 0 Previous
## 70 10.0000000 -23.02585093 0.0000000 1.00000000 0 Never
## 71 1.6666667 -0.85137604 1.7917595 0.57777778 1 Recent
## 72 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 73 0.7142857 0.24033731 2.6390573 0.47777778 1 Recent
## 74 1.1111111 -0.11706724 2.1972246 0.41111111 1 Recent
## 75 10.0000000 -23.02585093 0.0000000 0.96666667 0 Never
## 76 3.3333333 -4.01324268 1.0986123 0.22222222 0 Previous
## 77 5.0000000 -8.04718956 0.6931472 0.10000000 0 Never
## 78 5.0000000 -8.04718956 0.6931472 0.94444444 1 Recent
## 79 3.3333333 -4.01324268 1.0986123 0.20000000 1 Recent
## 80 0.7692308 0.20181866 2.5649494 0.78888889 1 Recent
## 81 3.3333333 -4.01324268 1.0986123 0.97777778 1 Recent
## 82 5.0000000 -8.04718956 0.6931472 0.74444444 0 Previous
## 83 2.0000000 -1.38629436 1.6094379 0.33333333 1 Recent
## 84 5.0000000 -8.04718956 0.6931472 0.37777778 0 Never
## 85 1.0000000 0.00000000 2.3025851 1.01111111 0 Previous
## 86 5.0000000 -8.04718956 0.6931472 1.01111111 1 Recent
## 87 5.0000000 -8.04718956 0.6931472 0.81111111 0 Never
## 88 5.0000000 -8.04718956 0.6931472 0.22222222 1 Recent
## 89 5.0000000 -8.04718956 0.6931472 0.98333333 0 Never
## 90 3.3333333 -4.01324268 1.0986123 1.00555556 0 Previous
## 91 0.6250000 0.29375227 2.7725887 0.93333333 1 Recent
## 92 1.6666667 -0.85137604 1.7917595 0.50000000 1 Recent
## 93 1.6666667 -0.85137604 1.7917595 0.33888889 1 Recent
## 94 2.5000000 -2.29072683 1.3862944 0.35000000 0 Never
## 95 1.1111111 -0.11706724 2.1972246 0.67222222 0 Previous
## 96 5.0000000 -8.04718956 0.6931472 0.98888889 0 Never
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## 97 2.5000000 -2.29072683 1.3862944 0.28333333 0 Never
## 98 5.0000000 -8.04718956 0.6931472 0.97777778 0 Never
## 99 5.0000000 -8.04718956 0.6931472 0.27777778 1 Recent
## 100 2.5000000 -2.29072683 1.3862944 0.92222222 0 Never
## 101 3.3333333 -4.01324268 1.0986123 0.98888889 0 Never
## 102 5.0000000 -8.04718956 0.6931472 0.26666667 1 Recent
## 103 0.4761905 0.35330350 3.0445224 0.07777778 1 Recent
## 104 5.0000000 -8.04718956 0.6931472 0.94444444 0 Never
## 105 10.0000000 -23.02585093 0.0000000 0.98888889 0 Never
## 106 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 107 10.0000000 -23.02585093 0.0000000 0.98888889 0 Never
## 108 10.0000000 -23.02585093 0.0000000 0.91111111 0 Never
## 109 2.5000000 -2.29072683 1.3862944 0.93333333 1 Recent
## 110 5.0000000 -8.04718956 0.6931472 0.33333333 1 Recent
## 111 1.4285714 -0.50953563 1.9459101 0.07777778 0 Never
## 112 2.5000000 -2.29072683 1.3862944 0.93333333 1 Recent
## 113 10.0000000 -23.02585093 0.0000000 0.77777778 1 Recent
## 114 3.3333333 -4.01324268 1.0986123 0.84444444 0 Previous
## 115 5.0000000 -8.04718956 0.6931472 0.98888889 0 Never
## 116 5.0000000 -8.04718956 0.6931472 0.98888889 1 Recent
## 117 1.4285714 -0.50953563 1.9459101 0.48333333 1 Recent
## 118 10.0000000 -23.02585093 0.0000000 0.97222222 0 Previous
## 119 2.5000000 -2.29072683 1.3862944 0.48333333 0 Never
## 120 0.5882353 0.31213427 2.8332133 0.61111111 0 Never
## 121 5.0000000 -8.04718956 0.6931472 0.11666667 1 Recent
## 122 2.5000000 -2.29072683 1.3862944 0.77222222 0 Never
## 123 0.6250000 0.29375227 2.7725887 1.00555556 1 Recent
## 124 3.3333333 -4.01324268 1.0986123 0.18333333 1 Recent
## 125 5.0000000 -8.04718956 0.6931472 0.21666667 1 Recent
## 126 1.2500000 -0.27892944 2.0794415 0.02222222 1 Recent
## 127 2.0000000 -1.38629436 1.6094379 1.02222222 1 Recent
## 128 5.0000000 -8.04718956 0.6931472 0.68333333 0 Never
## 129 5.0000000 -8.04718956 0.6931472 0.97777778 0 Never
## 130 3.3333333 -4.01324268 1.0986123 0.96666667 1 Recent
## 131 5.0000000 -8.04718956 0.6931472 1.00555556 1 Recent
## 132 3.3333333 -4.01324268 1.0986123 0.62777778 1 Recent
## 133 2.5000000 -2.29072683 1.3862944 0.91111111 1 Recent
## 134 5.0000000 -8.04718956 0.6931472 0.93333333 1 Recent
## 135 1.1111111 -0.11706724 2.1972246 0.88888889 1 Recent
## 136 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 137 2.5000000 -2.29072683 1.3862944 1.07777778 0 Never
## 138 2.5000000 -2.29072683 1.3862944 0.56666667 0 Never
## 139 2.5000000 -2.29072683 1.3862944 1.01111111 1 Recent
## 140 2.0000000 -1.38629436 1.6094379 1.00000000 0 Never
## 141 1.4285714 -0.50953563 1.9459101 0.51111111 1 Recent
## 142 5.0000000 -8.04718956 0.6931472 0.84444444 0 Never
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## 143 3.3333333 -4.01324268 1.0986123 0.83333333 1 Recent
## 144 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 145 1.6666667 -0.85137604 1.7917595 1.00000000 1 Recent
## 146 1.4285714 -0.50953563 1.9459101 0.03333333 1 Recent
## 147 2.5000000 -2.29072683 1.3862944 0.04444444 1 Recent
## 148 5.0000000 -8.04718956 0.6931472 0.18333333 0 Never
## 149 1.1111111 -0.11706724 2.1972246 0.17222222 1 Recent
## 150 5.0000000 -8.04718956 0.6931472 0.96666667 0 Never
## 151 3.3333333 -4.01324268 1.0986123 0.18888889 0 Never
## 152 2.5000000 -2.29072683 1.3862944 0.33333333 0 Previous
## 153 1.6666667 -0.85137604 1.7917595 0.43333333 0 Previous
## 154 3.3333333 -4.01324268 1.0986123 1.01111111 0 Never
## 155 5.0000000 -8.04718956 0.6931472 1.01111111 0 Never
## 156 10.0000000 -23.02585093 0.0000000 0.43333333 0 Never
## 157 5.0000000 -8.04718956 0.6931472 0.30555556 0 Never
## 158 3.3333333 -4.01324268 1.0986123 1.23888889 0 Never
## 159 0.4761905 0.35330350 3.0445224 0.13888889 0 Never
## 160 10.0000000 -23.02585093 0.0000000 0.35000000 0 Never
## 161 5.0000000 -8.04718956 0.6931472 0.73888889 0 Never
## 162 1.6666667 -0.85137604 1.7917595 0.85555556 1 Recent
## 163 3.3333333 -4.01324268 1.0986123 0.38888889 0 Never
## 164 5.0000000 -8.04718956 0.6931472 0.36666667 0 Previous
## 165 2.0000000 -1.38629436 1.6094379 0.22222222 1 Recent
## 166 5.0000000 -8.04718956 0.6931472 0.41666667 0 Never
## 167 3.3333333 -4.01324268 1.0986123 1.03888889 0 Previous
## 168 3.3333333 -4.01324268 1.0986123 1.01666667 0 Never
## 169 1.1111111 -0.11706724 2.1972246 1.01111111 0 Never
## 170 3.3333333 -4.01324268 1.0986123 1.06666667 0 Previous
## 171 2.0000000 -1.38629436 1.6094379 0.90000000 1 Recent
## 172 3.3333333 -4.01324268 1.0986123 1.07222222 1 Recent
## 173 3.3333333 -4.01324268 1.0986123 0.61666667 0 Never
## 174 1.1111111 -0.11706724 2.1972246 1.01111111 1 Recent
## 175 2.0000000 -1.38629436 1.6094379 1.00000000 0 Never
## 176 10.0000000 -23.02585093 0.0000000 0.51666667 0 Never
## 177 1.2500000 -0.27892944 2.0794415 0.92777778 0 Never
## 178 3.3333333 -4.01324268 1.0986123 1.08888889 0 Never
## 179 2.0000000 -1.38629436 1.6094379 0.58888889 0 Previous
## 180 1.4285714 -0.50953563 1.9459101 0.87777778 1 Recent
## 181 5.0000000 -8.04718956 0.6931472 1.01111111 0 Previous
## 182 2.0000000 -1.38629436 1.6094379 0.98888889 0 Never
## 183 3.3333333 -4.01324268 1.0986123 0.98888889 0 Previous
## 184 0.9090909 0.08664562 2.3978953 0.97777778 1 Recent
## 185 10.0000000 -23.02585093 0.0000000 1.05555556 0 Never
## 186 10.0000000 -23.02585093 0.0000000 0.05555556 1 Recent
## 187 1.1111111 -0.11706724 2.1972246 0.35555556 1 Recent
## 188 3.3333333 -4.01324268 1.0986123 1.02222222 0 Previous
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## 189 2.5000000 -2.29072683 1.3862944 0.73333333 0 Never
## 190 1.1111111 -0.11706724 2.1972246 1.00000000 0 Never
## 191 2.5000000 -2.29072683 1.3862944 1.03333333 0 Previous
## 192 3.3333333 -4.01324268 1.0986123 0.98888889 0 Never
## 193 10.0000000 -23.02585093 0.0000000 1.01111111 0 Previous
## 194 1.1111111 -0.11706724 2.1972246 0.62222222 1 Recent
## 195 1.2500000 -0.27892944 2.0794415 1.00000000 1 Recent
## 196 2.5000000 -2.29072683 1.3862944 0.81111111 0 Never
## 197 1.6666667 -0.85137604 1.7917595 0.94444444 0 Never
## 198 2.5000000 -2.29072683 1.3862944 0.25555556 1 Recent
## 199 2.5000000 -2.29072683 1.3862944 0.94444444 1 Recent
## 200 1.6666667 -0.85137604 1.7917595 1.00000000 1 Recent
## 201 2.0000000 -1.38629436 1.6094379 0.58888889 0 Never
## 202 3.3333333 -4.01324268 1.0986123 1.06666667 1 Recent
## 203 3.3333333 -4.01324268 1.0986123 0.92222222 0 Previous
## 204 1.1111111 -0.11706724 2.1972246 0.60000000 1 Recent
## 205 1.0000000 0.00000000 2.3025851 0.87777778 0 Previous
## 206 2.5000000 -2.29072683 1.3862944 0.90000000 1 Recent
## 207 2.0000000 -1.38629436 1.6094379 0.20000000 0 Never
## 208 2.0000000 -1.38629436 1.6094379 1.02222222 1 Recent
## 209 0.9090909 0.08664562 2.3978953 0.21666667 0 Previous
## 210 10.0000000 -23.02585093 0.0000000 0.98333333 0 Never
## 211 3.3333333 -4.01324268 1.0986123 0.67777778 1 Recent
## 212 2.0000000 -1.38629436 1.6094379 0.98888889 0 Never
## 213 1.2500000 -0.27892944 2.0794415 0.96111111 0 Never
## 214 0.3125000 0.36348463 3.4657359 0.29444444 1 Recent
## 215 1.6666667 -0.85137604 1.7917595 0.52222222 1 Recent
## 216 3.3333333 -4.01324268 1.0986123 0.90555556 0 Never
## 217 1.4285714 -0.50953563 1.9459101 0.88888889 0 Previous
## 218 1.4285714 -0.50953563 1.9459101 0.33888889 0 Previous
## 219 0.7692308 0.20181866 2.5649494 0.22777778 0 Never
## 220 1.6666667 -0.85137604 1.7917595 0.29444444 1 Recent
## 221 2.0000000 -1.38629436 1.6094379 0.29444444 1 Recent
## 222 0.8333333 0.15193463 2.4849066 0.07222222 0 Previous
## 223 2.5000000 -2.29072683 1.3862944 1.01666667 0 Never
## 224 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 225 2.5000000 -2.29072683 1.3862944 1.01666667 1 Recent
## 226 1.0000000 0.00000000 2.3025851 0.35000000 1 Recent
## 227 1.2500000 -0.27892944 2.0794415 0.61666667 1 Recent
## 228 3.3333333 -4.01324268 1.0986123 0.96666667 0 Previous
## 229 2.5000000 -2.29072683 1.3862944 0.96111111 1 Recent
## 230 3.3333333 -4.01324268 1.0986123 0.66111111 0 Never
## 231 2.5000000 -2.29072683 1.3862944 1.00000000 0 Never
## 232 3.3333333 -4.01324268 1.0986123 0.54444444 0 Never
## 233 2.0000000 -1.38629436 1.6094379 0.27777778 0 Never
## 234 5.0000000 -8.04718956 0.6931472 0.98888889 0 Previous
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## 235 0.5882353 0.31213427 2.8332133 0.55555556 1 Recent
## 236 2.0000000 -1.38629436 1.6094379 0.51666667 0 Previous
## 237 2.5000000 -2.29072683 1.3862944 0.91666667 1 Recent
## 238 10.0000000 -23.02585093 0.0000000 0.51666667 0 Never
## 239 1.6666667 -0.85137604 1.7917595 0.48888889 1 Recent
## 240 1.6666667 -0.85137604 1.7917595 0.85555556 0 Never
## 241 10.0000000 -23.02585093 0.0000000 1.01111111 0 Never
## 242 3.3333333 -4.01324268 1.0986123 1.05555556 0 Never
## 243 5.0000000 -8.04718956 0.6931472 0.91111111 1 Recent
## 244 1.6666667 -0.85137604 1.7917595 0.84444444 0 Previous
## 245 2.5000000 -2.29072683 1.3862944 0.05555556 0 Previous
## 246 1.2500000 -0.27892944 2.0794415 0.76666667 1 Recent
## 247 0.7692308 0.20181866 2.5649494 1.00000000 0 Never
## 248 1.1111111 -0.11706724 2.1972246 0.21111111 0 Never
## 249 2.0000000 -1.38629436 1.6094379 0.66666667 0 Never
## 250 10.0000000 -23.02585093 0.0000000 0.76666667 0 Never
## 251 1.1111111 -0.11706724 2.1972246 0.94444444 0 Previous
## 252 2.5000000 -2.29072683 1.3862944 1.02222222 1 Recent
## 253 2.5000000 -2.29072683 1.3862944 0.61111111 0 Never
## 254 1.0000000 0.00000000 2.3025851 0.22222222 1 Recent
## 255 3.3333333 -4.01324268 1.0986123 0.96666667 1 Recent
## 256 10.0000000 -23.02585093 0.0000000 1.01111111 0 Never
## 257 10.0000000 -23.02585093 0.0000000 0.10000000 0 Never
## 258 1.4285714 -0.50953563 1.9459101 0.24444444 1 Recent
## 259 5.0000000 -8.04718956 0.6931472 0.96666667 0 Never
## 260 0.9090909 0.08664562 2.3978953 0.95555556 1 Recent
## 261 1.2500000 -0.27892944 2.0794415 0.94444444 1 Recent
## 262 10.0000000 -23.02585093 0.0000000 0.92222222 0 Never
## 263 1.4285714 -0.50953563 1.9459101 0.92222222 0 Never
## 264 1.4285714 -0.50953563 1.9459101 1.02222222 0 Previous
## 265 2.5000000 -2.29072683 1.3862944 0.94444444 0 Previous
## 266 1.4285714 -0.50953563 1.9459101 0.40000000 0 Never
## 267 3.3333333 -4.01324268 1.0986123 0.96666667 1 Recent
## 268 10.0000000 -23.02585093 0.0000000 0.31111111 0 Never
## 269 1.6666667 -0.85137604 1.7917595 0.52222222 1 Recent
## 270 10.0000000 -23.02585093 0.0000000 0.41111111 1 Recent
## 271 5.0000000 -8.04718956 0.6931472 1.03333333 1 Recent
## 272 3.3333333 -4.01324268 1.0986123 0.98888889 0 Previous
## 273 2.5000000 -2.29072683 1.3862944 0.46666667 1 Recent
## 274 10.0000000 -23.02585093 0.0000000 0.07222222 0 Previous
## 275 0.7692308 0.20181866 2.5649494 0.47222222 1 Recent
## 276 2.5000000 -2.29072683 1.3862944 0.05000000 0 Previous
## 277 2.0000000 -1.38629436 1.6094379 0.90000000 0 Previous
## 278 0.4761905 0.35330350 3.0445224 0.25555556 1 Recent
## 279 0.4761905 0.35330350 3.0445224 0.28888889 1 Recent
## 280 1.0000000 0.00000000 2.3025851 0.93333333 0 Previous
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## 281 1.6666667 -0.85137604 1.7917595 0.25555556 1 Recent
## 282 3.3333333 -4.01324268 1.0986123 0.95555556 0 Never
## 283 2.0000000 -1.38629436 1.6094379 1.00000000 1 Recent
## 284 1.1111111 -0.11706724 2.1972246 0.81111111 1 Recent
## 285 1.2500000 -0.27892944 2.0794415 0.84444444 1 Recent
## 286 5.0000000 -8.04718956 0.6931472 0.10000000 0 Never
## 287 2.5000000 -2.29072683 1.3862944 0.52222222 0 Never
## 288 3.3333333 -4.01324268 1.0986123 0.42222222 0 Never
## 289 2.5000000 -2.29072683 1.3862944 0.22222222 0 Never
## 290 2.5000000 -2.29072683 1.3862944 0.97777778 0 Never
## 291 10.0000000 -23.02585093 0.0000000 0.57777778 0 Previous
## 292 0.6250000 0.29375227 2.7725887 0.02777778 1 Recent
## 293 1.4285714 -0.50953563 1.9459101 0.99444444 0 Never
## 294 1.1111111 -0.11706724 2.1972246 0.19444444 1 Recent
## 295 5.0000000 -8.04718956 0.6931472 0.13333333 0 Previous
## 296 0.2777778 0.35581496 3.5835189 0.45555556 1 Recent
## 297 2.5000000 -2.29072683 1.3862944 0.15555556 0 Never
## 298 10.0000000 -23.02585093 0.0000000 0.45000000 0 Never
## 299 3.3333333 -4.01324268 1.0986123 0.02222222 0 Never
## 300 2.0000000 -1.38629436 1.6094379 0.53888889 1 Recent
## 301 10.0000000 -23.02585093 0.0000000 0.43333333 0 Never
## 302 2.5000000 -2.29072683 1.3862944 1.00555556 0 Never
## 303 5.0000000 -8.04718956 0.6931472 0.16111111 0 Previous
## 304 5.0000000 -8.04718956 0.6931472 0.77222222 0 Never
## 305 3.3333333 -4.01324268 1.0986123 0.84444444 1 Recent
## 306 1.6666667 -0.85137604 1.7917595 0.50000000 0 Previous
## 307 2.0000000 -1.38629436 1.6094379 0.34444444 1 Recent
## 308 0.7142857 0.24033731 2.6390573 0.61111111 0 Previous
## 309 0.6666667 0.27031007 2.7080502 0.08333333 0 Never
## 310 1.6666667 -0.85137604 1.7917595 0.37777778 0 Never
## 311 10.0000000 -23.02585093 0.0000000 0.10555556 0 Never
## 312 1.4285714 -0.50953563 1.9459101 0.25555556 1 Recent
## 313 0.3225806 0.36496842 3.4339872 1.02222222 1 Recent
## 314 1.1111111 -0.11706724 2.1972246 1.04444444 1 Recent
## 315 1.4285714 -0.50953563 1.9459101 0.34444444 1 Recent
## 316 2.5000000 -2.29072683 1.3862944 0.31111111 0 Previous
## 317 0.9090909 0.08664562 2.3978953 0.64444444 1 Recent
## 318 1.4285714 -0.50953563 1.9459101 1.25555556 1 Recent
## 319 2.5000000 -2.29072683 1.3862944 0.77777778 0 Never
## 320 2.0000000 -1.38629436 1.6094379 1.00000000 1 Recent
## 321 1.4285714 -0.50953563 1.9459101 0.61111111 1 Recent
## 322 1.6666667 -0.85137604 1.7917595 0.98888889 1 Recent
## 323 1.2500000 -0.27892944 2.0794415 0.78888889 1 Recent
## 324 1.6666667 -0.85137604 1.7917595 0.93333333 0 Never
## 325 2.0000000 -1.38629436 1.6094379 0.86666667 0 Never
## 326 2.0000000 -1.38629436 1.6094379 0.66666667 0 Never
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## 327 1.4285714 -0.50953563 1.9459101 0.91111111 1 Recent
## 328 1.6666667 -0.85137604 1.7917595 0.90000000 0 Previous
## 329 2.5000000 -2.29072683 1.3862944 0.19444444 1 Recent
## 330 0.4347826 0.36213440 3.1354942 0.08888889 1 Recent
## 331 5.0000000 -8.04718956 0.6931472 0.03888889 0 Previous
## 332 2.0000000 -1.38629436 1.6094379 0.16666667 0 Never
## 333 2.5000000 -2.29072683 1.3862944 0.58888889 0 Never
## 334 0.9090909 0.08664562 2.3978953 0.96666667 0 Never
## 335 5.0000000 -8.04718956 0.6931472 0.80000000 0 Never
## 336 5.0000000 -8.04718956 0.6931472 0.13333333 0 Previous
## 337 2.5000000 -2.29072683 1.3862944 0.09444444 0 Previous
## 338 2.0000000 -1.38629436 1.6094379 0.53888889 0 Never
## 339 10.0000000 -23.02585093 0.0000000 0.14444444 1 Recent
## 340 3.3333333 -4.01324268 1.0986123 0.17222222 0 Never
## 341 2.5000000 -2.29072683 1.3862944 0.15555556 1 Recent
## 342 3.3333333 -4.01324268 1.0986123 0.83333333 1 Recent
## 343 1.4285714 -0.50953563 1.9459101 0.22222222 1 Recent
## 344 2.0000000 -1.38629436 1.6094379 1.15555556 0 Never
## 345 0.7692308 0.20181866 2.5649494 0.94444444 1 Recent
## 346 10.0000000 -23.02585093 0.0000000 1.22222222 0 Never
## 347 0.5882353 0.31213427 2.8332133 1.11111111 1 Recent
## 348 5.0000000 -8.04718956 0.6931472 0.81111111 1 Recent
## 349 1.4285714 -0.50953563 1.9459101 0.72222222 1 Recent
## 350 0.4761905 0.35330350 3.0445224 0.83333333 1 Recent
## 351 5.0000000 -8.04718956 0.6931472 0.92222222 0 Never
## 352 0.5555556 0.32654815 2.8903718 0.08333333 0 Previous
## 353 0.3225806 0.36496842 3.4339872 0.24444444 1 Recent
## 354 2.5000000 -2.29072683 1.3862944 0.03888889 0 Never
## 355 2.0000000 -1.38629436 1.6094379 0.11111111 1 Recent
## 356 0.7692308 0.20181866 2.5649494 0.97222222 1 Recent
## 357 2.5000000 -2.29072683 1.3862944 0.39444444 0 Never
## 358 3.3333333 -4.01324268 1.0986123 0.14444444 0 Never
## 359 2.5000000 -2.29072683 1.3862944 0.89444444 1 Recent
## 360 1.0000000 0.00000000 2.3025851 0.20000000 0 Never
## 361 1.1111111 -0.11706724 2.1972246 0.16666667 1 Recent
## 362 2.5000000 -2.29072683 1.3862944 0.99444444 0 Previous
## 363 3.3333333 -4.01324268 1.0986123 1.10555556 1 Recent
## 364 2.5000000 -2.29072683 1.3862944 1.01111111 1 Recent
## 365 2.5000000 -2.29072683 1.3862944 1.24444444 0 Never
## 366 1.4285714 -0.50953563 1.9459101 0.08888889 1 Recent
## 367 3.3333333 -4.01324268 1.0986123 0.20000000 0 Never
## 368 1.4285714 -0.50953563 1.9459101 0.22222222 0 Never
## 369 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 370 1.4285714 -0.50953563 1.9459101 0.97777778 0 Never
## 371 0.4761905 0.35330350 3.0445224 0.84444444 1 Recent
## 372 5.0000000 -8.04718956 0.6931472 0.24444444 0 Never



756 CHAPTER 22. ANOVA

## 373 2.0000000 -1.38629436 1.6094379 1.22222222 1 Recent
## 374 2.5000000 -2.29072683 1.3862944 0.94444444 1 Recent
## 375 2.5000000 -2.29072683 1.3862944 0.11111111 1 Recent
## 376 0.5555556 0.32654815 2.8903718 0.87222222 1 Recent
## 377 0.3703704 0.36787103 3.2958369 0.73888889 1 Recent
## 378 2.5000000 -2.29072683 1.3862944 0.46111111 0 Never
## 379 2.0000000 -1.38629436 1.6094379 0.84444444 0 Never
## 380 2.0000000 -1.38629436 1.6094379 0.93888889 0 Never
## 381 2.5000000 -2.29072683 1.3862944 0.49444444 0 Previous
## 382 1.6666667 -0.85137604 1.7917595 0.51111111 1 Recent
## 383 2.0000000 -1.38629436 1.6094379 0.11666667 0 Previous
## 384 0.3225806 0.36496842 3.4339872 0.17222222 1 Recent
## 385 5.0000000 -8.04718956 0.6931472 0.17222222 0 Never
## 386 0.5882353 0.31213427 2.8332133 0.73888889 1 Recent
## 387 2.0000000 -1.38629436 1.6094379 0.85000000 1 Recent
## 388 10.0000000 -23.02585093 0.0000000 1.00000000 0 Never
## 389 0.4761905 0.35330350 3.0445224 1.13333333 1 Recent
## 390 1.2500000 -0.27892944 2.0794415 0.94444444 1 Recent
## 391 5.0000000 -8.04718956 0.6931472 0.98888889 0 Never
## 392 0.7142857 0.24033731 2.6390573 0.31111111 1 Recent
## 393 5.0000000 -8.04718956 0.6931472 1.00000000 1 Recent
## 394 2.5000000 -2.29072683 1.3862944 0.93333333 0 Previous
## 395 2.5000000 -2.29072683 1.3862944 0.94444444 1 Recent
## 396 1.2500000 -0.27892944 2.0794415 0.40000000 1 Recent
## 397 0.9090909 0.08664562 2.3978953 0.82222222 1 Recent
## 398 10.0000000 -23.02585093 0.0000000 0.46666667 1 Recent
## 399 5.0000000 -8.04718956 0.6931472 1.00000000 1 Recent
## 400 10.0000000 -23.02585093 0.0000000 1.20000000 1 Recent
## 401 2.5000000 -2.29072683 1.3862944 0.54444444 1 Recent
## 402 5.0000000 -8.04718956 0.6931472 2.43333333 1 Recent
## 403 1.4285714 -0.50953563 1.9459101 1.20000000 1 Recent
## 404 10.0000000 -23.02585093 0.0000000 1.97777778 0 Never
## 405 3.3333333 -4.01324268 1.0986123 0.46666667 0 Previous
## 406 1.2500000 -0.27892944 2.0794415 2.02222222 1 Recent
## 407 1.6666667 -0.85137604 1.7917595 0.06666667 0 Never
## 408 2.5000000 -2.29072683 1.3862944 1.95000000 0 Previous
## 409 5.0000000 -8.04718956 0.6931472 0.06666667 0 Never
## 410 10.0000000 -23.02585093 0.0000000 0.03333333 1 Recent
## 411 5.0000000 -8.04718956 0.6931472 0.50555556 0 Never
## 412 5.0000000 -8.04718956 0.6931472 1.36111111 0 Never
## 413 5.0000000 -8.04718956 0.6931472 2.06666667 0 Previous
## 414 10.0000000 -23.02585093 0.0000000 1.21111111 0 Never
## 415 10.0000000 -23.02585093 0.0000000 0.25555556 0 Previous
## 416 1.4285714 -0.50953563 1.9459101 2.01666667 1 Recent
## 417 10.0000000 -23.02585093 0.0000000 0.73888889 0 Never
## 418 5.0000000 -8.04718956 0.6931472 0.03888889 1 Recent
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## 419 10.0000000 -23.02585093 0.0000000 0.62222222 0 Previous
## 420 3.3333333 -4.01324268 1.0986123 0.23333333 0 Previous
## 421 5.0000000 -8.04718956 0.6931472 1.87777778 1 Recent
## 422 1.4285714 -0.50953563 1.9459101 0.31111111 1 Recent
## 423 0.4761905 0.35330350 3.0445224 0.52222222 1 Recent
## 424 1.6666667 -0.85137604 1.7917595 0.22222222 1 Recent
## 425 2.0000000 -1.38629436 1.6094379 1.95555556 1 Recent
## 426 10.0000000 -23.02585093 0.0000000 0.36666667 0 Previous
## 427 1.4285714 -0.50953563 1.9459101 0.30555556 0 Never
## 428 1.2500000 -0.27892944 2.0794415 1.91111111 0 Previous
## 429 10.0000000 -23.02585093 0.0000000 0.85000000 0 Never
## 430 1.1111111 -0.11706724 2.1972246 2.04444444 0 Previous
## 431 10.0000000 -23.02585093 0.0000000 2.03333333 0 Never
## 432 2.5000000 -2.29072683 1.3862944 0.24444444 0 Previous
## 433 10.0000000 -23.02585093 0.0000000 2.03333333 0 Never
## 434 10.0000000 -23.02585093 0.0000000 1.55555556 0 Never
## 435 3.3333333 -4.01324268 1.0986123 0.21111111 0 Never
## 436 0.7692308 0.20181866 2.5649494 2.04444444 1 Recent
## 437 10.0000000 -23.02585093 0.0000000 0.55555556 0 Never
## 438 3.3333333 -4.01324268 1.0986123 1.46666667 0 Never
## 439 5.0000000 -8.04718956 0.6931472 1.42222222 1 Recent
## 440 5.0000000 -8.04718956 0.6931472 0.59444444 0 Previous
## 441 10.0000000 -23.02585093 0.0000000 2.04444444 0 Never
## 442 2.0000000 -1.38629436 1.6094379 1.21666667 1 Recent
## 443 1.6666667 -0.85137604 1.7917595 2.07777778 0 Previous
## 444 5.0000000 -8.04718956 0.6931472 0.51111111 0 Never
## 445 10.0000000 -23.02585093 0.0000000 0.25000000 0 Never
## 446 10.0000000 -23.02585093 0.0000000 2.03333333 0 Never
## 447 3.3333333 -4.01324268 1.0986123 2.04444444 1 Recent
## 448 5.0000000 -8.04718956 0.6931472 0.86666667 0 Never
## 449 10.0000000 -23.02585093 0.0000000 2.04444444 0 Never
## 450 3.3333333 -4.01324268 1.0986123 2.07777778 0 Previous
## 451 3.3333333 -4.01324268 1.0986123 1.12222222 1 Recent
## 452 10.0000000 -23.02585093 0.0000000 1.56666667 0 Never
## 453 5.0000000 -8.04718956 0.6931472 0.26666667 0 Never
## 454 0.2439024 0.34414316 3.7135721 0.40000000 0 Previous
## 455 10.0000000 -23.02585093 0.0000000 0.31111111 0 Never
## 456 1.1111111 -0.11706724 2.1972246 2.03888889 0 Previous
## 457 3.3333333 -4.01324268 1.0986123 0.38888889 0 Never
## 458 1.4285714 -0.50953563 1.9459101 0.32222222 0 Previous
## 459 2.0000000 -1.38629436 1.6094379 2.03333333 0 Never
## 460 1.4285714 -0.50953563 1.9459101 0.05555556 1 Recent
## 461 3.3333333 -4.01324268 1.0986123 2.37777778 1 Recent
## 462 1.1111111 -0.11706724 2.1972246 2.18888889 0 Previous
## 463 10.0000000 -23.02585093 0.0000000 0.98888889 0 Never
## 464 5.0000000 -8.04718956 0.6931472 0.62222222 0 Never
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## 465 5.0000000 -8.04718956 0.6931472 0.10000000 0 Never
## 466 10.0000000 -23.02585093 0.0000000 2.06666667 0 Never
## 467 5.0000000 -8.04718956 0.6931472 1.68333333 0 Previous
## 468 2.5000000 -2.29072683 1.3862944 0.17777778 0 Never
## 469 2.0000000 -1.38629436 1.6094379 0.04444444 0 Previous
## 470 5.0000000 -8.04718956 0.6931472 0.35000000 0 Never
## 471 0.4761905 0.35330350 3.0445224 1.20000000 0 Previous
## 472 5.0000000 -8.04718956 0.6931472 2.03333333 0 Previous
## 473 5.0000000 -8.04718956 0.6931472 0.83888889 0 Never
## 474 10.0000000 -23.02585093 0.0000000 0.07777778 0 Never
## 475 3.3333333 -4.01324268 1.0986123 0.42222222 0 Never
## 476 3.3333333 -4.01324268 1.0986123 0.97777778 0 Never
## 477 1.2500000 -0.27892944 2.0794415 0.51666667 1 Recent
## 478 2.5000000 -2.29072683 1.3862944 2.22222222 1 Recent
## 479 10.0000000 -23.02585093 0.0000000 1.97777778 0 Previous
## 480 10.0000000 -23.02585093 0.0000000 0.43333333 0 Never
## 481 0.9090909 0.08664562 2.3978953 0.66111111 0 Previous
## 482 3.3333333 -4.01324268 1.0986123 1.71111111 0 Previous
## 483 3.3333333 -4.01324268 1.0986123 0.90555556 1 Recent
## 484 1.2500000 -0.27892944 2.0794415 0.65555556 0 Previous
## 485 10.0000000 -23.02585093 0.0000000 0.42222222 0 Never
## 486 10.0000000 -23.02585093 0.0000000 0.64444444 0 Never
## 487 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 488 5.0000000 -8.04718956 0.6931472 0.36666667 0 Never
## 489 3.3333333 -4.01324268 1.0986123 0.38888889 1 Recent
## 490 3.3333333 -4.01324268 1.0986123 0.37777778 0 Never
## 491 0.3846154 0.36750440 3.2580965 2.12222222 0 Previous
## 492 1.6666667 -0.85137604 1.7917595 0.38888889 0 Never
## 493 5.0000000 -8.04718956 0.6931472 0.17777778 0 Never
## 494 10.0000000 -23.02585093 0.0000000 0.31111111 0 Never
## 495 2.5000000 -2.29072683 1.3862944 0.16666667 0 Never
## 496 1.2500000 -0.27892944 2.0794415 0.07777778 1 Recent
## 497 10.0000000 -23.02585093 0.0000000 0.47777778 0 Never
## 498 1.6666667 -0.85137604 1.7917595 0.98888889 0 Previous
## 499 5.0000000 -8.04718956 0.6931472 0.42222222 0 Never
## 500 2.5000000 -2.29072683 1.3862944 2.26666667 1 Recent
## 501 3.3333333 -4.01324268 1.0986123 0.84444444 0 Never
## 502 2.5000000 -2.29072683 1.3862944 2.16666667 0 Never
## 503 5.0000000 -8.04718956 0.6931472 2.04444444 0 Never
## 504 5.0000000 -8.04718956 0.6931472 1.41111111 0 Previous
## 505 10.0000000 -23.02585093 0.0000000 2.06111111 0 Never
## 506 5.0000000 -8.04718956 0.6931472 2.17777778 0 Never
## 507 3.3333333 -4.01324268 1.0986123 2.20000000 0 Never
## 508 3.3333333 -4.01324268 1.0986123 1.88888889 1 Recent
## 509 2.0000000 -1.38629436 1.6094379 0.27777778 1 Recent
## 510 10.0000000 -23.02585093 0.0000000 0.90555556 0 Never
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## 511 0.8333333 0.15193463 2.4849066 2.02222222 0 Never
## 512 2.5000000 -2.29072683 1.3862944 1.66666667 0 Never
## 513 1.2500000 -0.27892944 2.0794415 0.18888889 1 Recent
## 514 2.0000000 -1.38629436 1.6094379 0.18888889 1 Recent
## 515 2.5000000 -2.29072683 1.3862944 2.03333333 0 Never
## 516 1.2500000 -0.27892944 2.0794415 1.47777778 0 Previous
## 517 2.5000000 -2.29072683 1.3862944 0.76666667 0 Previous
## 518 1.4285714 -0.50953563 1.9459101 2.03333333 1 Recent
## 519 1.4285714 -0.50953563 1.9459101 0.07777778 1 Recent
## 520 3.3333333 -4.01324268 1.0986123 2.04444444 0 Previous
## 521 0.6250000 0.29375227 2.7725887 0.49444444 1 Recent
## 522 1.6666667 -0.85137604 1.7917595 2.03333333 0 Never
## 523 0.7142857 0.24033731 2.6390573 1.96666667 1 Recent
## 524 0.9090909 0.08664562 2.3978953 0.85555556 1 Recent
## 525 0.4761905 0.35330350 3.0445224 1.36666667 0 Previous
## 526 5.0000000 -8.04718956 0.6931472 1.62222222 0 Previous
## 527 0.9090909 0.08664562 2.3978953 1.12777778 0 Never
## 528 1.4285714 -0.50953563 1.9459101 2.00000000 1 Recent
## 529 3.3333333 -4.01324268 1.0986123 0.87777778 0 Never
## 530 1.6666667 -0.85137604 1.7917595 1.11666667 0 Previous
## 531 10.0000000 -23.02585093 0.0000000 0.71666667 0 Previous
## 532 5.0000000 -8.04718956 0.6931472 2.02777778 0 Never
## 533 2.0000000 -1.38629436 1.6094379 0.88333333 0 Never
## 534 3.3333333 -4.01324268 1.0986123 1.96666667 0 Previous
## 535 5.0000000 -8.04718956 0.6931472 0.39444444 1 Recent
## 536 3.3333333 -4.01324268 1.0986123 0.60000000 1 Recent
## 537 2.0000000 -1.38629436 1.6094379 1.10000000 0 Previous
## 538 5.0000000 -8.04718956 0.6931472 2.06666667 0 Never
## 539 1.4285714 -0.50953563 1.9459101 0.27777778 0 Previous
## 540 10.0000000 -23.02585093 0.0000000 0.26666667 0 Never
## 541 2.5000000 -2.29072683 1.3862944 2.12222222 0 Never
## 542 1.6666667 -0.85137604 1.7917595 0.95000000 0 Previous
## 543 5.0000000 -8.04718956 0.6931472 0.80555556 0 Never
## 544 0.4761905 0.35330350 3.0445224 2.03333333 0 Never
## 545 2.5000000 -2.29072683 1.3862944 0.80000000 0 Never
## 546 5.0000000 -8.04718956 0.6931472 0.24444444 0 Previous
## 547 3.3333333 -4.01324268 1.0986123 0.77777778 0 Never
## 548 10.0000000 -23.02585093 0.0000000 2.04444444 0 Never
## 549 3.3333333 -4.01324268 1.0986123 1.04444444 0 Never
## 550 1.1111111 -0.11706724 2.1972246 1.64444444 0 Previous
## 551 10.0000000 -23.02585093 0.0000000 0.25555556 0 Never
## 552 5.0000000 -8.04718956 0.6931472 1.42222222 0 Never
## 553 10.0000000 -23.02585093 0.0000000 1.17777778 0 Never
## 554 10.0000000 -23.02585093 0.0000000 0.51111111 0 Previous
## 555 10.0000000 -23.02585093 0.0000000 0.83333333 0 Never
## 556 3.3333333 -4.01324268 1.0986123 0.26666667 0 Never
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## 557 2.5000000 -2.29072683 1.3862944 0.32222222 1 Recent
## 558 3.3333333 -4.01324268 1.0986123 1.98888889 0 Previous
## 559 2.0000000 -1.38629436 1.6094379 1.88888889 1 Recent
## 560 5.0000000 -8.04718956 0.6931472 2.02777778 0 Never
## 561 2.0000000 -1.38629436 1.6094379 2.22222222 0 Previous
## 562 10.0000000 -23.02585093 0.0000000 0.62222222 0 Never
## 563 1.6666667 -0.85137604 1.7917595 0.26666667 0 Previous
## 564 1.4285714 -0.50953563 1.9459101 0.11111111 0 Previous
## 565 0.4545455 0.35838971 3.0910425 1.96666667 1 Recent
## 566 10.0000000 -23.02585093 0.0000000 1.28888889 0 Never
## 567 0.8333333 0.15193463 2.4849066 0.30000000 0 Previous
## 568 10.0000000 -23.02585093 0.0000000 0.26666667 0 Never
## 569 2.0000000 -1.38629436 1.6094379 0.63333333 0 Previous
## 570 10.0000000 -23.02585093 0.0000000 0.51111111 0 Never
## 571 1.4285714 -0.50953563 1.9459101 0.43333333 0 Previous
## 572 2.0000000 -1.38629436 1.6094379 0.18888889 1 Recent
## 573 2.5000000 -2.29072683 1.3862944 0.11666667 0 Previous
## 574 3.3333333 -4.01324268 1.0986123 2.04444444 1 Recent
## 575 0.6250000 0.29375227 2.7725887 0.05000000 1 Recent

glimpse(uis2)

## Rows: 575
## Columns: 19
## $ ID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, ~
## $ AGE <dbl> 39, 33, 33, 32, 24, 30, 39, 27, 40, 36, 38, 29, 32, 41, 31, 27,~
## $ BECK <dbl> 9.000, 34.000, 10.000, 20.000, 5.000, 32.550, 19.000, 10.000, 2~
## $ HC <dbl> 4, 4, 2, 4, 2, 3, 4, 4, 2, 2, 2, 3, 3, 1, 1, 2, 1, 4, 3, 2, 3, ~
## $ IV <dbl> 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 2, 1, 3, 1, ~
## $ NDT <dbl> 1, 8, 3, 1, 5, 1, 34, 2, 3, 7, 8, 1, 2, 8, 1, 3, 6, 1, 15, 5, 1~
## $ RACE <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, ~
## $ TREAT <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ SITE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ LEN.T <dbl> 123, 25, 7, 66, 173, 16, 179, 21, 176, 124, 176, 79, 182, 174, ~
## $ TIME <dbl> 188, 26, 207, 144, 551, 32, 459, 22, 210, 184, 212, 87, 598, 26~
## $ CENSOR <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ Y <dbl> 5.236442, 3.258097, 5.332719, 4.969813, 6.311735, 3.465736, 6.1~
## $ ND1 <dbl> 5.0000000, 1.1111111, 2.5000000, 5.0000000, 1.6666667, 5.000000~
## $ ND2 <dbl> -8.0471896, -0.1170672, -2.2907268, -8.0471896, -0.8513760, -8.~
## $ LNDT <dbl> 0.6931472, 2.1972246, 1.3862944, 0.6931472, 1.7917595, 0.693147~
## $ FRAC <dbl> 0.68333333, 0.13888889, 0.03888889, 0.73333333, 0.96111111, 0.0~
## $ IV3 <dbl> 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, ~
## $ IV_fct <fct> Recent, Previous, Recent, Recent, Never, Recent, Recent, Recent~

Let’s look at the three groups in our data defined by the IV variable. These
are people who have never used IV drugs, those who have previously used IV
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drugs, and those who have recently used IV drugs. The following table shows
how many people are in each group.

tabyl(uis2, IV_fct) %>%
adorn_totals()

## IV_fct n percent
## Never 223 0.3878261
## Previous 109 0.1895652
## Recent 243 0.4226087
## Total 575 1.0000000

We’re interested in depression as measured by the Beck Depression Inventory.

Exercise 2 Search the internet for the Beck Depression Inventory. (This
search is much easier than for Exercise 1.) Write a short paragraph about it
and how it purports to measure depression.

Please write up your answer here.

A useful graph is a side-by-side boxplot.

ggplot(uis2, aes(y = BECK, x = IV_fct)) +
geom_boxplot()
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This boxplot shows that the distribution of depression scores is similar across the
groups. There are some small differences, but it’s not clear if these differences
are statistically significant.
We can get the overall mean of all Beck scores, sometimes called the “grand
mean”.

uis2 %>%
summarize(mean(BECK))

## mean(BECK)
## 1 17.36743

If we use group_by, we can separate this out by IV group:

uis2 %>%
group_by(IV_fct) %>%
summarize(mean(BECK))

## # A tibble: 3 x 2
## IV_fct `mean(BECK)`
## <fct> <dbl>
## 1 Never 15.9
## 2 Previous 16.6
## 3 Recent 19.0
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Exericse 3 We have to be careful about the term “grand mean”. In some
contexts, the term “grand mean” refers to the mean of all scores in the response
variable (17.36743 above). In other cases, the term refers to the mean of the
three group means (the mean of 15.94996, 16.64201, and 18.99363).
First calculate the mean of the three group means above. (You can use R to
do this if you want, or you can just use a calculator.) Explain mathematically
why the overall mean 17.36743 is not the same as the mean of the three group
means. What would have to be true of the sample for the overall mean to agree
with the mean of the three group means? (Hint: think about the size of each of
the three groups.)
Please write up your answer here.

22.5 The F distribution

To keep the exposition simple here, we’ll assume that the term “grand mean”
refers to the overall mean of the response variable, 17.36743.
When assessing the differences among groups, there are two numbers that are
important.
The first is called the “mean square between groups” (MSG). It measures how
far away each group mean is away from the overall grand mean for the whole
sample. For example, for those who never used IV drugs, their mean Beck score
was 15.95. This is 1.42 points below the grand mean of 17.37. On the other
hand, recent IV drug users had a mean Beck score of nearly 19. This is 1.63
points above the grand mean. MSG is calculated by taking these differences for
each group, squaring them to make them positive, weighting them by the sizes
of each group (larger groups should obviously count for more), and dividing by
the “group degrees of freedom” 𝑑𝑓𝐺 = 𝑘 − 1 where 𝑘 is the number of groups.
The idea is that MSG is a kind of “average variability” among the groups. In
other words, how far away are the groups from the grand mean (and therefore,
from each other)?
The second number of interest is the “mean square error” (MSE). It is a measure
of variability within groups. In other words, it measures how far away data
points are from their own group means. Even under the assumption of a null
hypothesis that says all the groups should be the same, we still expect some
variability. Its calculation also involves dividing by some degrees of freedom,
but now it is 𝑑𝑓𝐸 = 𝑛 − 𝑘.
All that is somewhat technical and complicated. We’ll leave it to the computer.
The key insight comes from considering the ratio of 𝑀𝑆𝐺 and 𝑀𝑆𝐸. We will
call this quantity F:

𝐹 = 𝑀𝑆𝐺
𝑀𝑆𝐸 .
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What can be said about this magical F? Under the assumption of the null
hypothesis, we expect some variability among the groups, and we expect some
variability within each group as well, but these two sources of variability should
be about the same. In other words, 𝑀𝑆𝐺 should be roughly equal to 𝑀𝑆𝐸.
Therefore, F ought to be close to 1.

We can simulate this using the infer package. Suppose that there were no
difference in the mean BECK scores among the three groups. We can accomplish
this by shuffling the IV labels, an idea we’ve seen several times before in this
book. Permuting the IV values breaks any association that might have existed
in the original data.

set.seed(420)
BECK_IV_test_sim <- uis2 %>%
specify(response = BECK, explanatory = IV_fct) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")

BECK_IV_test_sim

## Response: BECK (numeric)
## Explanatory: IV_fct (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 0.616
## 2 2 2.36
## 3 3 1.38
## 4 4 2.64
## 5 5 0.333
## 6 6 0.732
## 7 7 1.33
## 8 8 0.261
## 9 9 1.31
## 10 10 0.616
## # i 990 more rows

BECK_IV_test_sim %>%
visualize()
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As explained earlier, the F scores are clustered around 1. They can never be
smaller than zero. (The bar at zero is centered on zero, but no F score can be
less than zero.) There are occasional F scores much larger than 1, but just by
chance.

It’s not particularly interesting if F is less than one. That just means that
the variability between groups is small and the variability of the data within
each group is large. That doesn’t allow us to conclude that there is a difference
among groups. However, if F is really large, that means that there is much more
variability between the groups than there is within each group. Therefore, the
groups are far apart and there is evidence of a difference among groups.

𝑀𝑆𝐺 and 𝑀𝑆𝐸 are measures of variability, and that’s why this is called “Anal-
ysis of Variance”.

The F distribution is the correct sampling distribution model. Like a t model,
there are infinitely many different F models because degrees of freedom are
involved. But unlike a t model, the F model has two numbers called degrees of
freedom, 𝑑𝑓𝐺 and 𝑑𝑓𝐸. Both of these numbers affect the precise shape of the F
distribution.

For example, here is picture of a few different F models.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(data.frame(x = c(0, 5)), aes(x)) +

stat_function(fun = df, args = list(df1 = 2, df2 = 5),
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aes(color = "2, 5")) +
stat_function(fun = df, args = list(df1 = 2, df2 = 50),

aes(color = "2, 50" )) +
stat_function(fun = df, args = list(df1 = 10, df2 = 50),

aes(color = "10, 50")) +
scale_color_manual(name = expression(paste(df[G], ", ", df[E])),

values = c("2, 5" = "red",
"2, 50" = "blue",
"10, 50" = "green"),

breaks = c("2, 5", "2, 50", "10, 50"))
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Here is the theoretical F distribution for our data:

BECK_IV_test <- uis2 %>%
specify(response = BECK, explanatory = IV_fct) %>%
hypothesize(null = "independence") %>%
assume(distribution = "F")

BECK_IV_test

## An F distribution with 2 and 572 degrees of freedom.

Exercise 4 Explain why there are 2 and 572 degrees of freedom. Which one
is 𝑑𝑓𝐺 and which one is 𝑑𝑓𝐸?
Please write up your answer here.
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Here are the simulated values again, but with the theoretical F distribution
superimposed for comparison.

BECK_IV_test_sim %>%
visualize(method = "both")

## Warning: Check to make sure the conditions have been met for the theoretical
## method. {infer} currently does not check these for you.
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Other than the very left edge, the theoretical curve is a good fit to the simulated
F scores.

22.6 Assumptions

What conditions can we check to justify the use of an F model for our sampling
distribution? In addition to the typical “Random” and “10%” conditions that
ensure independence, we also need to check the “Nearly normal” condition for
each group, just like for the t tests. A new assumption is the “Constant variance”
assumption, which says that each group should have the same variance in the
population. This is impossible to check, although we can use our sample as a



768 CHAPTER 22. ANOVA

rough guide. If each group has about the same spread, that is some evidence that
such an assumption might hold in the population as well. Also, ANOVA is pretty
robust to this assumption, especially when the groups are close to the same size.
Even when the group sizes are unequal (sometimes called “unbalanced”), some
say the variances can be off by up to a factor of 3 and ANOVA will still work
pretty well. So what we’re looking for here are gross violations, not minor ones.

Let’s go through the rubric with commentary.

22.7 Exploratory data analysis

22.7.1 Use data documentation (help files, code books,
Google, etc.) to determine as much as possible
about the data provenance and structure.

You should have researched this extensively in a previous exercise.

uis

## ID AGE BECK HC IV NDT RACE TREAT SITE LEN.T TIME CENSOR Y
## 1 1 39 9.000 4 3 1 0 1 0 123 188 1 5.236442
## 2 2 33 34.000 4 2 8 0 1 0 25 26 1 3.258097
## 3 3 33 10.000 2 3 3 0 1 0 7 207 1 5.332719
## 4 4 32 20.000 4 3 1 0 0 0 66 144 1 4.969813
## 5 5 24 5.000 2 1 5 1 1 0 173 551 0 6.311735
## 6 6 30 32.550 3 3 1 0 1 0 16 32 1 3.465736
## 7 7 39 19.000 4 3 34 0 1 0 179 459 1 6.129050
## 8 8 27 10.000 4 3 2 0 1 0 21 22 1 3.091042
## 9 9 40 29.000 2 3 3 0 1 0 176 210 1 5.347108
## 10 10 36 25.000 2 3 7 0 1 0 124 184 1 5.214936
## 11 12 38 18.900 2 3 8 0 1 0 176 212 1 5.356586
## 12 13 29 16.000 3 1 1 0 1 0 79 87 1 4.465908
## 13 14 32 36.000 3 3 2 1 1 0 182 598 0 6.393591
## 14 15 41 19.000 1 3 8 0 1 0 174 260 1 5.560682
## 15 16 31 18.000 1 3 1 0 1 0 181 210 1 5.347108
## 16 17 27 12.000 2 3 3 0 1 0 61 84 1 4.430817
## 17 18 28 34.000 1 3 6 0 1 0 177 196 1 5.278115
## 18 19 28 23.000 4 2 1 0 1 0 19 19 1 2.944439
## 19 20 36 26.000 3 1 15 1 1 0 27 441 1 6.089045
## 20 21 32 18.900 2 3 5 0 1 0 175 449 1 6.107023
## 21 22 33 15.000 3 1 1 0 0 0 12 659 0 6.490724
## 22 23 28 25.200 1 3 8 0 0 0 21 21 1 3.044522
## 23 24 29 6.632 4 2 0 0 0 0 48 53 1 3.970292
## 24 25 35 2.100 2 3 9 0 0 0 90 225 1 5.416100
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## 25 26 45 26.000 1 3 6 0 0 0 91 161 1 5.081404
## 26 27 35 39.789 4 3 5 0 0 0 87 87 1 4.465908
## 27 28 24 20.000 3 1 3 0 0 0 88 89 1 4.488636
## 28 29 36 16.000 1 3 7 0 0 0 9 44 1 3.784190
## 29 31 39 22.000 1 3 9 0 0 0 94 523 0 6.259581
## 30 32 36 9.947 4 2 10 0 0 0 91 226 1 5.420535
## 31 33 37 9.450 4 3 1 0 0 0 90 259 1 5.556828
## 32 34 30 39.000 2 3 1 0 0 0 89 289 1 5.666427
## 33 35 44 41.000 1 3 5 0 0 0 89 103 1 4.634729
## 34 36 28 31.000 3 1 6 1 0 0 100 624 0 6.436150
## 35 37 25 20.000 3 1 3 1 0 0 67 68 1 4.219508
## 36 38 30 8.000 2 3 7 0 1 0 25 57 1 4.043051
## 37 39 24 9.000 4 1 1 0 0 0 12 65 1 4.174387
## 38 40 27 20.000 3 1 1 0 0 0 79 79 1 4.369448
## 39 41 30 8.000 3 1 2 1 0 0 79 559 0 6.326149
## 40 42 34 8.000 2 3 0 0 1 0 78 79 1 4.369448
## 41 43 33 23.000 4 2 2 0 1 0 84 87 1 4.465908
## 42 44 34 18.000 3 3 6 0 1 0 91 91 1 4.510860
## 43 45 36 13.000 2 3 1 0 1 0 162 297 1 5.693732
## 44 46 27 23.000 1 3 0 0 1 0 45 45 1 3.806662
## 45 47 35 9.000 4 3 1 1 1 0 61 246 1 5.505332
## 46 48 24 14.000 1 3 0 0 1 0 19 37 1 3.610918
## 47 49 28 23.000 4 1 2 1 1 0 37 37 1 3.610918
## 48 50 46 10.000 1 3 8 0 1 0 51 538 0 6.287859
## 49 51 26 11.000 3 3 1 0 1 0 60 541 0 6.293419
## 50 52 42 16.000 1 3 25 0 1 0 177 184 1 5.214936
## 51 53 30 0.000 3 1 0 0 1 0 43 122 1 4.804021
## 52 55 30 12.000 4 1 3 1 1 0 21 156 1 5.049856
## 53 56 27 21.000 2 3 2 0 0 0 88 121 1 4.795791
## 54 57 38 0.000 1 3 6 0 0 0 96 231 1 5.442418
## 55 58 48 8.000 4 3 10 0 0 0 111 111 1 4.709530
## 56 59 36 25.000 1 3 10 0 0 0 38 38 1 3.637586
## 57 60 28 6.300 3 1 7 0 0 0 15 15 1 2.708050
## 58 61 31 20.000 4 2 5 0 0 0 50 54 1 3.988984
## 59 62 28 4.000 2 3 5 0 0 0 61 127 1 4.844187
## 60 63 28 20.000 3 1 1 0 0 0 31 105 1 4.653960
## 61 64 26 17.000 2 1 2 1 0 0 11 11 1 2.397895
## 62 65 34 3.000 4 3 6 0 0 0 90 153 1 5.030438
## 63 66 26 29.000 2 3 5 0 0 0 11 11 1 2.397895
## 64 68 31 26.000 1 3 5 0 0 0 46 46 1 3.828641
## 65 69 41 12.000 1 3 0 1 0 0 38 655 0 6.484635
## 66 70 30 24.000 4 3 0 0 0 0 90 166 1 5.111988
## 67 72 39 15.750 4 3 5 0 0 0 88 95 1 4.553877
## 68 74 33 9.000 2 3 12 0 0 0 91 151 1 5.017280
## 69 75 33 18.000 4 2 6 0 0 0 85 220 1 5.393628
## 70 76 29 20.000 4 1 0 1 0 0 90 227 1 5.424950
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## 71 77 36 17.000 1 3 5 0 0 0 52 343 1 5.837730
## 72 78 26 3.000 4 3 3 0 0 0 88 119 1 4.779123
## 73 79 37 27.000 1 3 13 0 0 0 43 43 1 3.761200
## 74 81 29 31.500 1 3 8 0 0 0 37 47 1 3.850148
## 75 83 30 19.000 3 1 0 1 0 0 87 805 0 6.690842
## 76 84 35 15.000 3 2 2 0 0 0 20 321 1 5.771441
## 77 85 33 22.000 3 1 1 0 0 0 9 167 1 5.117994
## 78 87 36 16.000 2 3 1 0 0 0 85 491 1 6.196444
## 79 88 28 17.000 1 3 2 0 0 0 18 35 1 3.555348
## 80 89 31 32.550 1 3 12 1 0 0 71 123 1 4.812184
## 81 90 23 24.000 1 3 2 0 0 0 88 597 0 6.391917
## 82 91 33 22.000 3 2 1 0 0 0 67 762 0 6.635947
## 83 93 37 18.000 2 3 4 0 0 0 30 31 1 3.433987
## 84 94 25 17.850 3 1 1 0 1 0 68 228 1 5.429346
## 85 95 56 5.000 2 2 9 1 1 0 182 553 0 6.315358
## 86 96 23 39.000 1 3 1 0 1 0 182 190 1 5.247024
## 87 97 26 21.000 3 1 1 0 1 0 146 307 1 5.726848
## 88 98 26 11.000 1 3 1 0 1 0 40 73 1 4.290459
## 89 99 23 14.000 3 1 1 0 1 0 177 208 1 5.337538
## 90 100 28 31.000 4 2 2 1 1 0 181 267 1 5.587249
## 91 102 30 14.000 1 3 15 0 1 0 168 169 1 5.129899
## 92 104 25 6.000 2 3 5 0 1 0 90 655 0 6.484635
## 93 105 33 16.000 1 3 5 0 1 0 61 70 1 4.248495
## 94 106 22 6.000 3 1 3 1 1 0 63 398 1 5.986452
## 95 108 25 20.000 4 2 8 1 1 0 121 122 1 4.804021
## 96 111 38 9.000 3 1 1 1 0 0 89 96 1 4.564348
## 97 112 35 11.000 2 1 3 0 1 0 51 1172 0 7.066467
## 98 113 35 15.000 3 1 1 0 0 0 88 734 0 6.598509
## 99 114 25 13.000 3 3 1 0 0 0 25 26 1 3.258097
## 100 115 33 31.000 3 1 3 1 0 0 83 84 1 4.430817
## 101 116 30 5.000 3 1 2 1 0 0 89 171 1 5.141664
## 102 117 45 10.000 2 3 1 0 0 0 24 159 1 5.068904
## 103 119 42 23.000 2 3 20 0 0 0 7 7 1 1.945910
## 104 120 29 16.000 4 1 1 1 0 0 85 763 0 6.637258
## 105 121 24 37.800 3 1 0 0 0 0 89 104 1 4.644391
## 106 122 33 10.000 2 3 4 0 0 0 91 162 1 5.087596
## 107 123 32 9.000 3 1 0 0 0 0 89 90 1 4.499810
## 108 124 26 15.000 3 1 0 0 0 0 82 373 1 5.921578
## 109 125 28 2.000 1 3 3 0 0 0 84 115 1 4.744932
## 110 127 37 34.000 2 3 1 0 0 0 30 30 1 3.401197
## 111 128 23 11.000 4 1 6 0 0 0 7 8 1 2.079442
## 112 129 40 31.000 2 3 3 1 0 0 84 168 1 5.123964
## 113 130 36 36.750 3 3 0 0 0 0 70 70 1 4.248495
## 114 131 23 26.000 3 2 2 0 0 0 76 130 1 4.867534
## 115 132 35 5.000 4 1 1 1 0 0 89 285 1 5.652489
## 116 133 25 19.000 2 3 1 0 1 0 178 569 0 6.343880
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## 117 134 35 21.000 2 3 6 0 1 0 87 87 1 4.465908
## 118 135 46 1.000 4 2 0 0 1 0 175 310 1 5.736572
## 119 136 32 6.000 4 1 3 0 1 0 87 87 1 4.465908
## 120 137 35 23.000 3 1 16 1 1 0 110 544 0 6.298949
## 121 138 34 38.000 3 3 1 0 1 0 21 156 1 5.049856
## 122 139 43 24.000 3 1 3 0 1 0 139 658 0 6.489205
## 123 140 39 3.000 4 3 15 0 1 0 181 273 1 5.609472
## 124 141 27 16.800 4 3 2 1 1 0 33 168 1 5.123964
## 125 142 38 35.000 1 3 1 0 1 0 39 83 1 4.418841
## 126 143 37 11.000 2 3 7 0 1 0 4 4 1 1.386294
## 127 144 44 2.000 1 3 4 1 1 0 184 708 0 6.562444
## 128 145 25 16.000 4 1 1 1 1 0 123 137 1 4.919981
## 129 146 34 15.000 3 1 1 0 1 0 176 259 1 5.556828
## 130 147 34 11.000 3 3 2 1 1 0 174 560 0 6.327937
## 131 148 38 11.000 1 3 1 1 1 0 181 586 0 6.373320
## 132 149 24 22.000 2 3 2 1 1 0 113 190 1 5.247024
## 133 151 42 18.000 2 3 3 0 1 0 164 544 0 6.298949
## 134 153 34 29.000 4 3 1 1 0 0 84 494 1 6.202536
## 135 154 45 27.000 1 3 8 0 0 0 80 541 0 6.293419
## 136 155 40 16.000 2 3 4 0 0 0 91 94 1 4.543295
## 137 156 27 9.000 4 1 3 1 0 0 97 567 0 6.340359
## 138 157 24 0.000 4 1 3 0 0 0 51 55 1 4.007333
## 139 158 27 15.000 1 3 3 0 0 0 91 93 1 4.532599
## 140 159 34 24.000 3 1 4 0 0 0 90 276 1 5.620401
## 141 160 36 3.000 2 3 6 0 0 0 46 46 1 3.828641
## 142 162 31 9.000 3 1 1 0 0 0 76 250 1 5.521461
## 143 163 40 5.000 2 3 2 0 0 0 75 106 1 4.663439
## 144 164 40 13.000 1 3 4 1 0 0 91 552 0 6.313548
## 145 165 37 29.000 2 3 5 0 0 0 90 90 1 4.499810
## 146 166 25 11.000 4 3 6 0 0 0 3 203 1 5.313206
## 147 167 41 22.000 2 3 3 1 1 0 8 67 1 4.204693
## 148 168 22 9.000 4 1 1 0 1 0 33 559 1 6.326149
## 149 169 31 18.000 2 3 8 1 1 0 31 106 1 4.663439
## 150 170 29 40.000 1 1 1 1 1 0 174 374 1 5.924256
## 151 171 27 25.000 3 1 2 0 1 0 34 630 0 6.445720
## 152 172 22 26.000 4 2 3 0 1 0 60 61 1 4.110874
## 153 174 37 11.000 1 2 5 1 1 0 78 547 0 6.304449
## 154 175 36 6.000 3 1 2 1 1 0 182 568 0 6.342121
## 155 176 24 20.000 3 1 1 0 1 0 182 490 1 6.194405
## 156 177 28 9.000 4 1 0 1 1 0 78 222 1 5.402677
## 157 178 24 6.000 4 1 1 0 1 0 55 56 1 4.025352
## 158 179 28 0.000 3 1 2 0 1 0 223 282 1 5.641907
## 159 180 24 5.000 3 1 20 1 1 0 25 35 1 3.555348
## 160 181 24 15.000 4 1 0 0 1 0 63 603 0 6.401917
## 161 183 29 14.700 3 1 1 0 1 0 133 148 1 4.997212
## 162 184 37 3.000 1 3 5 1 1 0 154 354 1 5.869297
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## 163 185 26 31.000 1 1 2 0 1 0 70 164 1 5.099866
## 164 186 29 14.000 3 2 1 0 1 0 66 94 1 4.543295
## 165 187 29 28.000 2 3 4 0 1 0 40 65 1 4.174387
## 166 188 33 18.000 4 1 1 0 1 0 75 567 0 6.340359
## 167 189 29 12.000 4 2 2 0 1 0 187 634 0 6.452049
## 168 190 32 5.000 1 1 2 1 1 0 183 633 0 6.450470
## 169 192 33 11.000 4 1 8 1 1 0 182 477 1 6.167516
## 170 193 26 21.000 4 2 2 0 1 0 192 436 1 6.077642
## 171 195 24 23.000 2 3 4 1 1 0 162 362 1 5.891644
## 172 196 46 32.000 2 3 2 0 1 0 193 552 0 6.313548
## 173 197 23 26.000 4 1 2 0 1 0 111 144 1 4.969813
## 174 198 40 19.950 4 3 8 0 1 0 182 242 1 5.488938
## 175 199 48 17.000 3 1 4 0 1 0 180 564 0 6.335054
## 176 200 33 16.000 3 1 0 0 1 0 93 299 1 5.700444
## 177 201 21 26.250 4 1 7 0 1 0 167 167 1 5.117994
## 178 202 38 29.000 3 1 2 0 1 0 196 380 1 5.940171
## 179 203 28 23.000 4 2 4 0 1 0 106 120 1 4.787492
## 180 205 39 9.000 1 3 6 0 1 0 158 218 1 5.384495
## 181 206 37 26.000 1 2 1 1 0 0 91 115 1 4.744932
## 182 207 32 22.000 3 1 4 1 0 0 89 224 1 5.411646
## 183 208 39 23.000 3 2 2 1 0 0 89 132 1 4.882802
## 184 209 28 0.000 1 3 10 0 0 0 88 148 1 4.997212
## 185 210 26 30.000 3 1 0 1 0 0 95 593 0 6.385194
## 186 211 31 21.000 1 3 0 0 0 0 5 26 1 3.258097
## 187 213 34 19.000 4 3 8 0 0 0 32 32 1 3.465736
## 188 214 26 28.000 4 2 2 1 0 0 92 292 1 5.676754
## 189 215 29 8.000 4 1 3 0 0 0 66 89 1 4.488636
## 190 217 25 11.000 3 1 8 0 0 0 90 364 1 5.897154
## 191 218 34 15.000 3 2 3 1 0 0 93 142 1 4.955827
## 192 219 32 8.000 3 1 2 0 0 0 89 188 1 5.236442
## 193 221 38 14.000 4 2 0 0 0 0 91 92 1 4.521789
## 194 222 32 7.000 1 3 8 0 0 0 56 56 1 4.025352
## 195 223 31 13.000 2 3 7 0 0 0 90 110 1 4.700480
## 196 224 40 10.000 3 1 3 0 0 0 73 555 0 6.318968
## 197 225 28 17.000 4 1 5 1 0 0 85 220 1 5.393628
## 198 226 40 18.000 1 3 3 0 0 0 23 23 1 3.135494
## 199 227 32 5.000 2 3 3 0 0 0 85 285 1 5.652489
## 200 228 29 20.000 3 3 5 0 0 0 90 90 1 4.499810
## 201 229 25 31.000 3 1 4 0 0 0 53 59 1 4.077537
## 202 230 32 15.000 2 3 2 0 0 0 96 156 1 5.049856
## 203 232 37 4.000 2 2 2 0 0 0 83 142 1 4.955827
## 204 233 38 15.000 3 3 8 0 0 0 54 57 1 4.043051
## 205 234 31 14.000 3 2 9 0 0 0 79 279 1 5.631212
## 206 235 30 27.000 1 3 3 1 0 0 81 118 1 4.770685
## 207 236 34 30.000 4 1 4 1 0 0 18 567 0 6.340359
## 208 237 33 23.000 1 3 4 0 1 0 184 562 0 6.331502
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## 209 238 36 13.000 3 2 10 1 1 0 39 239 1 5.476464
## 210 239 32 26.000 4 1 0 0 1 0 177 578 0 6.359574
## 211 240 29 10.000 2 3 2 1 1 0 122 551 0 6.311735
## 212 241 32 4.000 1 1 4 1 1 0 178 313 1 5.746203
## 213 242 34 0.000 3 1 7 0 1 0 173 560 0 6.327937
## 214 243 26 35.000 1 3 31 0 1 0 53 54 1 3.988984
## 215 244 25 32.000 1 3 5 1 1 0 94 198 1 5.288267
## 216 245 30 2.000 4 1 2 1 1 0 163 164 1 5.099866
## 217 246 33 15.000 3 2 6 0 1 0 160 325 1 5.783825
## 218 247 40 23.000 4 2 6 0 1 0 61 62 1 4.127134
## 219 248 26 13.000 3 1 12 0 1 0 41 45 1 3.806662
## 220 249 26 29.000 1 3 5 1 1 0 53 53 1 3.970292
## 221 250 35 22.105 4 3 4 0 1 0 53 253 1 5.533389
## 222 251 26 15.000 2 2 11 0 1 0 13 51 1 3.931826
## 223 252 33 7.000 4 1 3 1 1 0 183 540 0 6.291569
## 224 253 27 7.000 1 3 4 0 1 0 182 317 1 5.758902
## 225 254 29 33.000 3 3 3 0 1 0 183 437 1 6.079933
## 226 255 29 23.000 3 3 9 0 1 0 63 136 1 4.912655
## 227 256 39 21.000 2 3 7 0 1 0 111 115 1 4.744932
## 228 257 43 19.000 3 2 2 1 1 0 174 175 1 5.164786
## 229 258 35 8.000 3 3 3 0 1 0 173 442 1 6.091310
## 230 259 26 24.000 4 1 2 1 1 0 119 122 1 4.804021
## 231 260 27 28.737 4 1 3 0 1 0 180 181 1 5.198497
## 232 261 28 20.000 4 1 2 1 1 0 98 180 1 5.192957
## 233 262 30 14.000 3 1 4 0 1 0 50 51 1 3.931826
## 234 263 31 17.000 4 2 1 1 1 0 178 541 0 6.293419
## 235 264 26 19.000 2 3 16 0 1 0 100 121 1 4.795791
## 236 265 36 5.000 4 2 4 0 1 0 93 328 1 5.793014
## 237 267 25 8.000 2 3 3 0 1 0 165 166 1 5.111988
## 238 268 26 22.000 3 1 0 1 1 0 93 556 0 6.320768
## 239 269 30 11.000 2 3 5 0 0 0 44 104 1 4.644391
## 240 270 28 13.000 3 1 5 0 0 0 77 102 1 4.624973
## 241 272 34 11.053 3 1 0 1 0 0 91 144 1 4.969813
## 242 273 31 24.000 3 1 2 0 0 0 95 545 0 6.300786
## 243 274 30 19.000 4 3 1 0 0 0 82 537 0 6.285998
## 244 275 35 27.000 3 2 5 1 0 0 76 625 0 6.437752
## 245 276 30 4.000 4 2 3 1 0 0 5 6 1 1.791759
## 246 277 37 38.000 1 3 7 0 0 0 69 307 1 5.726848
## 247 278 29 11.000 4 1 12 1 0 0 90 290 1 5.669881
## 248 279 23 21.000 4 1 8 0 0 0 19 20 1 2.995732
## 249 280 23 1.000 1 1 4 0 0 0 60 74 1 4.304065
## 250 281 44 4.000 4 1 0 0 0 0 69 100 1 4.605170
## 251 282 43 7.000 4 2 8 1 0 0 85 555 0 6.318968
## 252 283 38 20.000 2 3 3 0 0 0 92 152 1 5.023881
## 253 284 33 17.000 3 1 3 1 0 0 55 115 1 4.744932
## 254 285 36 6.300 1 3 9 0 0 0 20 92 1 4.521789
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## 255 286 26 12.000 1 3 2 0 0 0 87 554 0 6.317165
## 256 287 30 16.000 4 1 0 0 0 0 91 92 1 4.521789
## 257 288 34 31.500 4 1 0 0 0 0 9 69 1 4.234107
## 258 289 32 30.000 2 3 6 0 0 0 22 25 1 3.218876
## 259 290 30 1.000 3 1 1 0 0 0 87 501 0 6.216606
## 260 291 37 32.000 2 3 10 1 0 0 86 86 1 4.454347
## 261 292 35 29.000 2 3 7 0 0 0 85 99 1 4.595120
## 262 293 30 6.000 3 1 0 0 0 0 83 87 1 4.465908
## 263 294 34 17.000 4 1 6 1 0 0 83 136 1 4.912655
## 264 295 40 13.000 1 2 6 0 0 0 92 106 1 4.663439
## 265 296 28 15.000 4 2 3 1 0 0 85 220 1 5.393628
## 266 297 32 11.000 3 1 6 0 0 0 36 36 1 3.583519
## 267 298 45 17.000 1 3 2 1 0 0 87 162 1 5.087596
## 268 299 24 23.000 2 1 0 0 1 0 56 116 1 4.753590
## 269 300 43 23.000 1 3 5 1 1 0 94 175 1 5.164786
## 270 301 38 15.000 1 3 0 1 1 0 74 209 1 5.342334
## 271 302 33 19.000 2 3 1 0 1 0 186 545 0 6.300786
## 272 303 26 21.000 4 2 2 1 1 0 178 245 1 5.501258
## 273 304 40 8.000 4 3 3 0 1 0 84 176 1 5.170484
## 274 305 27 34.000 4 2 0 0 1 0 13 14 1 2.639057
## 275 306 39 21.000 2 3 12 0 1 0 85 113 1 4.727388
## 276 308 29 27.000 4 2 3 1 1 0 9 354 1 5.869297
## 277 309 28 32.000 4 2 4 0 1 0 162 174 1 5.159055
## 278 310 37 29.000 1 3 20 0 0 0 23 23 1 3.135494
## 279 311 37 22.000 2 3 20 0 0 0 26 26 1 3.258097
## 280 312 40 12.000 4 2 9 0 0 0 84 98 1 4.584967
## 281 313 25 36.000 1 3 5 0 0 0 23 23 1 3.135494
## 282 314 40 15.000 1 1 2 0 0 0 86 555 0 6.318968
## 283 315 40 3.000 1 3 4 1 0 0 90 290 1 5.669881
## 284 316 34 24.000 2 3 8 0 0 0 73 543 0 6.297109
## 285 317 41 18.000 2 3 7 0 0 0 76 274 1 5.613128
## 286 321 23 2.000 4 1 1 0 1 0 18 119 1 4.779123
## 287 322 36 14.000 3 1 3 0 1 0 94 164 1 5.099866
## 288 323 28 19.000 4 1 2 1 1 0 76 548 0 6.306275
## 289 324 23 7.000 3 1 3 0 1 0 40 175 1 5.164786
## 290 325 27 8.000 3 1 3 0 1 0 176 539 0 6.289716
## 291 326 32 27.000 4 2 0 0 1 0 104 155 1 5.043425
## 292 327 38 25.000 4 3 15 0 1 0 5 14 1 2.639057
## 293 328 38 28.000 4 1 6 1 1 0 179 187 1 5.231109
## 294 329 45 39.000 1 3 8 0 1 0 35 65 1 4.174387
## 295 330 26 18.000 2 2 1 0 1 0 24 159 1 5.068904
## 296 331 29 8.000 1 3 35 0 1 0 82 96 1 4.564348
## 297 332 33 31.000 4 1 3 0 1 0 28 243 1 5.493061
## 298 333 25 6.000 3 1 0 1 1 0 81 85 1 4.442651
## 299 334 36 19.000 4 1 2 0 1 0 4 4 1 1.386294
## 300 335 37 19.000 2 3 4 0 1 0 97 121 1 4.795791
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## 301 336 29 16.000 4 1 0 1 1 0 78 659 1 6.490724
## 302 337 29 15.000 4 1 3 1 1 0 181 260 1 5.560682
## 303 338 35 54.000 4 2 1 0 1 0 29 621 0 6.431331
## 304 339 33 19.000 4 1 1 0 1 0 139 199 1 5.293305
## 305 340 31 12.000 4 3 2 0 1 0 152 565 0 6.336826
## 306 341 37 24.000 3 2 5 1 1 0 90 183 1 5.209486
## 307 342 32 37.000 3 3 4 0 1 0 62 122 1 4.804021
## 308 343 33 9.000 3 2 13 0 1 0 110 170 1 5.135798
## 309 344 36 18.000 3 1 14 1 1 0 15 15 1 2.708050
## 310 345 26 4.000 1 1 5 0 1 0 68 268 1 5.590987
## 311 346 35 15.000 3 1 0 1 1 0 19 79 1 4.369448
## 312 347 25 19.000 1 3 6 1 0 0 23 23 1 3.135494
## 313 348 33 26.000 1 3 30 0 0 0 92 100 1 4.605170
## 314 349 36 28.000 2 3 8 0 0 0 94 98 1 4.584967
## 315 350 38 14.000 3 3 6 0 0 0 31 81 1 4.394449
## 316 351 36 15.000 3 2 3 1 0 0 28 546 0 6.302619
## 317 352 36 18.000 2 3 10 0 0 0 58 58 1 4.060443
## 318 353 35 29.000 3 3 6 0 0 0 113 569 0 6.343880
## 319 354 35 10.000 3 1 3 1 0 0 70 575 0 6.354370
## 320 356 39 16.000 2 3 4 0 0 0 90 91 1 4.510860
## 321 357 37 0.000 4 3 6 0 0 0 55 57 1 4.043051
## 322 358 30 31.000 2 3 5 0 0 0 89 499 1 6.212606
## 323 359 26 33.000 1 3 7 1 0 0 71 123 1 4.812184
## 324 360 39 21.000 4 1 5 0 0 0 84 143 1 4.962845
## 325 362 32 18.000 3 1 4 0 0 0 78 471 1 6.154858
## 326 363 26 37.800 3 1 4 1 0 0 60 74 1 4.304065
## 327 364 33 20.000 2 3 6 0 0 0 82 85 1 4.442651
## 328 365 36 11.000 4 2 5 0 0 0 81 95 1 4.553877
## 329 366 42 26.000 2 3 3 0 1 0 35 36 1 3.583519
## 330 367 37 43.000 1 3 22 0 1 0 16 19 1 2.944439
## 331 368 37 12.000 2 2 1 1 1 0 7 38 1 3.637586
## 332 369 32 22.000 3 1 4 1 1 0 30 539 0 6.289716
## 333 370 23 36.000 4 1 3 1 1 0 106 567 0 6.340359
## 334 371 21 16.000 4 1 10 0 1 0 174 186 1 5.225747
## 335 372 23 41.000 3 1 1 0 1 0 144 546 0 6.302619
## 336 373 34 16.000 4 2 1 0 1 0 24 24 1 3.178054
## 337 374 33 8.000 4 2 3 0 1 0 17 540 0 6.291569
## 338 375 33 10.000 3 1 4 1 1 0 97 157 1 5.056246
## 339 376 26 18.000 3 3 0 0 1 0 26 86 1 4.454347
## 340 377 28 27.000 4 1 2 1 1 0 31 231 1 5.442418
## 341 379 27 28.000 1 3 3 0 0 0 14 14 1 2.639057
## 342 380 22 23.000 1 3 2 0 0 0 75 75 1 4.317488
## 343 381 31 32.000 3 3 6 1 0 0 20 147 1 4.990433
## 344 382 29 23.100 3 1 4 0 0 0 104 105 1 4.653960
## 345 383 44 11.000 4 3 12 0 0 0 85 324 1 5.780744
## 346 384 26 7.000 3 1 0 1 0 0 110 538 0 6.287859
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## 347 385 44 24.000 2 3 16 0 0 0 100 300 1 5.703782
## 348 386 34 12.000 1 3 1 0 0 0 73 73 1 4.290459
## 349 387 36 25.000 2 3 6 0 0 0 65 65 1 4.174387
## 350 388 43 4.000 2 3 20 0 0 0 75 568 1 6.342121
## 351 389 37 5.000 3 1 1 0 0 0 83 84 1 4.430817
## 352 390 44 13.000 4 2 17 0 1 0 15 22 1 3.091042
## 353 391 31 17.000 1 3 30 1 1 0 44 44 1 3.784190
## 354 392 24 24.000 2 1 3 0 1 0 7 7 1 1.945910
## 355 394 37 32.000 3 3 4 0 1 0 20 21 1 3.044522
## 356 395 41 19.000 1 3 12 1 1 0 175 537 0 6.285998
## 357 396 32 9.000 3 1 3 1 1 0 71 186 1 5.225747
## 358 397 23 6.000 3 1 2 0 1 0 26 40 1 3.688879
## 359 398 33 10.000 2 3 3 0 1 0 161 287 1 5.659482
## 360 399 43 11.000 4 1 9 0 1 0 36 538 0 6.287859
## 361 400 33 16.000 4 3 8 0 1 0 30 30 1 3.401197
## 362 401 41 25.000 4 2 3 0 1 0 179 516 1 6.246107
## 363 402 41 17.000 2 3 2 0 1 0 199 268 1 5.590987
## 364 403 37 24.000 2 3 3 0 1 0 182 568 0 6.342121
## 365 404 26 27.000 1 1 3 0 0 0 112 131 1 4.875197
## 366 405 33 24.000 1 3 6 0 0 0 8 399 1 5.988961
## 367 406 30 26.000 3 1 2 0 0 0 18 78 1 4.356709
## 368 407 33 17.000 4 1 6 1 0 0 20 80 1 4.382027
## 369 408 33 26.000 2 3 3 0 0 0 88 102 1 4.624973
## 370 410 37 13.000 3 1 6 0 0 0 88 124 1 4.820282
## 371 411 44 11.000 2 3 20 0 0 0 76 80 1 4.382027
## 372 412 20 8.000 4 1 1 0 0 0 22 23 1 3.135494
## 373 413 33 12.000 1 3 4 0 0 0 110 274 1 5.613128
## 374 415 36 31.000 2 3 3 0 0 0 85 459 1 6.129050
## 375 416 34 8.400 2 3 3 0 0 0 10 10 1 2.302585
## 376 417 35 10.000 1 3 17 0 1 0 157 176 1 5.170484
## 377 418 38 16.000 2 3 26 0 1 0 133 332 1 5.805135
## 378 419 24 13.000 3 1 3 0 1 0 83 119 1 4.779123
## 379 420 24 18.000 3 1 4 0 1 0 152 217 1 5.379897
## 380 421 32 13.000 3 1 4 0 1 0 169 285 1 5.652489
## 381 422 35 11.000 4 2 3 0 1 0 89 576 0 6.356108
## 382 423 33 21.000 1 3 5 0 1 0 92 106 1 4.663439
## 383 424 29 37.000 2 2 4 1 1 0 21 81 1 4.394449
## 384 425 42 32.000 2 3 30 0 1 0 31 47 1 3.850148
## 385 426 23 33.000 4 1 1 0 1 0 31 76 1 4.330733
## 386 427 28 11.000 4 3 16 0 1 0 133 348 1 5.852202
## 387 429 43 29.000 2 3 4 0 1 0 153 306 1 5.723585
## 388 430 33 23.000 2 1 0 0 0 0 90 192 1 5.257495
## 389 431 37 15.000 1 3 20 0 0 0 102 216 1 5.375278
## 390 432 49 22.000 2 3 7 0 0 0 85 189 1 5.241747
## 391 434 36 25.000 3 1 1 1 0 0 89 193 1 5.262690
## 392 435 27 30.000 1 3 13 0 0 0 28 28 1 3.332205
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## 393 436 35 23.000 1 3 1 0 0 0 90 150 1 5.010635
## 394 437 25 10.000 3 2 3 0 0 0 84 99 1 4.595120
## 395 438 33 8.000 1 3 3 0 0 0 85 510 0 6.234411
## 396 439 34 16.000 1 3 7 0 0 0 36 306 1 5.723585
## 397 440 38 9.000 1 3 10 1 0 0 74 101 1 4.615121
## 398 441 36 12.158 2 3 0 1 0 0 42 102 1 4.624973
## 399 442 27 5.000 1 3 1 0 0 0 90 510 0 6.234411
## 400 444 40 19.000 1 3 0 1 0 0 108 503 0 6.220590
## 401 445 32 23.000 3 3 3 0 0 1 49 52 1 3.951244
## 402 446 38 28.000 3 3 1 1 0 1 219 547 0 6.304449
## 403 447 38 16.000 1 3 6 0 0 1 108 168 1 5.123964
## 404 448 23 25.000 4 1 0 0 0 1 178 461 1 6.133398
## 405 449 26 22.000 4 2 2 0 0 1 42 538 0 6.287859
## 406 450 36 28.000 2 3 7 0 0 1 182 349 1 5.855072
## 407 451 30 28.000 4 1 5 0 0 1 6 44 1 3.784190
## 408 452 31 18.000 4 2 3 0 1 1 351 548 0 6.306275
## 409 453 23 15.000 3 1 1 0 1 1 12 12 1 2.484907
## 410 454 43 9.000 1 3 0 1 1 1 6 6 1 1.791759
## 411 455 24 26.000 4 1 1 0 1 1 91 575 0 6.354370
## 412 456 42 19.000 4 1 1 0 1 1 245 589 0 6.378426
## 413 457 35 26.000 4 2 1 0 1 1 372 408 1 6.011267
## 414 458 21 10.000 4 1 0 0 1 1 218 232 1 5.446737
## 415 459 45 1.000 4 2 0 1 1 1 46 143 1 4.962845
## 416 460 43 30.000 2 3 6 0 1 1 363 582 0 6.366470
## 417 461 24 7.000 4 1 0 1 1 1 133 134 1 4.897840
## 418 462 37 11.000 3 3 1 0 1 1 7 7 1 1.945910
## 419 463 40 10.000 4 2 0 0 1 1 112 548 0 6.306275
## 420 464 27 11.000 3 2 2 0 0 1 21 81 1 4.394449
## 421 465 29 11.000 2 3 1 0 0 1 169 170 1 5.135798
## 422 466 34 12.000 4 3 6 0 0 1 28 29 1 3.367296
## 423 467 29 29.000 3 3 20 0 0 1 47 78 1 4.356709
## 424 468 35 27.000 1 3 5 0 0 1 20 81 1 4.394449
## 425 469 39 20.000 1 3 4 0 1 1 352 369 1 5.910797
## 426 470 41 9.000 4 2 0 0 1 1 66 69 1 4.234107
## 427 471 37 18.000 4 1 6 1 1 1 55 115 1 4.744932
## 428 472 30 10.000 3 2 7 0 1 1 344 361 1 5.888878
## 429 473 31 1.000 4 1 0 0 1 1 153 245 1 5.501258
## 430 474 40 5.000 4 2 8 0 0 1 184 233 1 5.451038
## 431 475 32 20.000 4 1 0 0 0 1 183 227 1 5.424950
## 432 476 32 7.000 4 2 3 1 0 1 22 97 1 4.574711
## 433 477 27 7.000 4 1 0 0 0 1 183 547 0 6.304449
## 434 478 23 26.000 3 1 0 0 0 1 140 224 1 5.411646
## 435 479 23 4.000 4 1 2 0 0 1 19 211 1 5.351858
## 436 480 43 11.000 2 3 12 0 0 1 184 220 1 5.393628
## 437 481 24 20.000 4 1 0 0 0 1 50 54 1 3.988984
## 438 482 36 11.000 4 1 2 1 0 1 132 192 1 5.257495
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## 439 483 29 31.000 1 3 1 0 0 1 128 138 1 4.927254
## 440 484 39 13.000 4 2 1 0 1 1 107 107 1 4.672829
## 441 485 23 6.000 4 1 0 0 1 1 368 597 0 6.391917
## 442 486 27 17.000 3 3 4 0 1 1 219 226 1 5.420535
## 443 487 26 5.000 4 2 5 0 1 1 374 434 1 6.073045
## 444 488 26 27.000 3 1 1 1 1 1 92 106 1 4.663439
## 445 489 25 9.000 4 1 0 0 1 1 45 180 1 5.192957
## 446 490 34 10.000 3 1 0 0 1 1 366 557 0 6.322565
## 447 491 45 5.000 4 3 2 0 1 1 368 556 0 6.320768
## 448 492 23 17.000 4 1 1 0 0 1 78 619 0 6.428105
## 449 493 26 7.000 4 1 0 0 0 1 184 546 0 6.302619
## 450 495 24 27.000 1 2 2 0 0 1 187 233 1 5.451038
## 451 496 30 23.000 2 3 2 1 0 1 101 102 1 4.624973
## 452 497 22 26.000 3 1 0 0 0 1 141 548 0 6.306275
## 453 498 25 10.000 3 1 1 0 0 1 24 99 1 4.595120
## 454 499 30 8.400 3 2 40 0 0 1 36 36 1 3.583519
## 455 501 33 23.000 4 1 0 1 1 1 56 78 1 4.356709
## 456 502 34 15.000 3 2 8 0 1 1 367 502 1 6.218600
## 457 503 29 24.000 3 1 2 0 1 1 70 71 1 4.262680
## 458 504 39 33.000 4 2 6 0 1 1 58 59 1 4.077537
## 459 506 26 21.000 3 1 4 0 1 1 366 533 0 6.278521
## 460 507 32 23.000 2 3 6 0 1 1 10 10 1 2.302585
## 461 508 42 23.100 1 3 2 0 0 1 214 274 1 5.613128
## 462 509 39 25.000 1 2 8 0 0 1 197 255 1 5.541264
## 463 510 36 2.000 4 1 0 1 0 1 89 503 0 6.220590
## 464 511 22 20.000 3 1 1 0 0 1 56 256 1 5.545177
## 465 512 27 23.000 4 1 1 0 0 1 9 9 1 2.197225
## 466 514 28 9.000 4 1 0 0 0 1 186 386 1 5.955837
## 467 515 36 28.000 3 2 1 0 1 1 303 547 0 6.304449
## 468 516 31 13.000 3 1 3 0 1 1 32 45 1 3.806662
## 469 517 27 22.000 3 2 4 0 1 1 8 58 1 4.060443
## 470 518 23 17.000 3 1 1 0 1 1 63 124 1 4.820282
## 471 519 24 20.000 3 2 20 0 0 1 108 540 0 6.291569
## 472 520 38 5.000 3 2 1 0 0 1 183 243 1 5.493061
## 473 521 25 8.000 4 1 1 0 1 1 151 549 0 6.308098
## 474 522 26 20.000 3 1 0 0 0 1 7 12 1 2.484907
## 475 523 22 34.000 3 1 2 0 0 1 38 51 1 3.931826
## 476 524 33 13.000 4 1 2 0 1 1 176 562 0 6.331502
## 477 525 30 23.000 1 3 7 0 1 1 93 94 1 4.543295
## 478 526 45 8.000 4 3 3 0 0 1 200 204 1 5.318120
## 479 527 24 15.000 3 2 0 0 0 1 178 238 1 5.472271
## 480 528 27 22.000 4 1 0 0 1 1 78 140 1 4.941642
## 481 529 36 19.000 4 2 10 0 1 1 119 120 1 4.787492
## 482 530 38 23.000 4 2 2 1 0 1 154 154 1 5.036953
## 483 531 31 17.000 2 3 2 0 1 1 163 177 1 5.176150
## 484 532 40 22.000 4 2 7 0 1 1 118 119 1 4.779123



22.7. EXPLORATORY DATA ANALYSIS 779

## 485 533 22 12.000 3 1 0 1 1 1 76 83 1 4.418841
## 486 534 31 13.000 4 1 0 1 1 1 116 130 1 4.867534
## 487 536 39 7.000 3 3 3 1 0 1 88 159 1 5.068904
## 488 538 33 14.000 3 1 1 0 0 1 33 33 1 3.496508
## 489 539 27 10.000 3 3 2 0 1 1 70 72 1 4.276666
## 490 540 37 7.000 4 1 2 1 1 1 68 161 1 5.081404
## 491 541 35 16.000 4 2 25 0 0 1 191 191 1 5.252273
## 492 542 25 11.000 3 1 5 0 0 1 35 181 1 5.198497
## 493 543 27 11.000 3 1 1 1 1 1 32 546 0 6.302619
## 494 544 34 15.000 4 1 0 0 0 1 28 540 0 6.291569
## 495 545 30 15.000 3 1 3 0 0 1 15 76 1 4.330733
## 496 546 35 17.000 1 3 7 0 0 1 7 7 1 1.945910
## 497 547 34 23.000 4 1 0 0 0 1 43 44 1 3.784190
## 498 548 25 23.000 3 2 5 0 0 1 89 103 1 4.634729
## 499 549 34 18.000 3 1 1 0 0 1 38 79 1 4.369448
## 500 550 24 23.000 4 3 3 0 0 1 204 339 1 5.826000
## 501 551 24 20.000 4 1 2 0 0 1 76 90 1 4.499810
## 502 552 40 36.000 4 1 3 0 0 1 195 542 0 6.295266
## 503 553 33 9.000 3 1 1 1 0 1 184 384 1 5.950643
## 504 554 38 14.000 4 2 1 1 1 1 254 255 1 5.541264
## 505 555 32 1.000 3 1 0 0 1 1 371 431 1 6.066108
## 506 556 33 3.000 4 1 1 0 0 1 196 587 0 6.375025
## 507 557 28 40.000 3 1 2 1 0 1 198 198 1 5.288267
## 508 558 31 13.000 3 3 2 0 0 1 170 551 0 6.311735
## 509 559 31 39.000 2 3 4 0 1 1 50 110 1 4.700480
## 510 560 33 24.000 4 1 0 0 1 1 163 541 0 6.293419
## 511 561 24 26.000 3 1 11 0 0 1 182 242 1 5.488938
## 512 562 26 18.000 3 1 3 0 0 1 150 537 0 6.285998
## 513 563 31 19.000 2 3 7 0 1 1 34 56 1 4.025352
## 514 564 40 14.700 2 3 4 0 1 1 34 34 1 3.526361
## 515 566 34 2.000 3 1 3 0 1 1 366 549 0 6.308098
## 516 567 30 11.000 3 2 7 0 0 1 133 133 1 4.890349
## 517 568 36 0.000 3 2 3 0 0 1 69 226 1 5.420535
## 518 569 38 17.000 2 3 6 0 1 1 366 401 1 5.993961
## 519 570 31 20.000 1 3 6 1 1 1 14 14 1 2.639057
## 520 571 27 22.000 2 2 2 0 0 1 184 548 0 6.306275
## 521 572 32 21.000 1 3 15 0 1 1 89 224 1 5.411646
## 522 573 35 23.000 3 1 5 1 0 1 183 540 0 6.291569
## 523 574 44 29.000 2 3 13 0 0 1 177 237 1 5.468060
## 524 575 31 5.000 2 3 10 0 1 1 154 354 1 5.869297
## 525 576 28 23.000 3 2 20 0 0 1 123 123 1 4.812184
## 526 577 40 8.000 4 2 1 0 0 1 146 170 1 5.135798
## 527 578 25 12.000 3 1 10 1 1 1 203 203 1 5.313206
## 528 579 32 10.000 1 3 6 0 1 1 360 360 1 5.886104
## 529 580 29 15.750 4 1 2 0 0 1 79 139 1 4.934474
## 530 581 40 2.000 2 2 5 0 1 1 201 215 1 5.370638
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## 531 582 27 9.000 4 2 0 0 1 1 129 129 1 4.859812
## 532 583 26 2.000 3 1 1 0 1 1 365 396 1 5.981414
## 533 584 34 15.000 3 1 4 1 1 1 159 547 0 6.304449
## 534 585 49 4.000 4 2 2 0 0 1 177 547 0 6.304449
## 535 586 21 25.000 1 3 1 0 1 1 71 71 1 4.262680
## 536 587 39 23.000 3 3 2 0 1 1 108 168 1 5.123964
## 537 588 33 15.000 4 2 4 0 1 1 198 228 1 5.429346
## 538 589 32 3.000 3 1 1 0 1 1 372 551 0 6.311735
## 539 590 35 9.000 4 2 6 0 0 1 25 654 0 6.483107
## 540 591 31 20.000 4 1 0 1 1 1 48 51 1 3.931826
## 541 592 28 5.000 4 1 3 0 0 1 191 548 0 6.306275
## 542 593 27 29.000 3 2 5 0 1 1 171 231 1 5.442418
## 543 594 29 21.000 2 1 1 1 1 1 145 280 1 5.634790
## 544 595 30 1.000 2 1 20 0 0 1 183 184 1 5.214936
## 545 596 27 18.000 4 1 3 1 0 1 72 86 1 4.454347
## 546 598 40 15.000 4 2 1 0 1 1 44 46 1 3.828641
## 547 599 37 20.000 3 1 2 1 1 1 140 200 1 5.298317
## 548 600 33 10.000 4 1 0 0 0 1 184 244 1 5.497168
## 549 601 28 20.000 4 1 2 0 0 1 94 182 1 5.204007
## 550 602 40 15.000 4 2 8 0 1 1 296 296 1 5.690359
## 551 603 48 20.000 4 1 0 1 0 1 23 24 1 3.178054
## 552 604 38 25.000 3 1 1 0 0 1 128 142 1 4.955827
## 553 605 35 13.000 4 1 0 0 0 1 106 120 1 4.787492
## 554 606 37 13.000 4 2 0 0 0 1 46 47 1 3.850148
## 555 607 25 15.000 3 1 0 1 1 1 150 519 1 6.251904
## 556 608 26 8.000 4 1 2 0 1 1 48 248 1 5.513429
## 557 609 30 9.000 3 3 3 0 0 1 29 31 1 3.433987
## 558 610 28 16.000 4 2 2 0 0 1 179 567 0 6.340359
## 559 611 23 11.000 2 3 4 0 0 1 170 353 1 5.866468
## 560 612 36 31.000 4 1 1 0 1 1 365 458 1 6.126869
## 561 613 36 13.000 4 2 4 0 1 1 400 554 0 6.317165
## 562 614 24 5.000 4 1 0 1 0 1 56 116 1 4.753590
## 563 615 33 9.000 3 2 5 0 0 1 24 74 1 4.304065
## 564 616 38 15.000 4 2 6 0 0 1 10 10 1 2.302585
## 565 617 41 20.000 3 3 21 0 1 1 354 355 1 5.872118
## 566 618 31 21.000 3 1 0 1 1 1 232 232 1 5.446737
## 567 619 31 23.000 4 2 11 0 1 1 54 68 1 4.219508
## 568 620 37 5.000 4 1 0 1 1 1 48 48 1 3.871201
## 569 621 37 17.000 4 2 4 1 0 1 57 60 1 4.094345
## 570 622 33 13.000 4 1 0 0 0 1 46 50 1 3.912023
## 571 624 53 9.000 4 2 6 0 0 1 39 126 1 4.836282
## 572 625 37 20.000 2 3 4 0 0 1 17 18 1 2.890372
## 573 626 28 10.000 4 2 3 0 1 1 21 35 1 3.555348
## 574 627 35 17.000 1 3 2 0 0 1 184 379 1 5.937536
## 575 628 46 31.500 1 3 15 1 1 1 9 377 1 5.932245
## ND1 ND2 LNDT FRAC IV3
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## 1 5.0000000 -8.04718956 0.6931472 0.68333333 1
## 2 1.1111111 -0.11706724 2.1972246 0.13888889 0
## 3 2.5000000 -2.29072683 1.3862944 0.03888889 1
## 4 5.0000000 -8.04718956 0.6931472 0.73333333 1
## 5 1.6666667 -0.85137604 1.7917595 0.96111111 0
## 6 5.0000000 -8.04718956 0.6931472 0.08888889 1
## 7 0.2857143 0.35793228 3.5553481 0.99444444 1
## 8 3.3333333 -4.01324268 1.0986123 0.11666667 1
## 9 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 10 1.2500000 -0.27892944 2.0794415 0.68888889 1
## 11 1.1111111 -0.11706724 2.1972246 0.97777778 1
## 12 5.0000000 -8.04718956 0.6931472 0.43888889 0
## 13 3.3333333 -4.01324268 1.0986123 1.01111111 1
## 14 1.1111111 -0.11706724 2.1972246 0.96666667 1
## 15 5.0000000 -8.04718956 0.6931472 1.00555556 1
## 16 2.5000000 -2.29072683 1.3862944 0.33888889 1
## 17 1.4285714 -0.50953563 1.9459101 0.98333333 1
## 18 5.0000000 -8.04718956 0.6931472 0.10555556 0
## 19 0.6250000 0.29375227 2.7725887 0.15000000 0
## 20 1.6666667 -0.85137604 1.7917595 0.97222222 1
## 21 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 22 1.1111111 -0.11706724 2.1972246 0.23333333 1
## 23 10.0000000 -23.02585093 0.0000000 0.53333333 0
## 24 1.0000000 0.00000000 2.3025851 1.00000000 1
## 25 1.4285714 -0.50953563 1.9459101 1.01111111 1
## 26 1.6666667 -0.85137604 1.7917595 0.96666667 1
## 27 2.5000000 -2.29072683 1.3862944 0.97777778 0
## 28 1.2500000 -0.27892944 2.0794415 0.10000000 1
## 29 1.0000000 0.00000000 2.3025851 1.04444444 1
## 30 0.9090909 0.08664562 2.3978953 1.01111111 0
## 31 5.0000000 -8.04718956 0.6931472 1.00000000 1
## 32 5.0000000 -8.04718956 0.6931472 0.98888889 1
## 33 1.6666667 -0.85137604 1.7917595 0.98888889 1
## 34 1.4285714 -0.50953563 1.9459101 1.11111111 0
## 35 2.5000000 -2.29072683 1.3862944 0.74444444 0
## 36 1.2500000 -0.27892944 2.0794415 0.13888889 1
## 37 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 38 5.0000000 -8.04718956 0.6931472 0.87777778 0
## 39 3.3333333 -4.01324268 1.0986123 0.87777778 0
## 40 10.0000000 -23.02585093 0.0000000 0.43333333 1
## 41 3.3333333 -4.01324268 1.0986123 0.46666667 0
## 42 1.4285714 -0.50953563 1.9459101 0.50555556 1
## 43 5.0000000 -8.04718956 0.6931472 0.90000000 1
## 44 10.0000000 -23.02585093 0.0000000 0.25000000 1
## 45 5.0000000 -8.04718956 0.6931472 0.33888889 1
## 46 10.0000000 -23.02585093 0.0000000 0.10555556 1
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## 47 3.3333333 -4.01324268 1.0986123 0.20555556 0
## 48 1.1111111 -0.11706724 2.1972246 0.28333333 1
## 49 5.0000000 -8.04718956 0.6931472 0.33333333 1
## 50 0.3846154 0.36750440 3.2580965 0.98333333 1
## 51 10.0000000 -23.02585093 0.0000000 0.23888889 0
## 52 2.5000000 -2.29072683 1.3862944 0.11666667 0
## 53 3.3333333 -4.01324268 1.0986123 0.97777778 1
## 54 1.4285714 -0.50953563 1.9459101 1.06666667 1
## 55 0.9090909 0.08664562 2.3978953 1.23333333 1
## 56 0.9090909 0.08664562 2.3978953 0.42222222 1
## 57 1.2500000 -0.27892944 2.0794415 0.16666667 0
## 58 1.6666667 -0.85137604 1.7917595 0.55555556 0
## 59 1.6666667 -0.85137604 1.7917595 0.67777778 1
## 60 5.0000000 -8.04718956 0.6931472 0.34444444 0
## 61 3.3333333 -4.01324268 1.0986123 0.12222222 0
## 62 1.4285714 -0.50953563 1.9459101 1.00000000 1
## 63 1.6666667 -0.85137604 1.7917595 0.12222222 1
## 64 1.6666667 -0.85137604 1.7917595 0.51111111 1
## 65 10.0000000 -23.02585093 0.0000000 0.42222222 1
## 66 10.0000000 -23.02585093 0.0000000 1.00000000 1
## 67 1.6666667 -0.85137604 1.7917595 0.97777778 1
## 68 0.7692308 0.20181866 2.5649494 1.01111111 1
## 69 1.4285714 -0.50953563 1.9459101 0.94444444 0
## 70 10.0000000 -23.02585093 0.0000000 1.00000000 0
## 71 1.6666667 -0.85137604 1.7917595 0.57777778 1
## 72 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 73 0.7142857 0.24033731 2.6390573 0.47777778 1
## 74 1.1111111 -0.11706724 2.1972246 0.41111111 1
## 75 10.0000000 -23.02585093 0.0000000 0.96666667 0
## 76 3.3333333 -4.01324268 1.0986123 0.22222222 0
## 77 5.0000000 -8.04718956 0.6931472 0.10000000 0
## 78 5.0000000 -8.04718956 0.6931472 0.94444444 1
## 79 3.3333333 -4.01324268 1.0986123 0.20000000 1
## 80 0.7692308 0.20181866 2.5649494 0.78888889 1
## 81 3.3333333 -4.01324268 1.0986123 0.97777778 1
## 82 5.0000000 -8.04718956 0.6931472 0.74444444 0
## 83 2.0000000 -1.38629436 1.6094379 0.33333333 1
## 84 5.0000000 -8.04718956 0.6931472 0.37777778 0
## 85 1.0000000 0.00000000 2.3025851 1.01111111 0
## 86 5.0000000 -8.04718956 0.6931472 1.01111111 1
## 87 5.0000000 -8.04718956 0.6931472 0.81111111 0
## 88 5.0000000 -8.04718956 0.6931472 0.22222222 1
## 89 5.0000000 -8.04718956 0.6931472 0.98333333 0
## 90 3.3333333 -4.01324268 1.0986123 1.00555556 0
## 91 0.6250000 0.29375227 2.7725887 0.93333333 1
## 92 1.6666667 -0.85137604 1.7917595 0.50000000 1
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## 93 1.6666667 -0.85137604 1.7917595 0.33888889 1
## 94 2.5000000 -2.29072683 1.3862944 0.35000000 0
## 95 1.1111111 -0.11706724 2.1972246 0.67222222 0
## 96 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 97 2.5000000 -2.29072683 1.3862944 0.28333333 0
## 98 5.0000000 -8.04718956 0.6931472 0.97777778 0
## 99 5.0000000 -8.04718956 0.6931472 0.27777778 1
## 100 2.5000000 -2.29072683 1.3862944 0.92222222 0
## 101 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 102 5.0000000 -8.04718956 0.6931472 0.26666667 1
## 103 0.4761905 0.35330350 3.0445224 0.07777778 1
## 104 5.0000000 -8.04718956 0.6931472 0.94444444 0
## 105 10.0000000 -23.02585093 0.0000000 0.98888889 0
## 106 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 107 10.0000000 -23.02585093 0.0000000 0.98888889 0
## 108 10.0000000 -23.02585093 0.0000000 0.91111111 0
## 109 2.5000000 -2.29072683 1.3862944 0.93333333 1
## 110 5.0000000 -8.04718956 0.6931472 0.33333333 1
## 111 1.4285714 -0.50953563 1.9459101 0.07777778 0
## 112 2.5000000 -2.29072683 1.3862944 0.93333333 1
## 113 10.0000000 -23.02585093 0.0000000 0.77777778 1
## 114 3.3333333 -4.01324268 1.0986123 0.84444444 0
## 115 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 116 5.0000000 -8.04718956 0.6931472 0.98888889 1
## 117 1.4285714 -0.50953563 1.9459101 0.48333333 1
## 118 10.0000000 -23.02585093 0.0000000 0.97222222 0
## 119 2.5000000 -2.29072683 1.3862944 0.48333333 0
## 120 0.5882353 0.31213427 2.8332133 0.61111111 0
## 121 5.0000000 -8.04718956 0.6931472 0.11666667 1
## 122 2.5000000 -2.29072683 1.3862944 0.77222222 0
## 123 0.6250000 0.29375227 2.7725887 1.00555556 1
## 124 3.3333333 -4.01324268 1.0986123 0.18333333 1
## 125 5.0000000 -8.04718956 0.6931472 0.21666667 1
## 126 1.2500000 -0.27892944 2.0794415 0.02222222 1
## 127 2.0000000 -1.38629436 1.6094379 1.02222222 1
## 128 5.0000000 -8.04718956 0.6931472 0.68333333 0
## 129 5.0000000 -8.04718956 0.6931472 0.97777778 0
## 130 3.3333333 -4.01324268 1.0986123 0.96666667 1
## 131 5.0000000 -8.04718956 0.6931472 1.00555556 1
## 132 3.3333333 -4.01324268 1.0986123 0.62777778 1
## 133 2.5000000 -2.29072683 1.3862944 0.91111111 1
## 134 5.0000000 -8.04718956 0.6931472 0.93333333 1
## 135 1.1111111 -0.11706724 2.1972246 0.88888889 1
## 136 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 137 2.5000000 -2.29072683 1.3862944 1.07777778 0
## 138 2.5000000 -2.29072683 1.3862944 0.56666667 0
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## 139 2.5000000 -2.29072683 1.3862944 1.01111111 1
## 140 2.0000000 -1.38629436 1.6094379 1.00000000 0
## 141 1.4285714 -0.50953563 1.9459101 0.51111111 1
## 142 5.0000000 -8.04718956 0.6931472 0.84444444 0
## 143 3.3333333 -4.01324268 1.0986123 0.83333333 1
## 144 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 145 1.6666667 -0.85137604 1.7917595 1.00000000 1
## 146 1.4285714 -0.50953563 1.9459101 0.03333333 1
## 147 2.5000000 -2.29072683 1.3862944 0.04444444 1
## 148 5.0000000 -8.04718956 0.6931472 0.18333333 0
## 149 1.1111111 -0.11706724 2.1972246 0.17222222 1
## 150 5.0000000 -8.04718956 0.6931472 0.96666667 0
## 151 3.3333333 -4.01324268 1.0986123 0.18888889 0
## 152 2.5000000 -2.29072683 1.3862944 0.33333333 0
## 153 1.6666667 -0.85137604 1.7917595 0.43333333 0
## 154 3.3333333 -4.01324268 1.0986123 1.01111111 0
## 155 5.0000000 -8.04718956 0.6931472 1.01111111 0
## 156 10.0000000 -23.02585093 0.0000000 0.43333333 0
## 157 5.0000000 -8.04718956 0.6931472 0.30555556 0
## 158 3.3333333 -4.01324268 1.0986123 1.23888889 0
## 159 0.4761905 0.35330350 3.0445224 0.13888889 0
## 160 10.0000000 -23.02585093 0.0000000 0.35000000 0
## 161 5.0000000 -8.04718956 0.6931472 0.73888889 0
## 162 1.6666667 -0.85137604 1.7917595 0.85555556 1
## 163 3.3333333 -4.01324268 1.0986123 0.38888889 0
## 164 5.0000000 -8.04718956 0.6931472 0.36666667 0
## 165 2.0000000 -1.38629436 1.6094379 0.22222222 1
## 166 5.0000000 -8.04718956 0.6931472 0.41666667 0
## 167 3.3333333 -4.01324268 1.0986123 1.03888889 0
## 168 3.3333333 -4.01324268 1.0986123 1.01666667 0
## 169 1.1111111 -0.11706724 2.1972246 1.01111111 0
## 170 3.3333333 -4.01324268 1.0986123 1.06666667 0
## 171 2.0000000 -1.38629436 1.6094379 0.90000000 1
## 172 3.3333333 -4.01324268 1.0986123 1.07222222 1
## 173 3.3333333 -4.01324268 1.0986123 0.61666667 0
## 174 1.1111111 -0.11706724 2.1972246 1.01111111 1
## 175 2.0000000 -1.38629436 1.6094379 1.00000000 0
## 176 10.0000000 -23.02585093 0.0000000 0.51666667 0
## 177 1.2500000 -0.27892944 2.0794415 0.92777778 0
## 178 3.3333333 -4.01324268 1.0986123 1.08888889 0
## 179 2.0000000 -1.38629436 1.6094379 0.58888889 0
## 180 1.4285714 -0.50953563 1.9459101 0.87777778 1
## 181 5.0000000 -8.04718956 0.6931472 1.01111111 0
## 182 2.0000000 -1.38629436 1.6094379 0.98888889 0
## 183 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 184 0.9090909 0.08664562 2.3978953 0.97777778 1
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## 185 10.0000000 -23.02585093 0.0000000 1.05555556 0
## 186 10.0000000 -23.02585093 0.0000000 0.05555556 1
## 187 1.1111111 -0.11706724 2.1972246 0.35555556 1
## 188 3.3333333 -4.01324268 1.0986123 1.02222222 0
## 189 2.5000000 -2.29072683 1.3862944 0.73333333 0
## 190 1.1111111 -0.11706724 2.1972246 1.00000000 0
## 191 2.5000000 -2.29072683 1.3862944 1.03333333 0
## 192 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 193 10.0000000 -23.02585093 0.0000000 1.01111111 0
## 194 1.1111111 -0.11706724 2.1972246 0.62222222 1
## 195 1.2500000 -0.27892944 2.0794415 1.00000000 1
## 196 2.5000000 -2.29072683 1.3862944 0.81111111 0
## 197 1.6666667 -0.85137604 1.7917595 0.94444444 0
## 198 2.5000000 -2.29072683 1.3862944 0.25555556 1
## 199 2.5000000 -2.29072683 1.3862944 0.94444444 1
## 200 1.6666667 -0.85137604 1.7917595 1.00000000 1
## 201 2.0000000 -1.38629436 1.6094379 0.58888889 0
## 202 3.3333333 -4.01324268 1.0986123 1.06666667 1
## 203 3.3333333 -4.01324268 1.0986123 0.92222222 0
## 204 1.1111111 -0.11706724 2.1972246 0.60000000 1
## 205 1.0000000 0.00000000 2.3025851 0.87777778 0
## 206 2.5000000 -2.29072683 1.3862944 0.90000000 1
## 207 2.0000000 -1.38629436 1.6094379 0.20000000 0
## 208 2.0000000 -1.38629436 1.6094379 1.02222222 1
## 209 0.9090909 0.08664562 2.3978953 0.21666667 0
## 210 10.0000000 -23.02585093 0.0000000 0.98333333 0
## 211 3.3333333 -4.01324268 1.0986123 0.67777778 1
## 212 2.0000000 -1.38629436 1.6094379 0.98888889 0
## 213 1.2500000 -0.27892944 2.0794415 0.96111111 0
## 214 0.3125000 0.36348463 3.4657359 0.29444444 1
## 215 1.6666667 -0.85137604 1.7917595 0.52222222 1
## 216 3.3333333 -4.01324268 1.0986123 0.90555556 0
## 217 1.4285714 -0.50953563 1.9459101 0.88888889 0
## 218 1.4285714 -0.50953563 1.9459101 0.33888889 0
## 219 0.7692308 0.20181866 2.5649494 0.22777778 0
## 220 1.6666667 -0.85137604 1.7917595 0.29444444 1
## 221 2.0000000 -1.38629436 1.6094379 0.29444444 1
## 222 0.8333333 0.15193463 2.4849066 0.07222222 0
## 223 2.5000000 -2.29072683 1.3862944 1.01666667 0
## 224 2.0000000 -1.38629436 1.6094379 1.01111111 1
## 225 2.5000000 -2.29072683 1.3862944 1.01666667 1
## 226 1.0000000 0.00000000 2.3025851 0.35000000 1
## 227 1.2500000 -0.27892944 2.0794415 0.61666667 1
## 228 3.3333333 -4.01324268 1.0986123 0.96666667 0
## 229 2.5000000 -2.29072683 1.3862944 0.96111111 1
## 230 3.3333333 -4.01324268 1.0986123 0.66111111 0
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## 231 2.5000000 -2.29072683 1.3862944 1.00000000 0
## 232 3.3333333 -4.01324268 1.0986123 0.54444444 0
## 233 2.0000000 -1.38629436 1.6094379 0.27777778 0
## 234 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 235 0.5882353 0.31213427 2.8332133 0.55555556 1
## 236 2.0000000 -1.38629436 1.6094379 0.51666667 0
## 237 2.5000000 -2.29072683 1.3862944 0.91666667 1
## 238 10.0000000 -23.02585093 0.0000000 0.51666667 0
## 239 1.6666667 -0.85137604 1.7917595 0.48888889 1
## 240 1.6666667 -0.85137604 1.7917595 0.85555556 0
## 241 10.0000000 -23.02585093 0.0000000 1.01111111 0
## 242 3.3333333 -4.01324268 1.0986123 1.05555556 0
## 243 5.0000000 -8.04718956 0.6931472 0.91111111 1
## 244 1.6666667 -0.85137604 1.7917595 0.84444444 0
## 245 2.5000000 -2.29072683 1.3862944 0.05555556 0
## 246 1.2500000 -0.27892944 2.0794415 0.76666667 1
## 247 0.7692308 0.20181866 2.5649494 1.00000000 0
## 248 1.1111111 -0.11706724 2.1972246 0.21111111 0
## 249 2.0000000 -1.38629436 1.6094379 0.66666667 0
## 250 10.0000000 -23.02585093 0.0000000 0.76666667 0
## 251 1.1111111 -0.11706724 2.1972246 0.94444444 0
## 252 2.5000000 -2.29072683 1.3862944 1.02222222 1
## 253 2.5000000 -2.29072683 1.3862944 0.61111111 0
## 254 1.0000000 0.00000000 2.3025851 0.22222222 1
## 255 3.3333333 -4.01324268 1.0986123 0.96666667 1
## 256 10.0000000 -23.02585093 0.0000000 1.01111111 0
## 257 10.0000000 -23.02585093 0.0000000 0.10000000 0
## 258 1.4285714 -0.50953563 1.9459101 0.24444444 1
## 259 5.0000000 -8.04718956 0.6931472 0.96666667 0
## 260 0.9090909 0.08664562 2.3978953 0.95555556 1
## 261 1.2500000 -0.27892944 2.0794415 0.94444444 1
## 262 10.0000000 -23.02585093 0.0000000 0.92222222 0
## 263 1.4285714 -0.50953563 1.9459101 0.92222222 0
## 264 1.4285714 -0.50953563 1.9459101 1.02222222 0
## 265 2.5000000 -2.29072683 1.3862944 0.94444444 0
## 266 1.4285714 -0.50953563 1.9459101 0.40000000 0
## 267 3.3333333 -4.01324268 1.0986123 0.96666667 1
## 268 10.0000000 -23.02585093 0.0000000 0.31111111 0
## 269 1.6666667 -0.85137604 1.7917595 0.52222222 1
## 270 10.0000000 -23.02585093 0.0000000 0.41111111 1
## 271 5.0000000 -8.04718956 0.6931472 1.03333333 1
## 272 3.3333333 -4.01324268 1.0986123 0.98888889 0
## 273 2.5000000 -2.29072683 1.3862944 0.46666667 1
## 274 10.0000000 -23.02585093 0.0000000 0.07222222 0
## 275 0.7692308 0.20181866 2.5649494 0.47222222 1
## 276 2.5000000 -2.29072683 1.3862944 0.05000000 0
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## 277 2.0000000 -1.38629436 1.6094379 0.90000000 0
## 278 0.4761905 0.35330350 3.0445224 0.25555556 1
## 279 0.4761905 0.35330350 3.0445224 0.28888889 1
## 280 1.0000000 0.00000000 2.3025851 0.93333333 0
## 281 1.6666667 -0.85137604 1.7917595 0.25555556 1
## 282 3.3333333 -4.01324268 1.0986123 0.95555556 0
## 283 2.0000000 -1.38629436 1.6094379 1.00000000 1
## 284 1.1111111 -0.11706724 2.1972246 0.81111111 1
## 285 1.2500000 -0.27892944 2.0794415 0.84444444 1
## 286 5.0000000 -8.04718956 0.6931472 0.10000000 0
## 287 2.5000000 -2.29072683 1.3862944 0.52222222 0
## 288 3.3333333 -4.01324268 1.0986123 0.42222222 0
## 289 2.5000000 -2.29072683 1.3862944 0.22222222 0
## 290 2.5000000 -2.29072683 1.3862944 0.97777778 0
## 291 10.0000000 -23.02585093 0.0000000 0.57777778 0
## 292 0.6250000 0.29375227 2.7725887 0.02777778 1
## 293 1.4285714 -0.50953563 1.9459101 0.99444444 0
## 294 1.1111111 -0.11706724 2.1972246 0.19444444 1
## 295 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 296 0.2777778 0.35581496 3.5835189 0.45555556 1
## 297 2.5000000 -2.29072683 1.3862944 0.15555556 0
## 298 10.0000000 -23.02585093 0.0000000 0.45000000 0
## 299 3.3333333 -4.01324268 1.0986123 0.02222222 0
## 300 2.0000000 -1.38629436 1.6094379 0.53888889 1
## 301 10.0000000 -23.02585093 0.0000000 0.43333333 0
## 302 2.5000000 -2.29072683 1.3862944 1.00555556 0
## 303 5.0000000 -8.04718956 0.6931472 0.16111111 0
## 304 5.0000000 -8.04718956 0.6931472 0.77222222 0
## 305 3.3333333 -4.01324268 1.0986123 0.84444444 1
## 306 1.6666667 -0.85137604 1.7917595 0.50000000 0
## 307 2.0000000 -1.38629436 1.6094379 0.34444444 1
## 308 0.7142857 0.24033731 2.6390573 0.61111111 0
## 309 0.6666667 0.27031007 2.7080502 0.08333333 0
## 310 1.6666667 -0.85137604 1.7917595 0.37777778 0
## 311 10.0000000 -23.02585093 0.0000000 0.10555556 0
## 312 1.4285714 -0.50953563 1.9459101 0.25555556 1
## 313 0.3225806 0.36496842 3.4339872 1.02222222 1
## 314 1.1111111 -0.11706724 2.1972246 1.04444444 1
## 315 1.4285714 -0.50953563 1.9459101 0.34444444 1
## 316 2.5000000 -2.29072683 1.3862944 0.31111111 0
## 317 0.9090909 0.08664562 2.3978953 0.64444444 1
## 318 1.4285714 -0.50953563 1.9459101 1.25555556 1
## 319 2.5000000 -2.29072683 1.3862944 0.77777778 0
## 320 2.0000000 -1.38629436 1.6094379 1.00000000 1
## 321 1.4285714 -0.50953563 1.9459101 0.61111111 1
## 322 1.6666667 -0.85137604 1.7917595 0.98888889 1
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## 323 1.2500000 -0.27892944 2.0794415 0.78888889 1
## 324 1.6666667 -0.85137604 1.7917595 0.93333333 0
## 325 2.0000000 -1.38629436 1.6094379 0.86666667 0
## 326 2.0000000 -1.38629436 1.6094379 0.66666667 0
## 327 1.4285714 -0.50953563 1.9459101 0.91111111 1
## 328 1.6666667 -0.85137604 1.7917595 0.90000000 0
## 329 2.5000000 -2.29072683 1.3862944 0.19444444 1
## 330 0.4347826 0.36213440 3.1354942 0.08888889 1
## 331 5.0000000 -8.04718956 0.6931472 0.03888889 0
## 332 2.0000000 -1.38629436 1.6094379 0.16666667 0
## 333 2.5000000 -2.29072683 1.3862944 0.58888889 0
## 334 0.9090909 0.08664562 2.3978953 0.96666667 0
## 335 5.0000000 -8.04718956 0.6931472 0.80000000 0
## 336 5.0000000 -8.04718956 0.6931472 0.13333333 0
## 337 2.5000000 -2.29072683 1.3862944 0.09444444 0
## 338 2.0000000 -1.38629436 1.6094379 0.53888889 0
## 339 10.0000000 -23.02585093 0.0000000 0.14444444 1
## 340 3.3333333 -4.01324268 1.0986123 0.17222222 0
## 341 2.5000000 -2.29072683 1.3862944 0.15555556 1
## 342 3.3333333 -4.01324268 1.0986123 0.83333333 1
## 343 1.4285714 -0.50953563 1.9459101 0.22222222 1
## 344 2.0000000 -1.38629436 1.6094379 1.15555556 0
## 345 0.7692308 0.20181866 2.5649494 0.94444444 1
## 346 10.0000000 -23.02585093 0.0000000 1.22222222 0
## 347 0.5882353 0.31213427 2.8332133 1.11111111 1
## 348 5.0000000 -8.04718956 0.6931472 0.81111111 1
## 349 1.4285714 -0.50953563 1.9459101 0.72222222 1
## 350 0.4761905 0.35330350 3.0445224 0.83333333 1
## 351 5.0000000 -8.04718956 0.6931472 0.92222222 0
## 352 0.5555556 0.32654815 2.8903718 0.08333333 0
## 353 0.3225806 0.36496842 3.4339872 0.24444444 1
## 354 2.5000000 -2.29072683 1.3862944 0.03888889 0
## 355 2.0000000 -1.38629436 1.6094379 0.11111111 1
## 356 0.7692308 0.20181866 2.5649494 0.97222222 1
## 357 2.5000000 -2.29072683 1.3862944 0.39444444 0
## 358 3.3333333 -4.01324268 1.0986123 0.14444444 0
## 359 2.5000000 -2.29072683 1.3862944 0.89444444 1
## 360 1.0000000 0.00000000 2.3025851 0.20000000 0
## 361 1.1111111 -0.11706724 2.1972246 0.16666667 1
## 362 2.5000000 -2.29072683 1.3862944 0.99444444 0
## 363 3.3333333 -4.01324268 1.0986123 1.10555556 1
## 364 2.5000000 -2.29072683 1.3862944 1.01111111 1
## 365 2.5000000 -2.29072683 1.3862944 1.24444444 0
## 366 1.4285714 -0.50953563 1.9459101 0.08888889 1
## 367 3.3333333 -4.01324268 1.0986123 0.20000000 0
## 368 1.4285714 -0.50953563 1.9459101 0.22222222 0
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## 369 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 370 1.4285714 -0.50953563 1.9459101 0.97777778 0
## 371 0.4761905 0.35330350 3.0445224 0.84444444 1
## 372 5.0000000 -8.04718956 0.6931472 0.24444444 0
## 373 2.0000000 -1.38629436 1.6094379 1.22222222 1
## 374 2.5000000 -2.29072683 1.3862944 0.94444444 1
## 375 2.5000000 -2.29072683 1.3862944 0.11111111 1
## 376 0.5555556 0.32654815 2.8903718 0.87222222 1
## 377 0.3703704 0.36787103 3.2958369 0.73888889 1
## 378 2.5000000 -2.29072683 1.3862944 0.46111111 0
## 379 2.0000000 -1.38629436 1.6094379 0.84444444 0
## 380 2.0000000 -1.38629436 1.6094379 0.93888889 0
## 381 2.5000000 -2.29072683 1.3862944 0.49444444 0
## 382 1.6666667 -0.85137604 1.7917595 0.51111111 1
## 383 2.0000000 -1.38629436 1.6094379 0.11666667 0
## 384 0.3225806 0.36496842 3.4339872 0.17222222 1
## 385 5.0000000 -8.04718956 0.6931472 0.17222222 0
## 386 0.5882353 0.31213427 2.8332133 0.73888889 1
## 387 2.0000000 -1.38629436 1.6094379 0.85000000 1
## 388 10.0000000 -23.02585093 0.0000000 1.00000000 0
## 389 0.4761905 0.35330350 3.0445224 1.13333333 1
## 390 1.2500000 -0.27892944 2.0794415 0.94444444 1
## 391 5.0000000 -8.04718956 0.6931472 0.98888889 0
## 392 0.7142857 0.24033731 2.6390573 0.31111111 1
## 393 5.0000000 -8.04718956 0.6931472 1.00000000 1
## 394 2.5000000 -2.29072683 1.3862944 0.93333333 0
## 395 2.5000000 -2.29072683 1.3862944 0.94444444 1
## 396 1.2500000 -0.27892944 2.0794415 0.40000000 1
## 397 0.9090909 0.08664562 2.3978953 0.82222222 1
## 398 10.0000000 -23.02585093 0.0000000 0.46666667 1
## 399 5.0000000 -8.04718956 0.6931472 1.00000000 1
## 400 10.0000000 -23.02585093 0.0000000 1.20000000 1
## 401 2.5000000 -2.29072683 1.3862944 0.54444444 1
## 402 5.0000000 -8.04718956 0.6931472 2.43333333 1
## 403 1.4285714 -0.50953563 1.9459101 1.20000000 1
## 404 10.0000000 -23.02585093 0.0000000 1.97777778 0
## 405 3.3333333 -4.01324268 1.0986123 0.46666667 0
## 406 1.2500000 -0.27892944 2.0794415 2.02222222 1
## 407 1.6666667 -0.85137604 1.7917595 0.06666667 0
## 408 2.5000000 -2.29072683 1.3862944 1.95000000 0
## 409 5.0000000 -8.04718956 0.6931472 0.06666667 0
## 410 10.0000000 -23.02585093 0.0000000 0.03333333 1
## 411 5.0000000 -8.04718956 0.6931472 0.50555556 0
## 412 5.0000000 -8.04718956 0.6931472 1.36111111 0
## 413 5.0000000 -8.04718956 0.6931472 2.06666667 0
## 414 10.0000000 -23.02585093 0.0000000 1.21111111 0
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## 415 10.0000000 -23.02585093 0.0000000 0.25555556 0
## 416 1.4285714 -0.50953563 1.9459101 2.01666667 1
## 417 10.0000000 -23.02585093 0.0000000 0.73888889 0
## 418 5.0000000 -8.04718956 0.6931472 0.03888889 1
## 419 10.0000000 -23.02585093 0.0000000 0.62222222 0
## 420 3.3333333 -4.01324268 1.0986123 0.23333333 0
## 421 5.0000000 -8.04718956 0.6931472 1.87777778 1
## 422 1.4285714 -0.50953563 1.9459101 0.31111111 1
## 423 0.4761905 0.35330350 3.0445224 0.52222222 1
## 424 1.6666667 -0.85137604 1.7917595 0.22222222 1
## 425 2.0000000 -1.38629436 1.6094379 1.95555556 1
## 426 10.0000000 -23.02585093 0.0000000 0.36666667 0
## 427 1.4285714 -0.50953563 1.9459101 0.30555556 0
## 428 1.2500000 -0.27892944 2.0794415 1.91111111 0
## 429 10.0000000 -23.02585093 0.0000000 0.85000000 0
## 430 1.1111111 -0.11706724 2.1972246 2.04444444 0
## 431 10.0000000 -23.02585093 0.0000000 2.03333333 0
## 432 2.5000000 -2.29072683 1.3862944 0.24444444 0
## 433 10.0000000 -23.02585093 0.0000000 2.03333333 0
## 434 10.0000000 -23.02585093 0.0000000 1.55555556 0
## 435 3.3333333 -4.01324268 1.0986123 0.21111111 0
## 436 0.7692308 0.20181866 2.5649494 2.04444444 1
## 437 10.0000000 -23.02585093 0.0000000 0.55555556 0
## 438 3.3333333 -4.01324268 1.0986123 1.46666667 0
## 439 5.0000000 -8.04718956 0.6931472 1.42222222 1
## 440 5.0000000 -8.04718956 0.6931472 0.59444444 0
## 441 10.0000000 -23.02585093 0.0000000 2.04444444 0
## 442 2.0000000 -1.38629436 1.6094379 1.21666667 1
## 443 1.6666667 -0.85137604 1.7917595 2.07777778 0
## 444 5.0000000 -8.04718956 0.6931472 0.51111111 0
## 445 10.0000000 -23.02585093 0.0000000 0.25000000 0
## 446 10.0000000 -23.02585093 0.0000000 2.03333333 0
## 447 3.3333333 -4.01324268 1.0986123 2.04444444 1
## 448 5.0000000 -8.04718956 0.6931472 0.86666667 0
## 449 10.0000000 -23.02585093 0.0000000 2.04444444 0
## 450 3.3333333 -4.01324268 1.0986123 2.07777778 0
## 451 3.3333333 -4.01324268 1.0986123 1.12222222 1
## 452 10.0000000 -23.02585093 0.0000000 1.56666667 0
## 453 5.0000000 -8.04718956 0.6931472 0.26666667 0
## 454 0.2439024 0.34414316 3.7135721 0.40000000 0
## 455 10.0000000 -23.02585093 0.0000000 0.31111111 0
## 456 1.1111111 -0.11706724 2.1972246 2.03888889 0
## 457 3.3333333 -4.01324268 1.0986123 0.38888889 0
## 458 1.4285714 -0.50953563 1.9459101 0.32222222 0
## 459 2.0000000 -1.38629436 1.6094379 2.03333333 0
## 460 1.4285714 -0.50953563 1.9459101 0.05555556 1
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## 461 3.3333333 -4.01324268 1.0986123 2.37777778 1
## 462 1.1111111 -0.11706724 2.1972246 2.18888889 0
## 463 10.0000000 -23.02585093 0.0000000 0.98888889 0
## 464 5.0000000 -8.04718956 0.6931472 0.62222222 0
## 465 5.0000000 -8.04718956 0.6931472 0.10000000 0
## 466 10.0000000 -23.02585093 0.0000000 2.06666667 0
## 467 5.0000000 -8.04718956 0.6931472 1.68333333 0
## 468 2.5000000 -2.29072683 1.3862944 0.17777778 0
## 469 2.0000000 -1.38629436 1.6094379 0.04444444 0
## 470 5.0000000 -8.04718956 0.6931472 0.35000000 0
## 471 0.4761905 0.35330350 3.0445224 1.20000000 0
## 472 5.0000000 -8.04718956 0.6931472 2.03333333 0
## 473 5.0000000 -8.04718956 0.6931472 0.83888889 0
## 474 10.0000000 -23.02585093 0.0000000 0.07777778 0
## 475 3.3333333 -4.01324268 1.0986123 0.42222222 0
## 476 3.3333333 -4.01324268 1.0986123 0.97777778 0
## 477 1.2500000 -0.27892944 2.0794415 0.51666667 1
## 478 2.5000000 -2.29072683 1.3862944 2.22222222 1
## 479 10.0000000 -23.02585093 0.0000000 1.97777778 0
## 480 10.0000000 -23.02585093 0.0000000 0.43333333 0
## 481 0.9090909 0.08664562 2.3978953 0.66111111 0
## 482 3.3333333 -4.01324268 1.0986123 1.71111111 0
## 483 3.3333333 -4.01324268 1.0986123 0.90555556 1
## 484 1.2500000 -0.27892944 2.0794415 0.65555556 0
## 485 10.0000000 -23.02585093 0.0000000 0.42222222 0
## 486 10.0000000 -23.02585093 0.0000000 0.64444444 0
## 487 2.5000000 -2.29072683 1.3862944 0.97777778 1
## 488 5.0000000 -8.04718956 0.6931472 0.36666667 0
## 489 3.3333333 -4.01324268 1.0986123 0.38888889 1
## 490 3.3333333 -4.01324268 1.0986123 0.37777778 0
## 491 0.3846154 0.36750440 3.2580965 2.12222222 0
## 492 1.6666667 -0.85137604 1.7917595 0.38888889 0
## 493 5.0000000 -8.04718956 0.6931472 0.17777778 0
## 494 10.0000000 -23.02585093 0.0000000 0.31111111 0
## 495 2.5000000 -2.29072683 1.3862944 0.16666667 0
## 496 1.2500000 -0.27892944 2.0794415 0.07777778 1
## 497 10.0000000 -23.02585093 0.0000000 0.47777778 0
## 498 1.6666667 -0.85137604 1.7917595 0.98888889 0
## 499 5.0000000 -8.04718956 0.6931472 0.42222222 0
## 500 2.5000000 -2.29072683 1.3862944 2.26666667 1
## 501 3.3333333 -4.01324268 1.0986123 0.84444444 0
## 502 2.5000000 -2.29072683 1.3862944 2.16666667 0
## 503 5.0000000 -8.04718956 0.6931472 2.04444444 0
## 504 5.0000000 -8.04718956 0.6931472 1.41111111 0
## 505 10.0000000 -23.02585093 0.0000000 2.06111111 0
## 506 5.0000000 -8.04718956 0.6931472 2.17777778 0
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## 507 3.3333333 -4.01324268 1.0986123 2.20000000 0
## 508 3.3333333 -4.01324268 1.0986123 1.88888889 1
## 509 2.0000000 -1.38629436 1.6094379 0.27777778 1
## 510 10.0000000 -23.02585093 0.0000000 0.90555556 0
## 511 0.8333333 0.15193463 2.4849066 2.02222222 0
## 512 2.5000000 -2.29072683 1.3862944 1.66666667 0
## 513 1.2500000 -0.27892944 2.0794415 0.18888889 1
## 514 2.0000000 -1.38629436 1.6094379 0.18888889 1
## 515 2.5000000 -2.29072683 1.3862944 2.03333333 0
## 516 1.2500000 -0.27892944 2.0794415 1.47777778 0
## 517 2.5000000 -2.29072683 1.3862944 0.76666667 0
## 518 1.4285714 -0.50953563 1.9459101 2.03333333 1
## 519 1.4285714 -0.50953563 1.9459101 0.07777778 1
## 520 3.3333333 -4.01324268 1.0986123 2.04444444 0
## 521 0.6250000 0.29375227 2.7725887 0.49444444 1
## 522 1.6666667 -0.85137604 1.7917595 2.03333333 0
## 523 0.7142857 0.24033731 2.6390573 1.96666667 1
## 524 0.9090909 0.08664562 2.3978953 0.85555556 1
## 525 0.4761905 0.35330350 3.0445224 1.36666667 0
## 526 5.0000000 -8.04718956 0.6931472 1.62222222 0
## 527 0.9090909 0.08664562 2.3978953 1.12777778 0
## 528 1.4285714 -0.50953563 1.9459101 2.00000000 1
## 529 3.3333333 -4.01324268 1.0986123 0.87777778 0
## 530 1.6666667 -0.85137604 1.7917595 1.11666667 0
## 531 10.0000000 -23.02585093 0.0000000 0.71666667 0
## 532 5.0000000 -8.04718956 0.6931472 2.02777778 0
## 533 2.0000000 -1.38629436 1.6094379 0.88333333 0
## 534 3.3333333 -4.01324268 1.0986123 1.96666667 0
## 535 5.0000000 -8.04718956 0.6931472 0.39444444 1
## 536 3.3333333 -4.01324268 1.0986123 0.60000000 1
## 537 2.0000000 -1.38629436 1.6094379 1.10000000 0
## 538 5.0000000 -8.04718956 0.6931472 2.06666667 0
## 539 1.4285714 -0.50953563 1.9459101 0.27777778 0
## 540 10.0000000 -23.02585093 0.0000000 0.26666667 0
## 541 2.5000000 -2.29072683 1.3862944 2.12222222 0
## 542 1.6666667 -0.85137604 1.7917595 0.95000000 0
## 543 5.0000000 -8.04718956 0.6931472 0.80555556 0
## 544 0.4761905 0.35330350 3.0445224 2.03333333 0
## 545 2.5000000 -2.29072683 1.3862944 0.80000000 0
## 546 5.0000000 -8.04718956 0.6931472 0.24444444 0
## 547 3.3333333 -4.01324268 1.0986123 0.77777778 0
## 548 10.0000000 -23.02585093 0.0000000 2.04444444 0
## 549 3.3333333 -4.01324268 1.0986123 1.04444444 0
## 550 1.1111111 -0.11706724 2.1972246 1.64444444 0
## 551 10.0000000 -23.02585093 0.0000000 0.25555556 0
## 552 5.0000000 -8.04718956 0.6931472 1.42222222 0
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## 553 10.0000000 -23.02585093 0.0000000 1.17777778 0
## 554 10.0000000 -23.02585093 0.0000000 0.51111111 0
## 555 10.0000000 -23.02585093 0.0000000 0.83333333 0
## 556 3.3333333 -4.01324268 1.0986123 0.26666667 0
## 557 2.5000000 -2.29072683 1.3862944 0.32222222 1
## 558 3.3333333 -4.01324268 1.0986123 1.98888889 0
## 559 2.0000000 -1.38629436 1.6094379 1.88888889 1
## 560 5.0000000 -8.04718956 0.6931472 2.02777778 0
## 561 2.0000000 -1.38629436 1.6094379 2.22222222 0
## 562 10.0000000 -23.02585093 0.0000000 0.62222222 0
## 563 1.6666667 -0.85137604 1.7917595 0.26666667 0
## 564 1.4285714 -0.50953563 1.9459101 0.11111111 0
## 565 0.4545455 0.35838971 3.0910425 1.96666667 1
## 566 10.0000000 -23.02585093 0.0000000 1.28888889 0
## 567 0.8333333 0.15193463 2.4849066 0.30000000 0
## 568 10.0000000 -23.02585093 0.0000000 0.26666667 0
## 569 2.0000000 -1.38629436 1.6094379 0.63333333 0
## 570 10.0000000 -23.02585093 0.0000000 0.51111111 0
## 571 1.4285714 -0.50953563 1.9459101 0.43333333 0
## 572 2.0000000 -1.38629436 1.6094379 0.18888889 1
## 573 2.5000000 -2.29072683 1.3862944 0.11666667 0
## 574 3.3333333 -4.01324268 1.0986123 2.04444444 1
## 575 0.6250000 0.29375227 2.7725887 0.05000000 1

glimpse(uis)

## Rows: 575
## Columns: 18
## $ ID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, ~
## $ AGE <dbl> 39, 33, 33, 32, 24, 30, 39, 27, 40, 36, 38, 29, 32, 41, 31, 27,~
## $ BECK <dbl> 9.000, 34.000, 10.000, 20.000, 5.000, 32.550, 19.000, 10.000, 2~
## $ HC <dbl> 4, 4, 2, 4, 2, 3, 4, 4, 2, 2, 2, 3, 3, 1, 1, 2, 1, 4, 3, 2, 3, ~
## $ IV <dbl> 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 2, 1, 3, 1, ~
## $ NDT <dbl> 1, 8, 3, 1, 5, 1, 34, 2, 3, 7, 8, 1, 2, 8, 1, 3, 6, 1, 15, 5, 1~
## $ RACE <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, ~
## $ TREAT <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ SITE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ LEN.T <dbl> 123, 25, 7, 66, 173, 16, 179, 21, 176, 124, 176, 79, 182, 174, ~
## $ TIME <dbl> 188, 26, 207, 144, 551, 32, 459, 22, 210, 184, 212, 87, 598, 26~
## $ CENSOR <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ Y <dbl> 5.236442, 3.258097, 5.332719, 4.969813, 6.311735, 3.465736, 6.1~
## $ ND1 <dbl> 5.0000000, 1.1111111, 2.5000000, 5.0000000, 1.6666667, 5.000000~
## $ ND2 <dbl> -8.0471896, -0.1170672, -2.2907268, -8.0471896, -0.8513760, -8.~
## $ LNDT <dbl> 0.6931472, 2.1972246, 1.3862944, 0.6931472, 1.7917595, 0.693147~
## $ FRAC <dbl> 0.68333333, 0.13888889, 0.03888889, 0.73333333, 0.96111111, 0.0~
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## $ IV3 <dbl> 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, ~

22.7.2 Prepare the data for analysis. [Not always neces-
sary.]

We need IV to be a factor variable.

# Although we've already done this above,
# we include it here again for completeness.
uis2 <- uis %>%
mutate(IV_fct = factor(IV, levels = c(1, 2, 3),

labels = c("Never", "Previous", "Recent")))
uis2

## ID AGE BECK HC IV NDT RACE TREAT SITE LEN.T TIME CENSOR Y
## 1 1 39 9.000 4 3 1 0 1 0 123 188 1 5.236442
## 2 2 33 34.000 4 2 8 0 1 0 25 26 1 3.258097
## 3 3 33 10.000 2 3 3 0 1 0 7 207 1 5.332719
## 4 4 32 20.000 4 3 1 0 0 0 66 144 1 4.969813
## 5 5 24 5.000 2 1 5 1 1 0 173 551 0 6.311735
## 6 6 30 32.550 3 3 1 0 1 0 16 32 1 3.465736
## 7 7 39 19.000 4 3 34 0 1 0 179 459 1 6.129050
## 8 8 27 10.000 4 3 2 0 1 0 21 22 1 3.091042
## 9 9 40 29.000 2 3 3 0 1 0 176 210 1 5.347108
## 10 10 36 25.000 2 3 7 0 1 0 124 184 1 5.214936
## 11 12 38 18.900 2 3 8 0 1 0 176 212 1 5.356586
## 12 13 29 16.000 3 1 1 0 1 0 79 87 1 4.465908
## 13 14 32 36.000 3 3 2 1 1 0 182 598 0 6.393591
## 14 15 41 19.000 1 3 8 0 1 0 174 260 1 5.560682
## 15 16 31 18.000 1 3 1 0 1 0 181 210 1 5.347108
## 16 17 27 12.000 2 3 3 0 1 0 61 84 1 4.430817
## 17 18 28 34.000 1 3 6 0 1 0 177 196 1 5.278115
## 18 19 28 23.000 4 2 1 0 1 0 19 19 1 2.944439
## 19 20 36 26.000 3 1 15 1 1 0 27 441 1 6.089045
## 20 21 32 18.900 2 3 5 0 1 0 175 449 1 6.107023
## 21 22 33 15.000 3 1 1 0 0 0 12 659 0 6.490724
## 22 23 28 25.200 1 3 8 0 0 0 21 21 1 3.044522
## 23 24 29 6.632 4 2 0 0 0 0 48 53 1 3.970292
## 24 25 35 2.100 2 3 9 0 0 0 90 225 1 5.416100
## 25 26 45 26.000 1 3 6 0 0 0 91 161 1 5.081404
## 26 27 35 39.789 4 3 5 0 0 0 87 87 1 4.465908
## 27 28 24 20.000 3 1 3 0 0 0 88 89 1 4.488636
## 28 29 36 16.000 1 3 7 0 0 0 9 44 1 3.784190
## 29 31 39 22.000 1 3 9 0 0 0 94 523 0 6.259581
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## 30 32 36 9.947 4 2 10 0 0 0 91 226 1 5.420535
## 31 33 37 9.450 4 3 1 0 0 0 90 259 1 5.556828
## 32 34 30 39.000 2 3 1 0 0 0 89 289 1 5.666427
## 33 35 44 41.000 1 3 5 0 0 0 89 103 1 4.634729
## 34 36 28 31.000 3 1 6 1 0 0 100 624 0 6.436150
## 35 37 25 20.000 3 1 3 1 0 0 67 68 1 4.219508
## 36 38 30 8.000 2 3 7 0 1 0 25 57 1 4.043051
## 37 39 24 9.000 4 1 1 0 0 0 12 65 1 4.174387
## 38 40 27 20.000 3 1 1 0 0 0 79 79 1 4.369448
## 39 41 30 8.000 3 1 2 1 0 0 79 559 0 6.326149
## 40 42 34 8.000 2 3 0 0 1 0 78 79 1 4.369448
## 41 43 33 23.000 4 2 2 0 1 0 84 87 1 4.465908
## 42 44 34 18.000 3 3 6 0 1 0 91 91 1 4.510860
## 43 45 36 13.000 2 3 1 0 1 0 162 297 1 5.693732
## 44 46 27 23.000 1 3 0 0 1 0 45 45 1 3.806662
## 45 47 35 9.000 4 3 1 1 1 0 61 246 1 5.505332
## 46 48 24 14.000 1 3 0 0 1 0 19 37 1 3.610918
## 47 49 28 23.000 4 1 2 1 1 0 37 37 1 3.610918
## 48 50 46 10.000 1 3 8 0 1 0 51 538 0 6.287859
## 49 51 26 11.000 3 3 1 0 1 0 60 541 0 6.293419
## 50 52 42 16.000 1 3 25 0 1 0 177 184 1 5.214936
## 51 53 30 0.000 3 1 0 0 1 0 43 122 1 4.804021
## 52 55 30 12.000 4 1 3 1 1 0 21 156 1 5.049856
## 53 56 27 21.000 2 3 2 0 0 0 88 121 1 4.795791
## 54 57 38 0.000 1 3 6 0 0 0 96 231 1 5.442418
## 55 58 48 8.000 4 3 10 0 0 0 111 111 1 4.709530
## 56 59 36 25.000 1 3 10 0 0 0 38 38 1 3.637586
## 57 60 28 6.300 3 1 7 0 0 0 15 15 1 2.708050
## 58 61 31 20.000 4 2 5 0 0 0 50 54 1 3.988984
## 59 62 28 4.000 2 3 5 0 0 0 61 127 1 4.844187
## 60 63 28 20.000 3 1 1 0 0 0 31 105 1 4.653960
## 61 64 26 17.000 2 1 2 1 0 0 11 11 1 2.397895
## 62 65 34 3.000 4 3 6 0 0 0 90 153 1 5.030438
## 63 66 26 29.000 2 3 5 0 0 0 11 11 1 2.397895
## 64 68 31 26.000 1 3 5 0 0 0 46 46 1 3.828641
## 65 69 41 12.000 1 3 0 1 0 0 38 655 0 6.484635
## 66 70 30 24.000 4 3 0 0 0 0 90 166 1 5.111988
## 67 72 39 15.750 4 3 5 0 0 0 88 95 1 4.553877
## 68 74 33 9.000 2 3 12 0 0 0 91 151 1 5.017280
## 69 75 33 18.000 4 2 6 0 0 0 85 220 1 5.393628
## 70 76 29 20.000 4 1 0 1 0 0 90 227 1 5.424950
## 71 77 36 17.000 1 3 5 0 0 0 52 343 1 5.837730
## 72 78 26 3.000 4 3 3 0 0 0 88 119 1 4.779123
## 73 79 37 27.000 1 3 13 0 0 0 43 43 1 3.761200
## 74 81 29 31.500 1 3 8 0 0 0 37 47 1 3.850148
## 75 83 30 19.000 3 1 0 1 0 0 87 805 0 6.690842
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## 76 84 35 15.000 3 2 2 0 0 0 20 321 1 5.771441
## 77 85 33 22.000 3 1 1 0 0 0 9 167 1 5.117994
## 78 87 36 16.000 2 3 1 0 0 0 85 491 1 6.196444
## 79 88 28 17.000 1 3 2 0 0 0 18 35 1 3.555348
## 80 89 31 32.550 1 3 12 1 0 0 71 123 1 4.812184
## 81 90 23 24.000 1 3 2 0 0 0 88 597 0 6.391917
## 82 91 33 22.000 3 2 1 0 0 0 67 762 0 6.635947
## 83 93 37 18.000 2 3 4 0 0 0 30 31 1 3.433987
## 84 94 25 17.850 3 1 1 0 1 0 68 228 1 5.429346
## 85 95 56 5.000 2 2 9 1 1 0 182 553 0 6.315358
## 86 96 23 39.000 1 3 1 0 1 0 182 190 1 5.247024
## 87 97 26 21.000 3 1 1 0 1 0 146 307 1 5.726848
## 88 98 26 11.000 1 3 1 0 1 0 40 73 1 4.290459
## 89 99 23 14.000 3 1 1 0 1 0 177 208 1 5.337538
## 90 100 28 31.000 4 2 2 1 1 0 181 267 1 5.587249
## 91 102 30 14.000 1 3 15 0 1 0 168 169 1 5.129899
## 92 104 25 6.000 2 3 5 0 1 0 90 655 0 6.484635
## 93 105 33 16.000 1 3 5 0 1 0 61 70 1 4.248495
## 94 106 22 6.000 3 1 3 1 1 0 63 398 1 5.986452
## 95 108 25 20.000 4 2 8 1 1 0 121 122 1 4.804021
## 96 111 38 9.000 3 1 1 1 0 0 89 96 1 4.564348
## 97 112 35 11.000 2 1 3 0 1 0 51 1172 0 7.066467
## 98 113 35 15.000 3 1 1 0 0 0 88 734 0 6.598509
## 99 114 25 13.000 3 3 1 0 0 0 25 26 1 3.258097
## 100 115 33 31.000 3 1 3 1 0 0 83 84 1 4.430817
## 101 116 30 5.000 3 1 2 1 0 0 89 171 1 5.141664
## 102 117 45 10.000 2 3 1 0 0 0 24 159 1 5.068904
## 103 119 42 23.000 2 3 20 0 0 0 7 7 1 1.945910
## 104 120 29 16.000 4 1 1 1 0 0 85 763 0 6.637258
## 105 121 24 37.800 3 1 0 0 0 0 89 104 1 4.644391
## 106 122 33 10.000 2 3 4 0 0 0 91 162 1 5.087596
## 107 123 32 9.000 3 1 0 0 0 0 89 90 1 4.499810
## 108 124 26 15.000 3 1 0 0 0 0 82 373 1 5.921578
## 109 125 28 2.000 1 3 3 0 0 0 84 115 1 4.744932
## 110 127 37 34.000 2 3 1 0 0 0 30 30 1 3.401197
## 111 128 23 11.000 4 1 6 0 0 0 7 8 1 2.079442
## 112 129 40 31.000 2 3 3 1 0 0 84 168 1 5.123964
## 113 130 36 36.750 3 3 0 0 0 0 70 70 1 4.248495
## 114 131 23 26.000 3 2 2 0 0 0 76 130 1 4.867534
## 115 132 35 5.000 4 1 1 1 0 0 89 285 1 5.652489
## 116 133 25 19.000 2 3 1 0 1 0 178 569 0 6.343880
## 117 134 35 21.000 2 3 6 0 1 0 87 87 1 4.465908
## 118 135 46 1.000 4 2 0 0 1 0 175 310 1 5.736572
## 119 136 32 6.000 4 1 3 0 1 0 87 87 1 4.465908
## 120 137 35 23.000 3 1 16 1 1 0 110 544 0 6.298949
## 121 138 34 38.000 3 3 1 0 1 0 21 156 1 5.049856
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## 122 139 43 24.000 3 1 3 0 1 0 139 658 0 6.489205
## 123 140 39 3.000 4 3 15 0 1 0 181 273 1 5.609472
## 124 141 27 16.800 4 3 2 1 1 0 33 168 1 5.123964
## 125 142 38 35.000 1 3 1 0 1 0 39 83 1 4.418841
## 126 143 37 11.000 2 3 7 0 1 0 4 4 1 1.386294
## 127 144 44 2.000 1 3 4 1 1 0 184 708 0 6.562444
## 128 145 25 16.000 4 1 1 1 1 0 123 137 1 4.919981
## 129 146 34 15.000 3 1 1 0 1 0 176 259 1 5.556828
## 130 147 34 11.000 3 3 2 1 1 0 174 560 0 6.327937
## 131 148 38 11.000 1 3 1 1 1 0 181 586 0 6.373320
## 132 149 24 22.000 2 3 2 1 1 0 113 190 1 5.247024
## 133 151 42 18.000 2 3 3 0 1 0 164 544 0 6.298949
## 134 153 34 29.000 4 3 1 1 0 0 84 494 1 6.202536
## 135 154 45 27.000 1 3 8 0 0 0 80 541 0 6.293419
## 136 155 40 16.000 2 3 4 0 0 0 91 94 1 4.543295
## 137 156 27 9.000 4 1 3 1 0 0 97 567 0 6.340359
## 138 157 24 0.000 4 1 3 0 0 0 51 55 1 4.007333
## 139 158 27 15.000 1 3 3 0 0 0 91 93 1 4.532599
## 140 159 34 24.000 3 1 4 0 0 0 90 276 1 5.620401
## 141 160 36 3.000 2 3 6 0 0 0 46 46 1 3.828641
## 142 162 31 9.000 3 1 1 0 0 0 76 250 1 5.521461
## 143 163 40 5.000 2 3 2 0 0 0 75 106 1 4.663439
## 144 164 40 13.000 1 3 4 1 0 0 91 552 0 6.313548
## 145 165 37 29.000 2 3 5 0 0 0 90 90 1 4.499810
## 146 166 25 11.000 4 3 6 0 0 0 3 203 1 5.313206
## 147 167 41 22.000 2 3 3 1 1 0 8 67 1 4.204693
## 148 168 22 9.000 4 1 1 0 1 0 33 559 1 6.326149
## 149 169 31 18.000 2 3 8 1 1 0 31 106 1 4.663439
## 150 170 29 40.000 1 1 1 1 1 0 174 374 1 5.924256
## 151 171 27 25.000 3 1 2 0 1 0 34 630 0 6.445720
## 152 172 22 26.000 4 2 3 0 1 0 60 61 1 4.110874
## 153 174 37 11.000 1 2 5 1 1 0 78 547 0 6.304449
## 154 175 36 6.000 3 1 2 1 1 0 182 568 0 6.342121
## 155 176 24 20.000 3 1 1 0 1 0 182 490 1 6.194405
## 156 177 28 9.000 4 1 0 1 1 0 78 222 1 5.402677
## 157 178 24 6.000 4 1 1 0 1 0 55 56 1 4.025352
## 158 179 28 0.000 3 1 2 0 1 0 223 282 1 5.641907
## 159 180 24 5.000 3 1 20 1 1 0 25 35 1 3.555348
## 160 181 24 15.000 4 1 0 0 1 0 63 603 0 6.401917
## 161 183 29 14.700 3 1 1 0 1 0 133 148 1 4.997212
## 162 184 37 3.000 1 3 5 1 1 0 154 354 1 5.869297
## 163 185 26 31.000 1 1 2 0 1 0 70 164 1 5.099866
## 164 186 29 14.000 3 2 1 0 1 0 66 94 1 4.543295
## 165 187 29 28.000 2 3 4 0 1 0 40 65 1 4.174387
## 166 188 33 18.000 4 1 1 0 1 0 75 567 0 6.340359
## 167 189 29 12.000 4 2 2 0 1 0 187 634 0 6.452049
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## 168 190 32 5.000 1 1 2 1 1 0 183 633 0 6.450470
## 169 192 33 11.000 4 1 8 1 1 0 182 477 1 6.167516
## 170 193 26 21.000 4 2 2 0 1 0 192 436 1 6.077642
## 171 195 24 23.000 2 3 4 1 1 0 162 362 1 5.891644
## 172 196 46 32.000 2 3 2 0 1 0 193 552 0 6.313548
## 173 197 23 26.000 4 1 2 0 1 0 111 144 1 4.969813
## 174 198 40 19.950 4 3 8 0 1 0 182 242 1 5.488938
## 175 199 48 17.000 3 1 4 0 1 0 180 564 0 6.335054
## 176 200 33 16.000 3 1 0 0 1 0 93 299 1 5.700444
## 177 201 21 26.250 4 1 7 0 1 0 167 167 1 5.117994
## 178 202 38 29.000 3 1 2 0 1 0 196 380 1 5.940171
## 179 203 28 23.000 4 2 4 0 1 0 106 120 1 4.787492
## 180 205 39 9.000 1 3 6 0 1 0 158 218 1 5.384495
## 181 206 37 26.000 1 2 1 1 0 0 91 115 1 4.744932
## 182 207 32 22.000 3 1 4 1 0 0 89 224 1 5.411646
## 183 208 39 23.000 3 2 2 1 0 0 89 132 1 4.882802
## 184 209 28 0.000 1 3 10 0 0 0 88 148 1 4.997212
## 185 210 26 30.000 3 1 0 1 0 0 95 593 0 6.385194
## 186 211 31 21.000 1 3 0 0 0 0 5 26 1 3.258097
## 187 213 34 19.000 4 3 8 0 0 0 32 32 1 3.465736
## 188 214 26 28.000 4 2 2 1 0 0 92 292 1 5.676754
## 189 215 29 8.000 4 1 3 0 0 0 66 89 1 4.488636
## 190 217 25 11.000 3 1 8 0 0 0 90 364 1 5.897154
## 191 218 34 15.000 3 2 3 1 0 0 93 142 1 4.955827
## 192 219 32 8.000 3 1 2 0 0 0 89 188 1 5.236442
## 193 221 38 14.000 4 2 0 0 0 0 91 92 1 4.521789
## 194 222 32 7.000 1 3 8 0 0 0 56 56 1 4.025352
## 195 223 31 13.000 2 3 7 0 0 0 90 110 1 4.700480
## 196 224 40 10.000 3 1 3 0 0 0 73 555 0 6.318968
## 197 225 28 17.000 4 1 5 1 0 0 85 220 1 5.393628
## 198 226 40 18.000 1 3 3 0 0 0 23 23 1 3.135494
## 199 227 32 5.000 2 3 3 0 0 0 85 285 1 5.652489
## 200 228 29 20.000 3 3 5 0 0 0 90 90 1 4.499810
## 201 229 25 31.000 3 1 4 0 0 0 53 59 1 4.077537
## 202 230 32 15.000 2 3 2 0 0 0 96 156 1 5.049856
## 203 232 37 4.000 2 2 2 0 0 0 83 142 1 4.955827
## 204 233 38 15.000 3 3 8 0 0 0 54 57 1 4.043051
## 205 234 31 14.000 3 2 9 0 0 0 79 279 1 5.631212
## 206 235 30 27.000 1 3 3 1 0 0 81 118 1 4.770685
## 207 236 34 30.000 4 1 4 1 0 0 18 567 0 6.340359
## 208 237 33 23.000 1 3 4 0 1 0 184 562 0 6.331502
## 209 238 36 13.000 3 2 10 1 1 0 39 239 1 5.476464
## 210 239 32 26.000 4 1 0 0 1 0 177 578 0 6.359574
## 211 240 29 10.000 2 3 2 1 1 0 122 551 0 6.311735
## 212 241 32 4.000 1 1 4 1 1 0 178 313 1 5.746203
## 213 242 34 0.000 3 1 7 0 1 0 173 560 0 6.327937
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## 214 243 26 35.000 1 3 31 0 1 0 53 54 1 3.988984
## 215 244 25 32.000 1 3 5 1 1 0 94 198 1 5.288267
## 216 245 30 2.000 4 1 2 1 1 0 163 164 1 5.099866
## 217 246 33 15.000 3 2 6 0 1 0 160 325 1 5.783825
## 218 247 40 23.000 4 2 6 0 1 0 61 62 1 4.127134
## 219 248 26 13.000 3 1 12 0 1 0 41 45 1 3.806662
## 220 249 26 29.000 1 3 5 1 1 0 53 53 1 3.970292
## 221 250 35 22.105 4 3 4 0 1 0 53 253 1 5.533389
## 222 251 26 15.000 2 2 11 0 1 0 13 51 1 3.931826
## 223 252 33 7.000 4 1 3 1 1 0 183 540 0 6.291569
## 224 253 27 7.000 1 3 4 0 1 0 182 317 1 5.758902
## 225 254 29 33.000 3 3 3 0 1 0 183 437 1 6.079933
## 226 255 29 23.000 3 3 9 0 1 0 63 136 1 4.912655
## 227 256 39 21.000 2 3 7 0 1 0 111 115 1 4.744932
## 228 257 43 19.000 3 2 2 1 1 0 174 175 1 5.164786
## 229 258 35 8.000 3 3 3 0 1 0 173 442 1 6.091310
## 230 259 26 24.000 4 1 2 1 1 0 119 122 1 4.804021
## 231 260 27 28.737 4 1 3 0 1 0 180 181 1 5.198497
## 232 261 28 20.000 4 1 2 1 1 0 98 180 1 5.192957
## 233 262 30 14.000 3 1 4 0 1 0 50 51 1 3.931826
## 234 263 31 17.000 4 2 1 1 1 0 178 541 0 6.293419
## 235 264 26 19.000 2 3 16 0 1 0 100 121 1 4.795791
## 236 265 36 5.000 4 2 4 0 1 0 93 328 1 5.793014
## 237 267 25 8.000 2 3 3 0 1 0 165 166 1 5.111988
## 238 268 26 22.000 3 1 0 1 1 0 93 556 0 6.320768
## 239 269 30 11.000 2 3 5 0 0 0 44 104 1 4.644391
## 240 270 28 13.000 3 1 5 0 0 0 77 102 1 4.624973
## 241 272 34 11.053 3 1 0 1 0 0 91 144 1 4.969813
## 242 273 31 24.000 3 1 2 0 0 0 95 545 0 6.300786
## 243 274 30 19.000 4 3 1 0 0 0 82 537 0 6.285998
## 244 275 35 27.000 3 2 5 1 0 0 76 625 0 6.437752
## 245 276 30 4.000 4 2 3 1 0 0 5 6 1 1.791759
## 246 277 37 38.000 1 3 7 0 0 0 69 307 1 5.726848
## 247 278 29 11.000 4 1 12 1 0 0 90 290 1 5.669881
## 248 279 23 21.000 4 1 8 0 0 0 19 20 1 2.995732
## 249 280 23 1.000 1 1 4 0 0 0 60 74 1 4.304065
## 250 281 44 4.000 4 1 0 0 0 0 69 100 1 4.605170
## 251 282 43 7.000 4 2 8 1 0 0 85 555 0 6.318968
## 252 283 38 20.000 2 3 3 0 0 0 92 152 1 5.023881
## 253 284 33 17.000 3 1 3 1 0 0 55 115 1 4.744932
## 254 285 36 6.300 1 3 9 0 0 0 20 92 1 4.521789
## 255 286 26 12.000 1 3 2 0 0 0 87 554 0 6.317165
## 256 287 30 16.000 4 1 0 0 0 0 91 92 1 4.521789
## 257 288 34 31.500 4 1 0 0 0 0 9 69 1 4.234107
## 258 289 32 30.000 2 3 6 0 0 0 22 25 1 3.218876
## 259 290 30 1.000 3 1 1 0 0 0 87 501 0 6.216606
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## 260 291 37 32.000 2 3 10 1 0 0 86 86 1 4.454347
## 261 292 35 29.000 2 3 7 0 0 0 85 99 1 4.595120
## 262 293 30 6.000 3 1 0 0 0 0 83 87 1 4.465908
## 263 294 34 17.000 4 1 6 1 0 0 83 136 1 4.912655
## 264 295 40 13.000 1 2 6 0 0 0 92 106 1 4.663439
## 265 296 28 15.000 4 2 3 1 0 0 85 220 1 5.393628
## 266 297 32 11.000 3 1 6 0 0 0 36 36 1 3.583519
## 267 298 45 17.000 1 3 2 1 0 0 87 162 1 5.087596
## 268 299 24 23.000 2 1 0 0 1 0 56 116 1 4.753590
## 269 300 43 23.000 1 3 5 1 1 0 94 175 1 5.164786
## 270 301 38 15.000 1 3 0 1 1 0 74 209 1 5.342334
## 271 302 33 19.000 2 3 1 0 1 0 186 545 0 6.300786
## 272 303 26 21.000 4 2 2 1 1 0 178 245 1 5.501258
## 273 304 40 8.000 4 3 3 0 1 0 84 176 1 5.170484
## 274 305 27 34.000 4 2 0 0 1 0 13 14 1 2.639057
## 275 306 39 21.000 2 3 12 0 1 0 85 113 1 4.727388
## 276 308 29 27.000 4 2 3 1 1 0 9 354 1 5.869297
## 277 309 28 32.000 4 2 4 0 1 0 162 174 1 5.159055
## 278 310 37 29.000 1 3 20 0 0 0 23 23 1 3.135494
## 279 311 37 22.000 2 3 20 0 0 0 26 26 1 3.258097
## 280 312 40 12.000 4 2 9 0 0 0 84 98 1 4.584967
## 281 313 25 36.000 1 3 5 0 0 0 23 23 1 3.135494
## 282 314 40 15.000 1 1 2 0 0 0 86 555 0 6.318968
## 283 315 40 3.000 1 3 4 1 0 0 90 290 1 5.669881
## 284 316 34 24.000 2 3 8 0 0 0 73 543 0 6.297109
## 285 317 41 18.000 2 3 7 0 0 0 76 274 1 5.613128
## 286 321 23 2.000 4 1 1 0 1 0 18 119 1 4.779123
## 287 322 36 14.000 3 1 3 0 1 0 94 164 1 5.099866
## 288 323 28 19.000 4 1 2 1 1 0 76 548 0 6.306275
## 289 324 23 7.000 3 1 3 0 1 0 40 175 1 5.164786
## 290 325 27 8.000 3 1 3 0 1 0 176 539 0 6.289716
## 291 326 32 27.000 4 2 0 0 1 0 104 155 1 5.043425
## 292 327 38 25.000 4 3 15 0 1 0 5 14 1 2.639057
## 293 328 38 28.000 4 1 6 1 1 0 179 187 1 5.231109
## 294 329 45 39.000 1 3 8 0 1 0 35 65 1 4.174387
## 295 330 26 18.000 2 2 1 0 1 0 24 159 1 5.068904
## 296 331 29 8.000 1 3 35 0 1 0 82 96 1 4.564348
## 297 332 33 31.000 4 1 3 0 1 0 28 243 1 5.493061
## 298 333 25 6.000 3 1 0 1 1 0 81 85 1 4.442651
## 299 334 36 19.000 4 1 2 0 1 0 4 4 1 1.386294
## 300 335 37 19.000 2 3 4 0 1 0 97 121 1 4.795791
## 301 336 29 16.000 4 1 0 1 1 0 78 659 1 6.490724
## 302 337 29 15.000 4 1 3 1 1 0 181 260 1 5.560682
## 303 338 35 54.000 4 2 1 0 1 0 29 621 0 6.431331
## 304 339 33 19.000 4 1 1 0 1 0 139 199 1 5.293305
## 305 340 31 12.000 4 3 2 0 1 0 152 565 0 6.336826
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## 306 341 37 24.000 3 2 5 1 1 0 90 183 1 5.209486
## 307 342 32 37.000 3 3 4 0 1 0 62 122 1 4.804021
## 308 343 33 9.000 3 2 13 0 1 0 110 170 1 5.135798
## 309 344 36 18.000 3 1 14 1 1 0 15 15 1 2.708050
## 310 345 26 4.000 1 1 5 0 1 0 68 268 1 5.590987
## 311 346 35 15.000 3 1 0 1 1 0 19 79 1 4.369448
## 312 347 25 19.000 1 3 6 1 0 0 23 23 1 3.135494
## 313 348 33 26.000 1 3 30 0 0 0 92 100 1 4.605170
## 314 349 36 28.000 2 3 8 0 0 0 94 98 1 4.584967
## 315 350 38 14.000 3 3 6 0 0 0 31 81 1 4.394449
## 316 351 36 15.000 3 2 3 1 0 0 28 546 0 6.302619
## 317 352 36 18.000 2 3 10 0 0 0 58 58 1 4.060443
## 318 353 35 29.000 3 3 6 0 0 0 113 569 0 6.343880
## 319 354 35 10.000 3 1 3 1 0 0 70 575 0 6.354370
## 320 356 39 16.000 2 3 4 0 0 0 90 91 1 4.510860
## 321 357 37 0.000 4 3 6 0 0 0 55 57 1 4.043051
## 322 358 30 31.000 2 3 5 0 0 0 89 499 1 6.212606
## 323 359 26 33.000 1 3 7 1 0 0 71 123 1 4.812184
## 324 360 39 21.000 4 1 5 0 0 0 84 143 1 4.962845
## 325 362 32 18.000 3 1 4 0 0 0 78 471 1 6.154858
## 326 363 26 37.800 3 1 4 1 0 0 60 74 1 4.304065
## 327 364 33 20.000 2 3 6 0 0 0 82 85 1 4.442651
## 328 365 36 11.000 4 2 5 0 0 0 81 95 1 4.553877
## 329 366 42 26.000 2 3 3 0 1 0 35 36 1 3.583519
## 330 367 37 43.000 1 3 22 0 1 0 16 19 1 2.944439
## 331 368 37 12.000 2 2 1 1 1 0 7 38 1 3.637586
## 332 369 32 22.000 3 1 4 1 1 0 30 539 0 6.289716
## 333 370 23 36.000 4 1 3 1 1 0 106 567 0 6.340359
## 334 371 21 16.000 4 1 10 0 1 0 174 186 1 5.225747
## 335 372 23 41.000 3 1 1 0 1 0 144 546 0 6.302619
## 336 373 34 16.000 4 2 1 0 1 0 24 24 1 3.178054
## 337 374 33 8.000 4 2 3 0 1 0 17 540 0 6.291569
## 338 375 33 10.000 3 1 4 1 1 0 97 157 1 5.056246
## 339 376 26 18.000 3 3 0 0 1 0 26 86 1 4.454347
## 340 377 28 27.000 4 1 2 1 1 0 31 231 1 5.442418
## 341 379 27 28.000 1 3 3 0 0 0 14 14 1 2.639057
## 342 380 22 23.000 1 3 2 0 0 0 75 75 1 4.317488
## 343 381 31 32.000 3 3 6 1 0 0 20 147 1 4.990433
## 344 382 29 23.100 3 1 4 0 0 0 104 105 1 4.653960
## 345 383 44 11.000 4 3 12 0 0 0 85 324 1 5.780744
## 346 384 26 7.000 3 1 0 1 0 0 110 538 0 6.287859
## 347 385 44 24.000 2 3 16 0 0 0 100 300 1 5.703782
## 348 386 34 12.000 1 3 1 0 0 0 73 73 1 4.290459
## 349 387 36 25.000 2 3 6 0 0 0 65 65 1 4.174387
## 350 388 43 4.000 2 3 20 0 0 0 75 568 1 6.342121
## 351 389 37 5.000 3 1 1 0 0 0 83 84 1 4.430817
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## 352 390 44 13.000 4 2 17 0 1 0 15 22 1 3.091042
## 353 391 31 17.000 1 3 30 1 1 0 44 44 1 3.784190
## 354 392 24 24.000 2 1 3 0 1 0 7 7 1 1.945910
## 355 394 37 32.000 3 3 4 0 1 0 20 21 1 3.044522
## 356 395 41 19.000 1 3 12 1 1 0 175 537 0 6.285998
## 357 396 32 9.000 3 1 3 1 1 0 71 186 1 5.225747
## 358 397 23 6.000 3 1 2 0 1 0 26 40 1 3.688879
## 359 398 33 10.000 2 3 3 0 1 0 161 287 1 5.659482
## 360 399 43 11.000 4 1 9 0 1 0 36 538 0 6.287859
## 361 400 33 16.000 4 3 8 0 1 0 30 30 1 3.401197
## 362 401 41 25.000 4 2 3 0 1 0 179 516 1 6.246107
## 363 402 41 17.000 2 3 2 0 1 0 199 268 1 5.590987
## 364 403 37 24.000 2 3 3 0 1 0 182 568 0 6.342121
## 365 404 26 27.000 1 1 3 0 0 0 112 131 1 4.875197
## 366 405 33 24.000 1 3 6 0 0 0 8 399 1 5.988961
## 367 406 30 26.000 3 1 2 0 0 0 18 78 1 4.356709
## 368 407 33 17.000 4 1 6 1 0 0 20 80 1 4.382027
## 369 408 33 26.000 2 3 3 0 0 0 88 102 1 4.624973
## 370 410 37 13.000 3 1 6 0 0 0 88 124 1 4.820282
## 371 411 44 11.000 2 3 20 0 0 0 76 80 1 4.382027
## 372 412 20 8.000 4 1 1 0 0 0 22 23 1 3.135494
## 373 413 33 12.000 1 3 4 0 0 0 110 274 1 5.613128
## 374 415 36 31.000 2 3 3 0 0 0 85 459 1 6.129050
## 375 416 34 8.400 2 3 3 0 0 0 10 10 1 2.302585
## 376 417 35 10.000 1 3 17 0 1 0 157 176 1 5.170484
## 377 418 38 16.000 2 3 26 0 1 0 133 332 1 5.805135
## 378 419 24 13.000 3 1 3 0 1 0 83 119 1 4.779123
## 379 420 24 18.000 3 1 4 0 1 0 152 217 1 5.379897
## 380 421 32 13.000 3 1 4 0 1 0 169 285 1 5.652489
## 381 422 35 11.000 4 2 3 0 1 0 89 576 0 6.356108
## 382 423 33 21.000 1 3 5 0 1 0 92 106 1 4.663439
## 383 424 29 37.000 2 2 4 1 1 0 21 81 1 4.394449
## 384 425 42 32.000 2 3 30 0 1 0 31 47 1 3.850148
## 385 426 23 33.000 4 1 1 0 1 0 31 76 1 4.330733
## 386 427 28 11.000 4 3 16 0 1 0 133 348 1 5.852202
## 387 429 43 29.000 2 3 4 0 1 0 153 306 1 5.723585
## 388 430 33 23.000 2 1 0 0 0 0 90 192 1 5.257495
## 389 431 37 15.000 1 3 20 0 0 0 102 216 1 5.375278
## 390 432 49 22.000 2 3 7 0 0 0 85 189 1 5.241747
## 391 434 36 25.000 3 1 1 1 0 0 89 193 1 5.262690
## 392 435 27 30.000 1 3 13 0 0 0 28 28 1 3.332205
## 393 436 35 23.000 1 3 1 0 0 0 90 150 1 5.010635
## 394 437 25 10.000 3 2 3 0 0 0 84 99 1 4.595120
## 395 438 33 8.000 1 3 3 0 0 0 85 510 0 6.234411
## 396 439 34 16.000 1 3 7 0 0 0 36 306 1 5.723585
## 397 440 38 9.000 1 3 10 1 0 0 74 101 1 4.615121
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## 398 441 36 12.158 2 3 0 1 0 0 42 102 1 4.624973
## 399 442 27 5.000 1 3 1 0 0 0 90 510 0 6.234411
## 400 444 40 19.000 1 3 0 1 0 0 108 503 0 6.220590
## 401 445 32 23.000 3 3 3 0 0 1 49 52 1 3.951244
## 402 446 38 28.000 3 3 1 1 0 1 219 547 0 6.304449
## 403 447 38 16.000 1 3 6 0 0 1 108 168 1 5.123964
## 404 448 23 25.000 4 1 0 0 0 1 178 461 1 6.133398
## 405 449 26 22.000 4 2 2 0 0 1 42 538 0 6.287859
## 406 450 36 28.000 2 3 7 0 0 1 182 349 1 5.855072
## 407 451 30 28.000 4 1 5 0 0 1 6 44 1 3.784190
## 408 452 31 18.000 4 2 3 0 1 1 351 548 0 6.306275
## 409 453 23 15.000 3 1 1 0 1 1 12 12 1 2.484907
## 410 454 43 9.000 1 3 0 1 1 1 6 6 1 1.791759
## 411 455 24 26.000 4 1 1 0 1 1 91 575 0 6.354370
## 412 456 42 19.000 4 1 1 0 1 1 245 589 0 6.378426
## 413 457 35 26.000 4 2 1 0 1 1 372 408 1 6.011267
## 414 458 21 10.000 4 1 0 0 1 1 218 232 1 5.446737
## 415 459 45 1.000 4 2 0 1 1 1 46 143 1 4.962845
## 416 460 43 30.000 2 3 6 0 1 1 363 582 0 6.366470
## 417 461 24 7.000 4 1 0 1 1 1 133 134 1 4.897840
## 418 462 37 11.000 3 3 1 0 1 1 7 7 1 1.945910
## 419 463 40 10.000 4 2 0 0 1 1 112 548 0 6.306275
## 420 464 27 11.000 3 2 2 0 0 1 21 81 1 4.394449
## 421 465 29 11.000 2 3 1 0 0 1 169 170 1 5.135798
## 422 466 34 12.000 4 3 6 0 0 1 28 29 1 3.367296
## 423 467 29 29.000 3 3 20 0 0 1 47 78 1 4.356709
## 424 468 35 27.000 1 3 5 0 0 1 20 81 1 4.394449
## 425 469 39 20.000 1 3 4 0 1 1 352 369 1 5.910797
## 426 470 41 9.000 4 2 0 0 1 1 66 69 1 4.234107
## 427 471 37 18.000 4 1 6 1 1 1 55 115 1 4.744932
## 428 472 30 10.000 3 2 7 0 1 1 344 361 1 5.888878
## 429 473 31 1.000 4 1 0 0 1 1 153 245 1 5.501258
## 430 474 40 5.000 4 2 8 0 0 1 184 233 1 5.451038
## 431 475 32 20.000 4 1 0 0 0 1 183 227 1 5.424950
## 432 476 32 7.000 4 2 3 1 0 1 22 97 1 4.574711
## 433 477 27 7.000 4 1 0 0 0 1 183 547 0 6.304449
## 434 478 23 26.000 3 1 0 0 0 1 140 224 1 5.411646
## 435 479 23 4.000 4 1 2 0 0 1 19 211 1 5.351858
## 436 480 43 11.000 2 3 12 0 0 1 184 220 1 5.393628
## 437 481 24 20.000 4 1 0 0 0 1 50 54 1 3.988984
## 438 482 36 11.000 4 1 2 1 0 1 132 192 1 5.257495
## 439 483 29 31.000 1 3 1 0 0 1 128 138 1 4.927254
## 440 484 39 13.000 4 2 1 0 1 1 107 107 1 4.672829
## 441 485 23 6.000 4 1 0 0 1 1 368 597 0 6.391917
## 442 486 27 17.000 3 3 4 0 1 1 219 226 1 5.420535
## 443 487 26 5.000 4 2 5 0 1 1 374 434 1 6.073045
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## 444 488 26 27.000 3 1 1 1 1 1 92 106 1 4.663439
## 445 489 25 9.000 4 1 0 0 1 1 45 180 1 5.192957
## 446 490 34 10.000 3 1 0 0 1 1 366 557 0 6.322565
## 447 491 45 5.000 4 3 2 0 1 1 368 556 0 6.320768
## 448 492 23 17.000 4 1 1 0 0 1 78 619 0 6.428105
## 449 493 26 7.000 4 1 0 0 0 1 184 546 0 6.302619
## 450 495 24 27.000 1 2 2 0 0 1 187 233 1 5.451038
## 451 496 30 23.000 2 3 2 1 0 1 101 102 1 4.624973
## 452 497 22 26.000 3 1 0 0 0 1 141 548 0 6.306275
## 453 498 25 10.000 3 1 1 0 0 1 24 99 1 4.595120
## 454 499 30 8.400 3 2 40 0 0 1 36 36 1 3.583519
## 455 501 33 23.000 4 1 0 1 1 1 56 78 1 4.356709
## 456 502 34 15.000 3 2 8 0 1 1 367 502 1 6.218600
## 457 503 29 24.000 3 1 2 0 1 1 70 71 1 4.262680
## 458 504 39 33.000 4 2 6 0 1 1 58 59 1 4.077537
## 459 506 26 21.000 3 1 4 0 1 1 366 533 0 6.278521
## 460 507 32 23.000 2 3 6 0 1 1 10 10 1 2.302585
## 461 508 42 23.100 1 3 2 0 0 1 214 274 1 5.613128
## 462 509 39 25.000 1 2 8 0 0 1 197 255 1 5.541264
## 463 510 36 2.000 4 1 0 1 0 1 89 503 0 6.220590
## 464 511 22 20.000 3 1 1 0 0 1 56 256 1 5.545177
## 465 512 27 23.000 4 1 1 0 0 1 9 9 1 2.197225
## 466 514 28 9.000 4 1 0 0 0 1 186 386 1 5.955837
## 467 515 36 28.000 3 2 1 0 1 1 303 547 0 6.304449
## 468 516 31 13.000 3 1 3 0 1 1 32 45 1 3.806662
## 469 517 27 22.000 3 2 4 0 1 1 8 58 1 4.060443
## 470 518 23 17.000 3 1 1 0 1 1 63 124 1 4.820282
## 471 519 24 20.000 3 2 20 0 0 1 108 540 0 6.291569
## 472 520 38 5.000 3 2 1 0 0 1 183 243 1 5.493061
## 473 521 25 8.000 4 1 1 0 1 1 151 549 0 6.308098
## 474 522 26 20.000 3 1 0 0 0 1 7 12 1 2.484907
## 475 523 22 34.000 3 1 2 0 0 1 38 51 1 3.931826
## 476 524 33 13.000 4 1 2 0 1 1 176 562 0 6.331502
## 477 525 30 23.000 1 3 7 0 1 1 93 94 1 4.543295
## 478 526 45 8.000 4 3 3 0 0 1 200 204 1 5.318120
## 479 527 24 15.000 3 2 0 0 0 1 178 238 1 5.472271
## 480 528 27 22.000 4 1 0 0 1 1 78 140 1 4.941642
## 481 529 36 19.000 4 2 10 0 1 1 119 120 1 4.787492
## 482 530 38 23.000 4 2 2 1 0 1 154 154 1 5.036953
## 483 531 31 17.000 2 3 2 0 1 1 163 177 1 5.176150
## 484 532 40 22.000 4 2 7 0 1 1 118 119 1 4.779123
## 485 533 22 12.000 3 1 0 1 1 1 76 83 1 4.418841
## 486 534 31 13.000 4 1 0 1 1 1 116 130 1 4.867534
## 487 536 39 7.000 3 3 3 1 0 1 88 159 1 5.068904
## 488 538 33 14.000 3 1 1 0 0 1 33 33 1 3.496508
## 489 539 27 10.000 3 3 2 0 1 1 70 72 1 4.276666
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## 490 540 37 7.000 4 1 2 1 1 1 68 161 1 5.081404
## 491 541 35 16.000 4 2 25 0 0 1 191 191 1 5.252273
## 492 542 25 11.000 3 1 5 0 0 1 35 181 1 5.198497
## 493 543 27 11.000 3 1 1 1 1 1 32 546 0 6.302619
## 494 544 34 15.000 4 1 0 0 0 1 28 540 0 6.291569
## 495 545 30 15.000 3 1 3 0 0 1 15 76 1 4.330733
## 496 546 35 17.000 1 3 7 0 0 1 7 7 1 1.945910
## 497 547 34 23.000 4 1 0 0 0 1 43 44 1 3.784190
## 498 548 25 23.000 3 2 5 0 0 1 89 103 1 4.634729
## 499 549 34 18.000 3 1 1 0 0 1 38 79 1 4.369448
## 500 550 24 23.000 4 3 3 0 0 1 204 339 1 5.826000
## 501 551 24 20.000 4 1 2 0 0 1 76 90 1 4.499810
## 502 552 40 36.000 4 1 3 0 0 1 195 542 0 6.295266
## 503 553 33 9.000 3 1 1 1 0 1 184 384 1 5.950643
## 504 554 38 14.000 4 2 1 1 1 1 254 255 1 5.541264
## 505 555 32 1.000 3 1 0 0 1 1 371 431 1 6.066108
## 506 556 33 3.000 4 1 1 0 0 1 196 587 0 6.375025
## 507 557 28 40.000 3 1 2 1 0 1 198 198 1 5.288267
## 508 558 31 13.000 3 3 2 0 0 1 170 551 0 6.311735
## 509 559 31 39.000 2 3 4 0 1 1 50 110 1 4.700480
## 510 560 33 24.000 4 1 0 0 1 1 163 541 0 6.293419
## 511 561 24 26.000 3 1 11 0 0 1 182 242 1 5.488938
## 512 562 26 18.000 3 1 3 0 0 1 150 537 0 6.285998
## 513 563 31 19.000 2 3 7 0 1 1 34 56 1 4.025352
## 514 564 40 14.700 2 3 4 0 1 1 34 34 1 3.526361
## 515 566 34 2.000 3 1 3 0 1 1 366 549 0 6.308098
## 516 567 30 11.000 3 2 7 0 0 1 133 133 1 4.890349
## 517 568 36 0.000 3 2 3 0 0 1 69 226 1 5.420535
## 518 569 38 17.000 2 3 6 0 1 1 366 401 1 5.993961
## 519 570 31 20.000 1 3 6 1 1 1 14 14 1 2.639057
## 520 571 27 22.000 2 2 2 0 0 1 184 548 0 6.306275
## 521 572 32 21.000 1 3 15 0 1 1 89 224 1 5.411646
## 522 573 35 23.000 3 1 5 1 0 1 183 540 0 6.291569
## 523 574 44 29.000 2 3 13 0 0 1 177 237 1 5.468060
## 524 575 31 5.000 2 3 10 0 1 1 154 354 1 5.869297
## 525 576 28 23.000 3 2 20 0 0 1 123 123 1 4.812184
## 526 577 40 8.000 4 2 1 0 0 1 146 170 1 5.135798
## 527 578 25 12.000 3 1 10 1 1 1 203 203 1 5.313206
## 528 579 32 10.000 1 3 6 0 1 1 360 360 1 5.886104
## 529 580 29 15.750 4 1 2 0 0 1 79 139 1 4.934474
## 530 581 40 2.000 2 2 5 0 1 1 201 215 1 5.370638
## 531 582 27 9.000 4 2 0 0 1 1 129 129 1 4.859812
## 532 583 26 2.000 3 1 1 0 1 1 365 396 1 5.981414
## 533 584 34 15.000 3 1 4 1 1 1 159 547 0 6.304449
## 534 585 49 4.000 4 2 2 0 0 1 177 547 0 6.304449
## 535 586 21 25.000 1 3 1 0 1 1 71 71 1 4.262680
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## 536 587 39 23.000 3 3 2 0 1 1 108 168 1 5.123964
## 537 588 33 15.000 4 2 4 0 1 1 198 228 1 5.429346
## 538 589 32 3.000 3 1 1 0 1 1 372 551 0 6.311735
## 539 590 35 9.000 4 2 6 0 0 1 25 654 0 6.483107
## 540 591 31 20.000 4 1 0 1 1 1 48 51 1 3.931826
## 541 592 28 5.000 4 1 3 0 0 1 191 548 0 6.306275
## 542 593 27 29.000 3 2 5 0 1 1 171 231 1 5.442418
## 543 594 29 21.000 2 1 1 1 1 1 145 280 1 5.634790
## 544 595 30 1.000 2 1 20 0 0 1 183 184 1 5.214936
## 545 596 27 18.000 4 1 3 1 0 1 72 86 1 4.454347
## 546 598 40 15.000 4 2 1 0 1 1 44 46 1 3.828641
## 547 599 37 20.000 3 1 2 1 1 1 140 200 1 5.298317
## 548 600 33 10.000 4 1 0 0 0 1 184 244 1 5.497168
## 549 601 28 20.000 4 1 2 0 0 1 94 182 1 5.204007
## 550 602 40 15.000 4 2 8 0 1 1 296 296 1 5.690359
## 551 603 48 20.000 4 1 0 1 0 1 23 24 1 3.178054
## 552 604 38 25.000 3 1 1 0 0 1 128 142 1 4.955827
## 553 605 35 13.000 4 1 0 0 0 1 106 120 1 4.787492
## 554 606 37 13.000 4 2 0 0 0 1 46 47 1 3.850148
## 555 607 25 15.000 3 1 0 1 1 1 150 519 1 6.251904
## 556 608 26 8.000 4 1 2 0 1 1 48 248 1 5.513429
## 557 609 30 9.000 3 3 3 0 0 1 29 31 1 3.433987
## 558 610 28 16.000 4 2 2 0 0 1 179 567 0 6.340359
## 559 611 23 11.000 2 3 4 0 0 1 170 353 1 5.866468
## 560 612 36 31.000 4 1 1 0 1 1 365 458 1 6.126869
## 561 613 36 13.000 4 2 4 0 1 1 400 554 0 6.317165
## 562 614 24 5.000 4 1 0 1 0 1 56 116 1 4.753590
## 563 615 33 9.000 3 2 5 0 0 1 24 74 1 4.304065
## 564 616 38 15.000 4 2 6 0 0 1 10 10 1 2.302585
## 565 617 41 20.000 3 3 21 0 1 1 354 355 1 5.872118
## 566 618 31 21.000 3 1 0 1 1 1 232 232 1 5.446737
## 567 619 31 23.000 4 2 11 0 1 1 54 68 1 4.219508
## 568 620 37 5.000 4 1 0 1 1 1 48 48 1 3.871201
## 569 621 37 17.000 4 2 4 1 0 1 57 60 1 4.094345
## 570 622 33 13.000 4 1 0 0 0 1 46 50 1 3.912023
## 571 624 53 9.000 4 2 6 0 0 1 39 126 1 4.836282
## 572 625 37 20.000 2 3 4 0 0 1 17 18 1 2.890372
## 573 626 28 10.000 4 2 3 0 1 1 21 35 1 3.555348
## 574 627 35 17.000 1 3 2 0 0 1 184 379 1 5.937536
## 575 628 46 31.500 1 3 15 1 1 1 9 377 1 5.932245
## ND1 ND2 LNDT FRAC IV3 IV_fct
## 1 5.0000000 -8.04718956 0.6931472 0.68333333 1 Recent
## 2 1.1111111 -0.11706724 2.1972246 0.13888889 0 Previous
## 3 2.5000000 -2.29072683 1.3862944 0.03888889 1 Recent
## 4 5.0000000 -8.04718956 0.6931472 0.73333333 1 Recent
## 5 1.6666667 -0.85137604 1.7917595 0.96111111 0 Never
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## 6 5.0000000 -8.04718956 0.6931472 0.08888889 1 Recent
## 7 0.2857143 0.35793228 3.5553481 0.99444444 1 Recent
## 8 3.3333333 -4.01324268 1.0986123 0.11666667 1 Recent
## 9 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 10 1.2500000 -0.27892944 2.0794415 0.68888889 1 Recent
## 11 1.1111111 -0.11706724 2.1972246 0.97777778 1 Recent
## 12 5.0000000 -8.04718956 0.6931472 0.43888889 0 Never
## 13 3.3333333 -4.01324268 1.0986123 1.01111111 1 Recent
## 14 1.1111111 -0.11706724 2.1972246 0.96666667 1 Recent
## 15 5.0000000 -8.04718956 0.6931472 1.00555556 1 Recent
## 16 2.5000000 -2.29072683 1.3862944 0.33888889 1 Recent
## 17 1.4285714 -0.50953563 1.9459101 0.98333333 1 Recent
## 18 5.0000000 -8.04718956 0.6931472 0.10555556 0 Previous
## 19 0.6250000 0.29375227 2.7725887 0.15000000 0 Never
## 20 1.6666667 -0.85137604 1.7917595 0.97222222 1 Recent
## 21 5.0000000 -8.04718956 0.6931472 0.13333333 0 Never
## 22 1.1111111 -0.11706724 2.1972246 0.23333333 1 Recent
## 23 10.0000000 -23.02585093 0.0000000 0.53333333 0 Previous
## 24 1.0000000 0.00000000 2.3025851 1.00000000 1 Recent
## 25 1.4285714 -0.50953563 1.9459101 1.01111111 1 Recent
## 26 1.6666667 -0.85137604 1.7917595 0.96666667 1 Recent
## 27 2.5000000 -2.29072683 1.3862944 0.97777778 0 Never
## 28 1.2500000 -0.27892944 2.0794415 0.10000000 1 Recent
## 29 1.0000000 0.00000000 2.3025851 1.04444444 1 Recent
## 30 0.9090909 0.08664562 2.3978953 1.01111111 0 Previous
## 31 5.0000000 -8.04718956 0.6931472 1.00000000 1 Recent
## 32 5.0000000 -8.04718956 0.6931472 0.98888889 1 Recent
## 33 1.6666667 -0.85137604 1.7917595 0.98888889 1 Recent
## 34 1.4285714 -0.50953563 1.9459101 1.11111111 0 Never
## 35 2.5000000 -2.29072683 1.3862944 0.74444444 0 Never
## 36 1.2500000 -0.27892944 2.0794415 0.13888889 1 Recent
## 37 5.0000000 -8.04718956 0.6931472 0.13333333 0 Never
## 38 5.0000000 -8.04718956 0.6931472 0.87777778 0 Never
## 39 3.3333333 -4.01324268 1.0986123 0.87777778 0 Never
## 40 10.0000000 -23.02585093 0.0000000 0.43333333 1 Recent
## 41 3.3333333 -4.01324268 1.0986123 0.46666667 0 Previous
## 42 1.4285714 -0.50953563 1.9459101 0.50555556 1 Recent
## 43 5.0000000 -8.04718956 0.6931472 0.90000000 1 Recent
## 44 10.0000000 -23.02585093 0.0000000 0.25000000 1 Recent
## 45 5.0000000 -8.04718956 0.6931472 0.33888889 1 Recent
## 46 10.0000000 -23.02585093 0.0000000 0.10555556 1 Recent
## 47 3.3333333 -4.01324268 1.0986123 0.20555556 0 Never
## 48 1.1111111 -0.11706724 2.1972246 0.28333333 1 Recent
## 49 5.0000000 -8.04718956 0.6931472 0.33333333 1 Recent
## 50 0.3846154 0.36750440 3.2580965 0.98333333 1 Recent
## 51 10.0000000 -23.02585093 0.0000000 0.23888889 0 Never
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## 52 2.5000000 -2.29072683 1.3862944 0.11666667 0 Never
## 53 3.3333333 -4.01324268 1.0986123 0.97777778 1 Recent
## 54 1.4285714 -0.50953563 1.9459101 1.06666667 1 Recent
## 55 0.9090909 0.08664562 2.3978953 1.23333333 1 Recent
## 56 0.9090909 0.08664562 2.3978953 0.42222222 1 Recent
## 57 1.2500000 -0.27892944 2.0794415 0.16666667 0 Never
## 58 1.6666667 -0.85137604 1.7917595 0.55555556 0 Previous
## 59 1.6666667 -0.85137604 1.7917595 0.67777778 1 Recent
## 60 5.0000000 -8.04718956 0.6931472 0.34444444 0 Never
## 61 3.3333333 -4.01324268 1.0986123 0.12222222 0 Never
## 62 1.4285714 -0.50953563 1.9459101 1.00000000 1 Recent
## 63 1.6666667 -0.85137604 1.7917595 0.12222222 1 Recent
## 64 1.6666667 -0.85137604 1.7917595 0.51111111 1 Recent
## 65 10.0000000 -23.02585093 0.0000000 0.42222222 1 Recent
## 66 10.0000000 -23.02585093 0.0000000 1.00000000 1 Recent
## 67 1.6666667 -0.85137604 1.7917595 0.97777778 1 Recent
## 68 0.7692308 0.20181866 2.5649494 1.01111111 1 Recent
## 69 1.4285714 -0.50953563 1.9459101 0.94444444 0 Previous
## 70 10.0000000 -23.02585093 0.0000000 1.00000000 0 Never
## 71 1.6666667 -0.85137604 1.7917595 0.57777778 1 Recent
## 72 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 73 0.7142857 0.24033731 2.6390573 0.47777778 1 Recent
## 74 1.1111111 -0.11706724 2.1972246 0.41111111 1 Recent
## 75 10.0000000 -23.02585093 0.0000000 0.96666667 0 Never
## 76 3.3333333 -4.01324268 1.0986123 0.22222222 0 Previous
## 77 5.0000000 -8.04718956 0.6931472 0.10000000 0 Never
## 78 5.0000000 -8.04718956 0.6931472 0.94444444 1 Recent
## 79 3.3333333 -4.01324268 1.0986123 0.20000000 1 Recent
## 80 0.7692308 0.20181866 2.5649494 0.78888889 1 Recent
## 81 3.3333333 -4.01324268 1.0986123 0.97777778 1 Recent
## 82 5.0000000 -8.04718956 0.6931472 0.74444444 0 Previous
## 83 2.0000000 -1.38629436 1.6094379 0.33333333 1 Recent
## 84 5.0000000 -8.04718956 0.6931472 0.37777778 0 Never
## 85 1.0000000 0.00000000 2.3025851 1.01111111 0 Previous
## 86 5.0000000 -8.04718956 0.6931472 1.01111111 1 Recent
## 87 5.0000000 -8.04718956 0.6931472 0.81111111 0 Never
## 88 5.0000000 -8.04718956 0.6931472 0.22222222 1 Recent
## 89 5.0000000 -8.04718956 0.6931472 0.98333333 0 Never
## 90 3.3333333 -4.01324268 1.0986123 1.00555556 0 Previous
## 91 0.6250000 0.29375227 2.7725887 0.93333333 1 Recent
## 92 1.6666667 -0.85137604 1.7917595 0.50000000 1 Recent
## 93 1.6666667 -0.85137604 1.7917595 0.33888889 1 Recent
## 94 2.5000000 -2.29072683 1.3862944 0.35000000 0 Never
## 95 1.1111111 -0.11706724 2.1972246 0.67222222 0 Previous
## 96 5.0000000 -8.04718956 0.6931472 0.98888889 0 Never
## 97 2.5000000 -2.29072683 1.3862944 0.28333333 0 Never
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## 98 5.0000000 -8.04718956 0.6931472 0.97777778 0 Never
## 99 5.0000000 -8.04718956 0.6931472 0.27777778 1 Recent
## 100 2.5000000 -2.29072683 1.3862944 0.92222222 0 Never
## 101 3.3333333 -4.01324268 1.0986123 0.98888889 0 Never
## 102 5.0000000 -8.04718956 0.6931472 0.26666667 1 Recent
## 103 0.4761905 0.35330350 3.0445224 0.07777778 1 Recent
## 104 5.0000000 -8.04718956 0.6931472 0.94444444 0 Never
## 105 10.0000000 -23.02585093 0.0000000 0.98888889 0 Never
## 106 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 107 10.0000000 -23.02585093 0.0000000 0.98888889 0 Never
## 108 10.0000000 -23.02585093 0.0000000 0.91111111 0 Never
## 109 2.5000000 -2.29072683 1.3862944 0.93333333 1 Recent
## 110 5.0000000 -8.04718956 0.6931472 0.33333333 1 Recent
## 111 1.4285714 -0.50953563 1.9459101 0.07777778 0 Never
## 112 2.5000000 -2.29072683 1.3862944 0.93333333 1 Recent
## 113 10.0000000 -23.02585093 0.0000000 0.77777778 1 Recent
## 114 3.3333333 -4.01324268 1.0986123 0.84444444 0 Previous
## 115 5.0000000 -8.04718956 0.6931472 0.98888889 0 Never
## 116 5.0000000 -8.04718956 0.6931472 0.98888889 1 Recent
## 117 1.4285714 -0.50953563 1.9459101 0.48333333 1 Recent
## 118 10.0000000 -23.02585093 0.0000000 0.97222222 0 Previous
## 119 2.5000000 -2.29072683 1.3862944 0.48333333 0 Never
## 120 0.5882353 0.31213427 2.8332133 0.61111111 0 Never
## 121 5.0000000 -8.04718956 0.6931472 0.11666667 1 Recent
## 122 2.5000000 -2.29072683 1.3862944 0.77222222 0 Never
## 123 0.6250000 0.29375227 2.7725887 1.00555556 1 Recent
## 124 3.3333333 -4.01324268 1.0986123 0.18333333 1 Recent
## 125 5.0000000 -8.04718956 0.6931472 0.21666667 1 Recent
## 126 1.2500000 -0.27892944 2.0794415 0.02222222 1 Recent
## 127 2.0000000 -1.38629436 1.6094379 1.02222222 1 Recent
## 128 5.0000000 -8.04718956 0.6931472 0.68333333 0 Never
## 129 5.0000000 -8.04718956 0.6931472 0.97777778 0 Never
## 130 3.3333333 -4.01324268 1.0986123 0.96666667 1 Recent
## 131 5.0000000 -8.04718956 0.6931472 1.00555556 1 Recent
## 132 3.3333333 -4.01324268 1.0986123 0.62777778 1 Recent
## 133 2.5000000 -2.29072683 1.3862944 0.91111111 1 Recent
## 134 5.0000000 -8.04718956 0.6931472 0.93333333 1 Recent
## 135 1.1111111 -0.11706724 2.1972246 0.88888889 1 Recent
## 136 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 137 2.5000000 -2.29072683 1.3862944 1.07777778 0 Never
## 138 2.5000000 -2.29072683 1.3862944 0.56666667 0 Never
## 139 2.5000000 -2.29072683 1.3862944 1.01111111 1 Recent
## 140 2.0000000 -1.38629436 1.6094379 1.00000000 0 Never
## 141 1.4285714 -0.50953563 1.9459101 0.51111111 1 Recent
## 142 5.0000000 -8.04718956 0.6931472 0.84444444 0 Never
## 143 3.3333333 -4.01324268 1.0986123 0.83333333 1 Recent
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## 144 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 145 1.6666667 -0.85137604 1.7917595 1.00000000 1 Recent
## 146 1.4285714 -0.50953563 1.9459101 0.03333333 1 Recent
## 147 2.5000000 -2.29072683 1.3862944 0.04444444 1 Recent
## 148 5.0000000 -8.04718956 0.6931472 0.18333333 0 Never
## 149 1.1111111 -0.11706724 2.1972246 0.17222222 1 Recent
## 150 5.0000000 -8.04718956 0.6931472 0.96666667 0 Never
## 151 3.3333333 -4.01324268 1.0986123 0.18888889 0 Never
## 152 2.5000000 -2.29072683 1.3862944 0.33333333 0 Previous
## 153 1.6666667 -0.85137604 1.7917595 0.43333333 0 Previous
## 154 3.3333333 -4.01324268 1.0986123 1.01111111 0 Never
## 155 5.0000000 -8.04718956 0.6931472 1.01111111 0 Never
## 156 10.0000000 -23.02585093 0.0000000 0.43333333 0 Never
## 157 5.0000000 -8.04718956 0.6931472 0.30555556 0 Never
## 158 3.3333333 -4.01324268 1.0986123 1.23888889 0 Never
## 159 0.4761905 0.35330350 3.0445224 0.13888889 0 Never
## 160 10.0000000 -23.02585093 0.0000000 0.35000000 0 Never
## 161 5.0000000 -8.04718956 0.6931472 0.73888889 0 Never
## 162 1.6666667 -0.85137604 1.7917595 0.85555556 1 Recent
## 163 3.3333333 -4.01324268 1.0986123 0.38888889 0 Never
## 164 5.0000000 -8.04718956 0.6931472 0.36666667 0 Previous
## 165 2.0000000 -1.38629436 1.6094379 0.22222222 1 Recent
## 166 5.0000000 -8.04718956 0.6931472 0.41666667 0 Never
## 167 3.3333333 -4.01324268 1.0986123 1.03888889 0 Previous
## 168 3.3333333 -4.01324268 1.0986123 1.01666667 0 Never
## 169 1.1111111 -0.11706724 2.1972246 1.01111111 0 Never
## 170 3.3333333 -4.01324268 1.0986123 1.06666667 0 Previous
## 171 2.0000000 -1.38629436 1.6094379 0.90000000 1 Recent
## 172 3.3333333 -4.01324268 1.0986123 1.07222222 1 Recent
## 173 3.3333333 -4.01324268 1.0986123 0.61666667 0 Never
## 174 1.1111111 -0.11706724 2.1972246 1.01111111 1 Recent
## 175 2.0000000 -1.38629436 1.6094379 1.00000000 0 Never
## 176 10.0000000 -23.02585093 0.0000000 0.51666667 0 Never
## 177 1.2500000 -0.27892944 2.0794415 0.92777778 0 Never
## 178 3.3333333 -4.01324268 1.0986123 1.08888889 0 Never
## 179 2.0000000 -1.38629436 1.6094379 0.58888889 0 Previous
## 180 1.4285714 -0.50953563 1.9459101 0.87777778 1 Recent
## 181 5.0000000 -8.04718956 0.6931472 1.01111111 0 Previous
## 182 2.0000000 -1.38629436 1.6094379 0.98888889 0 Never
## 183 3.3333333 -4.01324268 1.0986123 0.98888889 0 Previous
## 184 0.9090909 0.08664562 2.3978953 0.97777778 1 Recent
## 185 10.0000000 -23.02585093 0.0000000 1.05555556 0 Never
## 186 10.0000000 -23.02585093 0.0000000 0.05555556 1 Recent
## 187 1.1111111 -0.11706724 2.1972246 0.35555556 1 Recent
## 188 3.3333333 -4.01324268 1.0986123 1.02222222 0 Previous
## 189 2.5000000 -2.29072683 1.3862944 0.73333333 0 Never
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## 190 1.1111111 -0.11706724 2.1972246 1.00000000 0 Never
## 191 2.5000000 -2.29072683 1.3862944 1.03333333 0 Previous
## 192 3.3333333 -4.01324268 1.0986123 0.98888889 0 Never
## 193 10.0000000 -23.02585093 0.0000000 1.01111111 0 Previous
## 194 1.1111111 -0.11706724 2.1972246 0.62222222 1 Recent
## 195 1.2500000 -0.27892944 2.0794415 1.00000000 1 Recent
## 196 2.5000000 -2.29072683 1.3862944 0.81111111 0 Never
## 197 1.6666667 -0.85137604 1.7917595 0.94444444 0 Never
## 198 2.5000000 -2.29072683 1.3862944 0.25555556 1 Recent
## 199 2.5000000 -2.29072683 1.3862944 0.94444444 1 Recent
## 200 1.6666667 -0.85137604 1.7917595 1.00000000 1 Recent
## 201 2.0000000 -1.38629436 1.6094379 0.58888889 0 Never
## 202 3.3333333 -4.01324268 1.0986123 1.06666667 1 Recent
## 203 3.3333333 -4.01324268 1.0986123 0.92222222 0 Previous
## 204 1.1111111 -0.11706724 2.1972246 0.60000000 1 Recent
## 205 1.0000000 0.00000000 2.3025851 0.87777778 0 Previous
## 206 2.5000000 -2.29072683 1.3862944 0.90000000 1 Recent
## 207 2.0000000 -1.38629436 1.6094379 0.20000000 0 Never
## 208 2.0000000 -1.38629436 1.6094379 1.02222222 1 Recent
## 209 0.9090909 0.08664562 2.3978953 0.21666667 0 Previous
## 210 10.0000000 -23.02585093 0.0000000 0.98333333 0 Never
## 211 3.3333333 -4.01324268 1.0986123 0.67777778 1 Recent
## 212 2.0000000 -1.38629436 1.6094379 0.98888889 0 Never
## 213 1.2500000 -0.27892944 2.0794415 0.96111111 0 Never
## 214 0.3125000 0.36348463 3.4657359 0.29444444 1 Recent
## 215 1.6666667 -0.85137604 1.7917595 0.52222222 1 Recent
## 216 3.3333333 -4.01324268 1.0986123 0.90555556 0 Never
## 217 1.4285714 -0.50953563 1.9459101 0.88888889 0 Previous
## 218 1.4285714 -0.50953563 1.9459101 0.33888889 0 Previous
## 219 0.7692308 0.20181866 2.5649494 0.22777778 0 Never
## 220 1.6666667 -0.85137604 1.7917595 0.29444444 1 Recent
## 221 2.0000000 -1.38629436 1.6094379 0.29444444 1 Recent
## 222 0.8333333 0.15193463 2.4849066 0.07222222 0 Previous
## 223 2.5000000 -2.29072683 1.3862944 1.01666667 0 Never
## 224 2.0000000 -1.38629436 1.6094379 1.01111111 1 Recent
## 225 2.5000000 -2.29072683 1.3862944 1.01666667 1 Recent
## 226 1.0000000 0.00000000 2.3025851 0.35000000 1 Recent
## 227 1.2500000 -0.27892944 2.0794415 0.61666667 1 Recent
## 228 3.3333333 -4.01324268 1.0986123 0.96666667 0 Previous
## 229 2.5000000 -2.29072683 1.3862944 0.96111111 1 Recent
## 230 3.3333333 -4.01324268 1.0986123 0.66111111 0 Never
## 231 2.5000000 -2.29072683 1.3862944 1.00000000 0 Never
## 232 3.3333333 -4.01324268 1.0986123 0.54444444 0 Never
## 233 2.0000000 -1.38629436 1.6094379 0.27777778 0 Never
## 234 5.0000000 -8.04718956 0.6931472 0.98888889 0 Previous
## 235 0.5882353 0.31213427 2.8332133 0.55555556 1 Recent
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## 236 2.0000000 -1.38629436 1.6094379 0.51666667 0 Previous
## 237 2.5000000 -2.29072683 1.3862944 0.91666667 1 Recent
## 238 10.0000000 -23.02585093 0.0000000 0.51666667 0 Never
## 239 1.6666667 -0.85137604 1.7917595 0.48888889 1 Recent
## 240 1.6666667 -0.85137604 1.7917595 0.85555556 0 Never
## 241 10.0000000 -23.02585093 0.0000000 1.01111111 0 Never
## 242 3.3333333 -4.01324268 1.0986123 1.05555556 0 Never
## 243 5.0000000 -8.04718956 0.6931472 0.91111111 1 Recent
## 244 1.6666667 -0.85137604 1.7917595 0.84444444 0 Previous
## 245 2.5000000 -2.29072683 1.3862944 0.05555556 0 Previous
## 246 1.2500000 -0.27892944 2.0794415 0.76666667 1 Recent
## 247 0.7692308 0.20181866 2.5649494 1.00000000 0 Never
## 248 1.1111111 -0.11706724 2.1972246 0.21111111 0 Never
## 249 2.0000000 -1.38629436 1.6094379 0.66666667 0 Never
## 250 10.0000000 -23.02585093 0.0000000 0.76666667 0 Never
## 251 1.1111111 -0.11706724 2.1972246 0.94444444 0 Previous
## 252 2.5000000 -2.29072683 1.3862944 1.02222222 1 Recent
## 253 2.5000000 -2.29072683 1.3862944 0.61111111 0 Never
## 254 1.0000000 0.00000000 2.3025851 0.22222222 1 Recent
## 255 3.3333333 -4.01324268 1.0986123 0.96666667 1 Recent
## 256 10.0000000 -23.02585093 0.0000000 1.01111111 0 Never
## 257 10.0000000 -23.02585093 0.0000000 0.10000000 0 Never
## 258 1.4285714 -0.50953563 1.9459101 0.24444444 1 Recent
## 259 5.0000000 -8.04718956 0.6931472 0.96666667 0 Never
## 260 0.9090909 0.08664562 2.3978953 0.95555556 1 Recent
## 261 1.2500000 -0.27892944 2.0794415 0.94444444 1 Recent
## 262 10.0000000 -23.02585093 0.0000000 0.92222222 0 Never
## 263 1.4285714 -0.50953563 1.9459101 0.92222222 0 Never
## 264 1.4285714 -0.50953563 1.9459101 1.02222222 0 Previous
## 265 2.5000000 -2.29072683 1.3862944 0.94444444 0 Previous
## 266 1.4285714 -0.50953563 1.9459101 0.40000000 0 Never
## 267 3.3333333 -4.01324268 1.0986123 0.96666667 1 Recent
## 268 10.0000000 -23.02585093 0.0000000 0.31111111 0 Never
## 269 1.6666667 -0.85137604 1.7917595 0.52222222 1 Recent
## 270 10.0000000 -23.02585093 0.0000000 0.41111111 1 Recent
## 271 5.0000000 -8.04718956 0.6931472 1.03333333 1 Recent
## 272 3.3333333 -4.01324268 1.0986123 0.98888889 0 Previous
## 273 2.5000000 -2.29072683 1.3862944 0.46666667 1 Recent
## 274 10.0000000 -23.02585093 0.0000000 0.07222222 0 Previous
## 275 0.7692308 0.20181866 2.5649494 0.47222222 1 Recent
## 276 2.5000000 -2.29072683 1.3862944 0.05000000 0 Previous
## 277 2.0000000 -1.38629436 1.6094379 0.90000000 0 Previous
## 278 0.4761905 0.35330350 3.0445224 0.25555556 1 Recent
## 279 0.4761905 0.35330350 3.0445224 0.28888889 1 Recent
## 280 1.0000000 0.00000000 2.3025851 0.93333333 0 Previous
## 281 1.6666667 -0.85137604 1.7917595 0.25555556 1 Recent
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## 282 3.3333333 -4.01324268 1.0986123 0.95555556 0 Never
## 283 2.0000000 -1.38629436 1.6094379 1.00000000 1 Recent
## 284 1.1111111 -0.11706724 2.1972246 0.81111111 1 Recent
## 285 1.2500000 -0.27892944 2.0794415 0.84444444 1 Recent
## 286 5.0000000 -8.04718956 0.6931472 0.10000000 0 Never
## 287 2.5000000 -2.29072683 1.3862944 0.52222222 0 Never
## 288 3.3333333 -4.01324268 1.0986123 0.42222222 0 Never
## 289 2.5000000 -2.29072683 1.3862944 0.22222222 0 Never
## 290 2.5000000 -2.29072683 1.3862944 0.97777778 0 Never
## 291 10.0000000 -23.02585093 0.0000000 0.57777778 0 Previous
## 292 0.6250000 0.29375227 2.7725887 0.02777778 1 Recent
## 293 1.4285714 -0.50953563 1.9459101 0.99444444 0 Never
## 294 1.1111111 -0.11706724 2.1972246 0.19444444 1 Recent
## 295 5.0000000 -8.04718956 0.6931472 0.13333333 0 Previous
## 296 0.2777778 0.35581496 3.5835189 0.45555556 1 Recent
## 297 2.5000000 -2.29072683 1.3862944 0.15555556 0 Never
## 298 10.0000000 -23.02585093 0.0000000 0.45000000 0 Never
## 299 3.3333333 -4.01324268 1.0986123 0.02222222 0 Never
## 300 2.0000000 -1.38629436 1.6094379 0.53888889 1 Recent
## 301 10.0000000 -23.02585093 0.0000000 0.43333333 0 Never
## 302 2.5000000 -2.29072683 1.3862944 1.00555556 0 Never
## 303 5.0000000 -8.04718956 0.6931472 0.16111111 0 Previous
## 304 5.0000000 -8.04718956 0.6931472 0.77222222 0 Never
## 305 3.3333333 -4.01324268 1.0986123 0.84444444 1 Recent
## 306 1.6666667 -0.85137604 1.7917595 0.50000000 0 Previous
## 307 2.0000000 -1.38629436 1.6094379 0.34444444 1 Recent
## 308 0.7142857 0.24033731 2.6390573 0.61111111 0 Previous
## 309 0.6666667 0.27031007 2.7080502 0.08333333 0 Never
## 310 1.6666667 -0.85137604 1.7917595 0.37777778 0 Never
## 311 10.0000000 -23.02585093 0.0000000 0.10555556 0 Never
## 312 1.4285714 -0.50953563 1.9459101 0.25555556 1 Recent
## 313 0.3225806 0.36496842 3.4339872 1.02222222 1 Recent
## 314 1.1111111 -0.11706724 2.1972246 1.04444444 1 Recent
## 315 1.4285714 -0.50953563 1.9459101 0.34444444 1 Recent
## 316 2.5000000 -2.29072683 1.3862944 0.31111111 0 Previous
## 317 0.9090909 0.08664562 2.3978953 0.64444444 1 Recent
## 318 1.4285714 -0.50953563 1.9459101 1.25555556 1 Recent
## 319 2.5000000 -2.29072683 1.3862944 0.77777778 0 Never
## 320 2.0000000 -1.38629436 1.6094379 1.00000000 1 Recent
## 321 1.4285714 -0.50953563 1.9459101 0.61111111 1 Recent
## 322 1.6666667 -0.85137604 1.7917595 0.98888889 1 Recent
## 323 1.2500000 -0.27892944 2.0794415 0.78888889 1 Recent
## 324 1.6666667 -0.85137604 1.7917595 0.93333333 0 Never
## 325 2.0000000 -1.38629436 1.6094379 0.86666667 0 Never
## 326 2.0000000 -1.38629436 1.6094379 0.66666667 0 Never
## 327 1.4285714 -0.50953563 1.9459101 0.91111111 1 Recent
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## 328 1.6666667 -0.85137604 1.7917595 0.90000000 0 Previous
## 329 2.5000000 -2.29072683 1.3862944 0.19444444 1 Recent
## 330 0.4347826 0.36213440 3.1354942 0.08888889 1 Recent
## 331 5.0000000 -8.04718956 0.6931472 0.03888889 0 Previous
## 332 2.0000000 -1.38629436 1.6094379 0.16666667 0 Never
## 333 2.5000000 -2.29072683 1.3862944 0.58888889 0 Never
## 334 0.9090909 0.08664562 2.3978953 0.96666667 0 Never
## 335 5.0000000 -8.04718956 0.6931472 0.80000000 0 Never
## 336 5.0000000 -8.04718956 0.6931472 0.13333333 0 Previous
## 337 2.5000000 -2.29072683 1.3862944 0.09444444 0 Previous
## 338 2.0000000 -1.38629436 1.6094379 0.53888889 0 Never
## 339 10.0000000 -23.02585093 0.0000000 0.14444444 1 Recent
## 340 3.3333333 -4.01324268 1.0986123 0.17222222 0 Never
## 341 2.5000000 -2.29072683 1.3862944 0.15555556 1 Recent
## 342 3.3333333 -4.01324268 1.0986123 0.83333333 1 Recent
## 343 1.4285714 -0.50953563 1.9459101 0.22222222 1 Recent
## 344 2.0000000 -1.38629436 1.6094379 1.15555556 0 Never
## 345 0.7692308 0.20181866 2.5649494 0.94444444 1 Recent
## 346 10.0000000 -23.02585093 0.0000000 1.22222222 0 Never
## 347 0.5882353 0.31213427 2.8332133 1.11111111 1 Recent
## 348 5.0000000 -8.04718956 0.6931472 0.81111111 1 Recent
## 349 1.4285714 -0.50953563 1.9459101 0.72222222 1 Recent
## 350 0.4761905 0.35330350 3.0445224 0.83333333 1 Recent
## 351 5.0000000 -8.04718956 0.6931472 0.92222222 0 Never
## 352 0.5555556 0.32654815 2.8903718 0.08333333 0 Previous
## 353 0.3225806 0.36496842 3.4339872 0.24444444 1 Recent
## 354 2.5000000 -2.29072683 1.3862944 0.03888889 0 Never
## 355 2.0000000 -1.38629436 1.6094379 0.11111111 1 Recent
## 356 0.7692308 0.20181866 2.5649494 0.97222222 1 Recent
## 357 2.5000000 -2.29072683 1.3862944 0.39444444 0 Never
## 358 3.3333333 -4.01324268 1.0986123 0.14444444 0 Never
## 359 2.5000000 -2.29072683 1.3862944 0.89444444 1 Recent
## 360 1.0000000 0.00000000 2.3025851 0.20000000 0 Never
## 361 1.1111111 -0.11706724 2.1972246 0.16666667 1 Recent
## 362 2.5000000 -2.29072683 1.3862944 0.99444444 0 Previous
## 363 3.3333333 -4.01324268 1.0986123 1.10555556 1 Recent
## 364 2.5000000 -2.29072683 1.3862944 1.01111111 1 Recent
## 365 2.5000000 -2.29072683 1.3862944 1.24444444 0 Never
## 366 1.4285714 -0.50953563 1.9459101 0.08888889 1 Recent
## 367 3.3333333 -4.01324268 1.0986123 0.20000000 0 Never
## 368 1.4285714 -0.50953563 1.9459101 0.22222222 0 Never
## 369 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 370 1.4285714 -0.50953563 1.9459101 0.97777778 0 Never
## 371 0.4761905 0.35330350 3.0445224 0.84444444 1 Recent
## 372 5.0000000 -8.04718956 0.6931472 0.24444444 0 Never
## 373 2.0000000 -1.38629436 1.6094379 1.22222222 1 Recent
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## 374 2.5000000 -2.29072683 1.3862944 0.94444444 1 Recent
## 375 2.5000000 -2.29072683 1.3862944 0.11111111 1 Recent
## 376 0.5555556 0.32654815 2.8903718 0.87222222 1 Recent
## 377 0.3703704 0.36787103 3.2958369 0.73888889 1 Recent
## 378 2.5000000 -2.29072683 1.3862944 0.46111111 0 Never
## 379 2.0000000 -1.38629436 1.6094379 0.84444444 0 Never
## 380 2.0000000 -1.38629436 1.6094379 0.93888889 0 Never
## 381 2.5000000 -2.29072683 1.3862944 0.49444444 0 Previous
## 382 1.6666667 -0.85137604 1.7917595 0.51111111 1 Recent
## 383 2.0000000 -1.38629436 1.6094379 0.11666667 0 Previous
## 384 0.3225806 0.36496842 3.4339872 0.17222222 1 Recent
## 385 5.0000000 -8.04718956 0.6931472 0.17222222 0 Never
## 386 0.5882353 0.31213427 2.8332133 0.73888889 1 Recent
## 387 2.0000000 -1.38629436 1.6094379 0.85000000 1 Recent
## 388 10.0000000 -23.02585093 0.0000000 1.00000000 0 Never
## 389 0.4761905 0.35330350 3.0445224 1.13333333 1 Recent
## 390 1.2500000 -0.27892944 2.0794415 0.94444444 1 Recent
## 391 5.0000000 -8.04718956 0.6931472 0.98888889 0 Never
## 392 0.7142857 0.24033731 2.6390573 0.31111111 1 Recent
## 393 5.0000000 -8.04718956 0.6931472 1.00000000 1 Recent
## 394 2.5000000 -2.29072683 1.3862944 0.93333333 0 Previous
## 395 2.5000000 -2.29072683 1.3862944 0.94444444 1 Recent
## 396 1.2500000 -0.27892944 2.0794415 0.40000000 1 Recent
## 397 0.9090909 0.08664562 2.3978953 0.82222222 1 Recent
## 398 10.0000000 -23.02585093 0.0000000 0.46666667 1 Recent
## 399 5.0000000 -8.04718956 0.6931472 1.00000000 1 Recent
## 400 10.0000000 -23.02585093 0.0000000 1.20000000 1 Recent
## 401 2.5000000 -2.29072683 1.3862944 0.54444444 1 Recent
## 402 5.0000000 -8.04718956 0.6931472 2.43333333 1 Recent
## 403 1.4285714 -0.50953563 1.9459101 1.20000000 1 Recent
## 404 10.0000000 -23.02585093 0.0000000 1.97777778 0 Never
## 405 3.3333333 -4.01324268 1.0986123 0.46666667 0 Previous
## 406 1.2500000 -0.27892944 2.0794415 2.02222222 1 Recent
## 407 1.6666667 -0.85137604 1.7917595 0.06666667 0 Never
## 408 2.5000000 -2.29072683 1.3862944 1.95000000 0 Previous
## 409 5.0000000 -8.04718956 0.6931472 0.06666667 0 Never
## 410 10.0000000 -23.02585093 0.0000000 0.03333333 1 Recent
## 411 5.0000000 -8.04718956 0.6931472 0.50555556 0 Never
## 412 5.0000000 -8.04718956 0.6931472 1.36111111 0 Never
## 413 5.0000000 -8.04718956 0.6931472 2.06666667 0 Previous
## 414 10.0000000 -23.02585093 0.0000000 1.21111111 0 Never
## 415 10.0000000 -23.02585093 0.0000000 0.25555556 0 Previous
## 416 1.4285714 -0.50953563 1.9459101 2.01666667 1 Recent
## 417 10.0000000 -23.02585093 0.0000000 0.73888889 0 Never
## 418 5.0000000 -8.04718956 0.6931472 0.03888889 1 Recent
## 419 10.0000000 -23.02585093 0.0000000 0.62222222 0 Previous
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## 420 3.3333333 -4.01324268 1.0986123 0.23333333 0 Previous
## 421 5.0000000 -8.04718956 0.6931472 1.87777778 1 Recent
## 422 1.4285714 -0.50953563 1.9459101 0.31111111 1 Recent
## 423 0.4761905 0.35330350 3.0445224 0.52222222 1 Recent
## 424 1.6666667 -0.85137604 1.7917595 0.22222222 1 Recent
## 425 2.0000000 -1.38629436 1.6094379 1.95555556 1 Recent
## 426 10.0000000 -23.02585093 0.0000000 0.36666667 0 Previous
## 427 1.4285714 -0.50953563 1.9459101 0.30555556 0 Never
## 428 1.2500000 -0.27892944 2.0794415 1.91111111 0 Previous
## 429 10.0000000 -23.02585093 0.0000000 0.85000000 0 Never
## 430 1.1111111 -0.11706724 2.1972246 2.04444444 0 Previous
## 431 10.0000000 -23.02585093 0.0000000 2.03333333 0 Never
## 432 2.5000000 -2.29072683 1.3862944 0.24444444 0 Previous
## 433 10.0000000 -23.02585093 0.0000000 2.03333333 0 Never
## 434 10.0000000 -23.02585093 0.0000000 1.55555556 0 Never
## 435 3.3333333 -4.01324268 1.0986123 0.21111111 0 Never
## 436 0.7692308 0.20181866 2.5649494 2.04444444 1 Recent
## 437 10.0000000 -23.02585093 0.0000000 0.55555556 0 Never
## 438 3.3333333 -4.01324268 1.0986123 1.46666667 0 Never
## 439 5.0000000 -8.04718956 0.6931472 1.42222222 1 Recent
## 440 5.0000000 -8.04718956 0.6931472 0.59444444 0 Previous
## 441 10.0000000 -23.02585093 0.0000000 2.04444444 0 Never
## 442 2.0000000 -1.38629436 1.6094379 1.21666667 1 Recent
## 443 1.6666667 -0.85137604 1.7917595 2.07777778 0 Previous
## 444 5.0000000 -8.04718956 0.6931472 0.51111111 0 Never
## 445 10.0000000 -23.02585093 0.0000000 0.25000000 0 Never
## 446 10.0000000 -23.02585093 0.0000000 2.03333333 0 Never
## 447 3.3333333 -4.01324268 1.0986123 2.04444444 1 Recent
## 448 5.0000000 -8.04718956 0.6931472 0.86666667 0 Never
## 449 10.0000000 -23.02585093 0.0000000 2.04444444 0 Never
## 450 3.3333333 -4.01324268 1.0986123 2.07777778 0 Previous
## 451 3.3333333 -4.01324268 1.0986123 1.12222222 1 Recent
## 452 10.0000000 -23.02585093 0.0000000 1.56666667 0 Never
## 453 5.0000000 -8.04718956 0.6931472 0.26666667 0 Never
## 454 0.2439024 0.34414316 3.7135721 0.40000000 0 Previous
## 455 10.0000000 -23.02585093 0.0000000 0.31111111 0 Never
## 456 1.1111111 -0.11706724 2.1972246 2.03888889 0 Previous
## 457 3.3333333 -4.01324268 1.0986123 0.38888889 0 Never
## 458 1.4285714 -0.50953563 1.9459101 0.32222222 0 Previous
## 459 2.0000000 -1.38629436 1.6094379 2.03333333 0 Never
## 460 1.4285714 -0.50953563 1.9459101 0.05555556 1 Recent
## 461 3.3333333 -4.01324268 1.0986123 2.37777778 1 Recent
## 462 1.1111111 -0.11706724 2.1972246 2.18888889 0 Previous
## 463 10.0000000 -23.02585093 0.0000000 0.98888889 0 Never
## 464 5.0000000 -8.04718956 0.6931472 0.62222222 0 Never
## 465 5.0000000 -8.04718956 0.6931472 0.10000000 0 Never
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## 466 10.0000000 -23.02585093 0.0000000 2.06666667 0 Never
## 467 5.0000000 -8.04718956 0.6931472 1.68333333 0 Previous
## 468 2.5000000 -2.29072683 1.3862944 0.17777778 0 Never
## 469 2.0000000 -1.38629436 1.6094379 0.04444444 0 Previous
## 470 5.0000000 -8.04718956 0.6931472 0.35000000 0 Never
## 471 0.4761905 0.35330350 3.0445224 1.20000000 0 Previous
## 472 5.0000000 -8.04718956 0.6931472 2.03333333 0 Previous
## 473 5.0000000 -8.04718956 0.6931472 0.83888889 0 Never
## 474 10.0000000 -23.02585093 0.0000000 0.07777778 0 Never
## 475 3.3333333 -4.01324268 1.0986123 0.42222222 0 Never
## 476 3.3333333 -4.01324268 1.0986123 0.97777778 0 Never
## 477 1.2500000 -0.27892944 2.0794415 0.51666667 1 Recent
## 478 2.5000000 -2.29072683 1.3862944 2.22222222 1 Recent
## 479 10.0000000 -23.02585093 0.0000000 1.97777778 0 Previous
## 480 10.0000000 -23.02585093 0.0000000 0.43333333 0 Never
## 481 0.9090909 0.08664562 2.3978953 0.66111111 0 Previous
## 482 3.3333333 -4.01324268 1.0986123 1.71111111 0 Previous
## 483 3.3333333 -4.01324268 1.0986123 0.90555556 1 Recent
## 484 1.2500000 -0.27892944 2.0794415 0.65555556 0 Previous
## 485 10.0000000 -23.02585093 0.0000000 0.42222222 0 Never
## 486 10.0000000 -23.02585093 0.0000000 0.64444444 0 Never
## 487 2.5000000 -2.29072683 1.3862944 0.97777778 1 Recent
## 488 5.0000000 -8.04718956 0.6931472 0.36666667 0 Never
## 489 3.3333333 -4.01324268 1.0986123 0.38888889 1 Recent
## 490 3.3333333 -4.01324268 1.0986123 0.37777778 0 Never
## 491 0.3846154 0.36750440 3.2580965 2.12222222 0 Previous
## 492 1.6666667 -0.85137604 1.7917595 0.38888889 0 Never
## 493 5.0000000 -8.04718956 0.6931472 0.17777778 0 Never
## 494 10.0000000 -23.02585093 0.0000000 0.31111111 0 Never
## 495 2.5000000 -2.29072683 1.3862944 0.16666667 0 Never
## 496 1.2500000 -0.27892944 2.0794415 0.07777778 1 Recent
## 497 10.0000000 -23.02585093 0.0000000 0.47777778 0 Never
## 498 1.6666667 -0.85137604 1.7917595 0.98888889 0 Previous
## 499 5.0000000 -8.04718956 0.6931472 0.42222222 0 Never
## 500 2.5000000 -2.29072683 1.3862944 2.26666667 1 Recent
## 501 3.3333333 -4.01324268 1.0986123 0.84444444 0 Never
## 502 2.5000000 -2.29072683 1.3862944 2.16666667 0 Never
## 503 5.0000000 -8.04718956 0.6931472 2.04444444 0 Never
## 504 5.0000000 -8.04718956 0.6931472 1.41111111 0 Previous
## 505 10.0000000 -23.02585093 0.0000000 2.06111111 0 Never
## 506 5.0000000 -8.04718956 0.6931472 2.17777778 0 Never
## 507 3.3333333 -4.01324268 1.0986123 2.20000000 0 Never
## 508 3.3333333 -4.01324268 1.0986123 1.88888889 1 Recent
## 509 2.0000000 -1.38629436 1.6094379 0.27777778 1 Recent
## 510 10.0000000 -23.02585093 0.0000000 0.90555556 0 Never
## 511 0.8333333 0.15193463 2.4849066 2.02222222 0 Never



818 CHAPTER 22. ANOVA

## 512 2.5000000 -2.29072683 1.3862944 1.66666667 0 Never
## 513 1.2500000 -0.27892944 2.0794415 0.18888889 1 Recent
## 514 2.0000000 -1.38629436 1.6094379 0.18888889 1 Recent
## 515 2.5000000 -2.29072683 1.3862944 2.03333333 0 Never
## 516 1.2500000 -0.27892944 2.0794415 1.47777778 0 Previous
## 517 2.5000000 -2.29072683 1.3862944 0.76666667 0 Previous
## 518 1.4285714 -0.50953563 1.9459101 2.03333333 1 Recent
## 519 1.4285714 -0.50953563 1.9459101 0.07777778 1 Recent
## 520 3.3333333 -4.01324268 1.0986123 2.04444444 0 Previous
## 521 0.6250000 0.29375227 2.7725887 0.49444444 1 Recent
## 522 1.6666667 -0.85137604 1.7917595 2.03333333 0 Never
## 523 0.7142857 0.24033731 2.6390573 1.96666667 1 Recent
## 524 0.9090909 0.08664562 2.3978953 0.85555556 1 Recent
## 525 0.4761905 0.35330350 3.0445224 1.36666667 0 Previous
## 526 5.0000000 -8.04718956 0.6931472 1.62222222 0 Previous
## 527 0.9090909 0.08664562 2.3978953 1.12777778 0 Never
## 528 1.4285714 -0.50953563 1.9459101 2.00000000 1 Recent
## 529 3.3333333 -4.01324268 1.0986123 0.87777778 0 Never
## 530 1.6666667 -0.85137604 1.7917595 1.11666667 0 Previous
## 531 10.0000000 -23.02585093 0.0000000 0.71666667 0 Previous
## 532 5.0000000 -8.04718956 0.6931472 2.02777778 0 Never
## 533 2.0000000 -1.38629436 1.6094379 0.88333333 0 Never
## 534 3.3333333 -4.01324268 1.0986123 1.96666667 0 Previous
## 535 5.0000000 -8.04718956 0.6931472 0.39444444 1 Recent
## 536 3.3333333 -4.01324268 1.0986123 0.60000000 1 Recent
## 537 2.0000000 -1.38629436 1.6094379 1.10000000 0 Previous
## 538 5.0000000 -8.04718956 0.6931472 2.06666667 0 Never
## 539 1.4285714 -0.50953563 1.9459101 0.27777778 0 Previous
## 540 10.0000000 -23.02585093 0.0000000 0.26666667 0 Never
## 541 2.5000000 -2.29072683 1.3862944 2.12222222 0 Never
## 542 1.6666667 -0.85137604 1.7917595 0.95000000 0 Previous
## 543 5.0000000 -8.04718956 0.6931472 0.80555556 0 Never
## 544 0.4761905 0.35330350 3.0445224 2.03333333 0 Never
## 545 2.5000000 -2.29072683 1.3862944 0.80000000 0 Never
## 546 5.0000000 -8.04718956 0.6931472 0.24444444 0 Previous
## 547 3.3333333 -4.01324268 1.0986123 0.77777778 0 Never
## 548 10.0000000 -23.02585093 0.0000000 2.04444444 0 Never
## 549 3.3333333 -4.01324268 1.0986123 1.04444444 0 Never
## 550 1.1111111 -0.11706724 2.1972246 1.64444444 0 Previous
## 551 10.0000000 -23.02585093 0.0000000 0.25555556 0 Never
## 552 5.0000000 -8.04718956 0.6931472 1.42222222 0 Never
## 553 10.0000000 -23.02585093 0.0000000 1.17777778 0 Never
## 554 10.0000000 -23.02585093 0.0000000 0.51111111 0 Previous
## 555 10.0000000 -23.02585093 0.0000000 0.83333333 0 Never
## 556 3.3333333 -4.01324268 1.0986123 0.26666667 0 Never
## 557 2.5000000 -2.29072683 1.3862944 0.32222222 1 Recent
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## 558 3.3333333 -4.01324268 1.0986123 1.98888889 0 Previous
## 559 2.0000000 -1.38629436 1.6094379 1.88888889 1 Recent
## 560 5.0000000 -8.04718956 0.6931472 2.02777778 0 Never
## 561 2.0000000 -1.38629436 1.6094379 2.22222222 0 Previous
## 562 10.0000000 -23.02585093 0.0000000 0.62222222 0 Never
## 563 1.6666667 -0.85137604 1.7917595 0.26666667 0 Previous
## 564 1.4285714 -0.50953563 1.9459101 0.11111111 0 Previous
## 565 0.4545455 0.35838971 3.0910425 1.96666667 1 Recent
## 566 10.0000000 -23.02585093 0.0000000 1.28888889 0 Never
## 567 0.8333333 0.15193463 2.4849066 0.30000000 0 Previous
## 568 10.0000000 -23.02585093 0.0000000 0.26666667 0 Never
## 569 2.0000000 -1.38629436 1.6094379 0.63333333 0 Previous
## 570 10.0000000 -23.02585093 0.0000000 0.51111111 0 Never
## 571 1.4285714 -0.50953563 1.9459101 0.43333333 0 Previous
## 572 2.0000000 -1.38629436 1.6094379 0.18888889 1 Recent
## 573 2.5000000 -2.29072683 1.3862944 0.11666667 0 Previous
## 574 3.3333333 -4.01324268 1.0986123 2.04444444 1 Recent
## 575 0.6250000 0.29375227 2.7725887 0.05000000 1 Recent

glimpse(uis2)

## Rows: 575
## Columns: 19
## $ ID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, ~
## $ AGE <dbl> 39, 33, 33, 32, 24, 30, 39, 27, 40, 36, 38, 29, 32, 41, 31, 27,~
## $ BECK <dbl> 9.000, 34.000, 10.000, 20.000, 5.000, 32.550, 19.000, 10.000, 2~
## $ HC <dbl> 4, 4, 2, 4, 2, 3, 4, 4, 2, 2, 2, 3, 3, 1, 1, 2, 1, 4, 3, 2, 3, ~
## $ IV <dbl> 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 2, 1, 3, 1, ~
## $ NDT <dbl> 1, 8, 3, 1, 5, 1, 34, 2, 3, 7, 8, 1, 2, 8, 1, 3, 6, 1, 15, 5, 1~
## $ RACE <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, ~
## $ TREAT <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ SITE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ LEN.T <dbl> 123, 25, 7, 66, 173, 16, 179, 21, 176, 124, 176, 79, 182, 174, ~
## $ TIME <dbl> 188, 26, 207, 144, 551, 32, 459, 22, 210, 184, 212, 87, 598, 26~
## $ CENSOR <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, ~
## $ Y <dbl> 5.236442, 3.258097, 5.332719, 4.969813, 6.311735, 3.465736, 6.1~
## $ ND1 <dbl> 5.0000000, 1.1111111, 2.5000000, 5.0000000, 1.6666667, 5.000000~
## $ ND2 <dbl> -8.0471896, -0.1170672, -2.2907268, -8.0471896, -0.8513760, -8.~
## $ LNDT <dbl> 0.6931472, 2.1972246, 1.3862944, 0.6931472, 1.7917595, 0.693147~
## $ FRAC <dbl> 0.68333333, 0.13888889, 0.03888889, 0.73333333, 0.96111111, 0.0~
## $ IV3 <dbl> 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, ~
## $ IV_fct <fct> Recent, Previous, Recent, Recent, Never, Recent, Recent, Recent~
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22.7.3 Make tables or plots to explore the data visually.

We should calculate group statistics:

tabyl(uis2, IV_fct) %>%
adorn_totals()

## IV_fct n percent
## Never 223 0.3878261
## Previous 109 0.1895652
## Recent 243 0.4226087
## Total 575 1.0000000

uis2 %>%
summarise(mean(BECK))

## mean(BECK)
## 1 17.36743

uis2 %>%
group_by(IV_fct) %>%
summarise(mean(BECK))

## # A tibble: 3 x 2
## IV_fct `mean(BECK)`
## <fct> <dbl>
## 1 Never 15.9
## 2 Previous 16.6
## 3 Recent 19.0

Here are two graphs that are appropriate for one categorical and one numerical
variable: a side-by-side boxplot and a stacked histogram.

ggplot(uis2, aes(y = BECK, x = IV_fct)) +
geom_boxplot()
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geom_histogram(binwidth = 5, boundary = 0) +
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Both graphs show that the distribution of depression scores in each group is
similar.

The distributions look reasonably normal, or perhaps a bit right skewed, but
we can also check the QQ plots:

ggplot(uis2, aes(sample = BECK)) +
geom_qq() +
geom_qq_line() +
facet_grid(IV_fct ~ .)
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There is one mild outlier in the “Previous” group, but with sample sizes as large
as we have in each group, it’s unlikely that this outlier will be influential. So
we’ll just leave it in the data and not worry about it.

22.8 Hypotheses

22.8.1 Identify the sample (or samples) and a reasonable
population (or populations) of interest.

The sample consists of people who participated in the UIS drug treatment study.
Because the UIS studied the effects of residential treatment for drug abuse, the
population is, presumably, all drug addicts.
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22.8.2 Express the null and alternative hypotheses as con-
textually meaningful full sentences.

𝐻0 ∶ There is no difference in depression levels among those who have no history
of IV drug use, those who have some previous IV drug use, and those who have
recent IV drug use.

𝐻𝐴 ∶ There is a difference in depression levels among those who have no history
of IV drug use, those who have some previous IV drug use, and those who have
recent IV drug use.

22.8.3 Express the null and alternative hypotheses in sym-
bols (when possible).

𝐻0 ∶ 𝜇𝑛𝑒𝑣𝑒𝑟 = 𝜇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝜇𝑟𝑒𝑐𝑒𝑛𝑡

There is no easy way to express the alternate hypothesis in symbols because any
deviation in any of the categories can lead to rejection of the null. You can’t
just say 𝜇𝑛𝑒𝑣𝑒𝑟 ≠ 𝜇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ≠ 𝜇𝑟𝑒𝑐𝑒𝑛𝑡 because two of these categories might be
the same and the third different and that would still be consistent with the
alternative hypothesis.

So the only requirement here is to express the null in symbols.

22.9 Model

22.9.1 Identify the sampling distribution model.

We will use an F model with 𝑑𝑓𝐺 = 2 and 𝑑𝑓𝐸 = 572.

Commentary: Remember that

𝑑𝑓𝐺 = 𝑘 − 1 = 3 − 1 = 2,

(𝑘 is the number of groups, in this case, 3), and

𝑑𝑓𝐸 = 𝑛 − 𝑘 = 575 − 3 = 572.

22.9.2 Check the relevant conditions to ensure that model
assumptions are met.

• Random
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– We have little information about how this sample was collected, so
we have to hope it’s representative.

• 10%

– 575 is definitely less than 10% of all drug addicts.

• Nearly normal

– The earlier stacked histograms and QQ plots showed that each group
is nearly normal. (There was one outlier in one group, but our sample
sizes are quite large.)

• Constant variance

– The spread of data looks pretty consistent from group to group in
the stacked histogram and side-by-side boxplot.

22.10 Mechanics

22.10.1 Compute the test statistic.

BECK_IV_F <- uis2 %>%
specify(response = BECK, explanatory = IV_fct) %>%
calculate(stat = "F")

BECK_IV_F

## Response: BECK (numeric)
## Explanatory: IV_fct (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 6.72

22.10.2 Report the test statistic in context (when possi-
ble).

The F score is 6.721405.

Commentary: F scores (much like chi-square values earlier in the course) are
not particularly interpretable on their own, so there isn’t really any context we
can provide. It’s only required that you report the F score in a full sentence.
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22.10.3 Plot the null distribution.

BECK_IV_test <- uis2 %>%
specify(response = BECK, explanatory = IV_fct) %>%
hypothesize(null = "independence") %>%
assume(distribution = "F")

BECK_IV_test

## An F distribution with 2 and 572 degrees of freedom.

BECK_IV_test %>%
visualize() +
shade_p_value(obs_stat = BECK_IV_F, direction = "greater")

0.00

0.25

0.50

0.75

1.00

0 2 4 6
F stat

de
ns

ity

Theoretical F Null Distribution

22.10.4 Calculate the P-value.

BECK_IV_P <- BECK_IV_test %>%
get_p_value(obs_stat = BECK_IV_F, direction = "greater")

BECK_IV_P
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## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.00130

Commentary: Note that this is, by definition, a one-sided test. Extreme values
of F are the ones that are far away from 1, and only those values in the right
tail are far from 1.

22.10.5 Interpret the P-value as a probability given the
null.

The P-value is 0.0013023. If there were no differences in depression scores among
the three IV groups, there would be a 0.1302279% chance of seeing data at least
as extreme as the data we saw.

22.11 Conclusion

22.11.1 State the statistical conclusion.

We reject the null hypothesis.

22.11.2 State (but do not overstate) a contextually mean-
ingful conclusion.

There is sufficient evidence that there is a difference in depression levels among
those who have no history of IV drug use, those who have some previous IV
drug use, and those who have recent IV drug use.

22.11.3 Express reservations or uncertainty about the gen-
eralizability of the conclusion.

Our lack of uncertainty about the sample means we don’t know for sure if we
can generalize to a larger population of drug users. We hope that the researchers
would obtain a representative sample. Also, the study in question is from the
1990s, so we should not suppose that the conclusions are still true today.
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22.11.4 Identify the possibility of either a Type I or Type
II error and state what making such an error
means in the context of the hypotheses.

If we’ve made a Type I error, that means that there really isn’t a difference
among the three groups, but our sample is an unusual one that did detect a
difference.

Exercise 5(a) Everything we saw earlier in the exploratory data analysis
pointed toward failing to reject the null. All three groups look very similar in
all the plots, and the means are not all that far from each other. So why did
we get such a tiny P-value and reject the null? In other words, what is it about
our data that allows for small effects to be statistically significant?

Please write up your answer here.

Exercise 5(b) If you were a psychologist working with drug addicts, would
the statistical conclusion (rejecting the null and concluding that there was a
difference among groups) be of clinical importance to you? In other words,
if there is a difference, is it of practical significance and not just statistical
significance?

Please write up your answer here.

There is no confidence interval for ANOVA. We are not hypothesizing about
the value of any particular parameter, so there’s nothing to estimate with a
confidence interval.

22.12 Your turn

Using the penguins data, determine if there is a difference in the average body
masses among the three species represented in the data (Adelie, Chinstrap, and
Gentoo).

There are two missing values of body mass, and as we saw earlier in the book,
that does affect certain functions. To make it a little easier on you, here is some
code to remove those missing values:

penguins2 <- penguins %>%
drop_na(species, body_mass_g)
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For this whole section, be sure to use penguins2.

The rubric outline is reproduced below. You may refer to the worked example
above and modify it accordingly. Remember to strip out all the commentary.
That is just exposition for your benefit in understanding the steps, but is not
meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your
brain. You will often need to modify more than just the names of the data
frames and variables to adapt the worked examples to your own work. Do not
blindly copy and paste code without understanding what it does. And you
should never copy and paste text. All the sentences and paragraphs you write
are expressions of your own analysis. They must reflect your own understanding
of the inferential process.

Also, so that your answers here don’t mess up the code chunks above,
use new variable names everywhere.

Exploratory data analysis

Use data documentation (help files, code books, Google, etc.) to de-
termine as much as possible about the data provenance and structure.
Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

# Add code here to prepare the data for analysis.

Prepare the data for analysis. [Not always necessary.]

# Add code here to make tables or plots.

Make tables or plots to explore the data visually.

Hypotheses
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Identify the sample (or samples) and a reasonable population (or
populations) of interest. Please write up your answer here.

Express the null and alternative hypotheses as contextually meaning-
ful full sentences. 𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possi-
ble). 𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model. Please write up your answer
here.

Check the relevant conditions to ensure that model assumptions are
met. Please write up your answer here. (Some conditions may require R code
as well.)

Mechanics

# Add code here to compute the test statistic.

Compute the test statistic.

Report the test statistic in context (when possible). Please write up
your answer here.

# IF CONDUCTING A SIMULATION...
set.seed(1)
# Add code here to simulate the null distribution.
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# Add code here to plot the null distribution.

Plot the null distribution.

# Add code here to calculate the P-value.

Calculate the P-value.

Interpret the P-value as a probability given the null. Please write up
your answer here.

Conclusion

State the statistical conclusion. Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.
Please write up your answer here.

Express reservations or uncertainty about the generalizability of the
conclusion. Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state
what making such an error means in the context of the hypotheses.
Please write up your answer here.

22.13 Bonus section: post-hoc analysis

Suppose our ANOVA test leads us to reject the null hypothesis. Then we have
statistically significant evidence that there is some difference between the means
of the various groups. However, ANOVA doesn’t tell us which groups are actu-
ally different – unsatisfying!

We could consider just doing a bunch of individual t-tests between each pair of
groups. However, the problem with this approach is that it greatly increases



22.13. BONUS SECTION: POST-HOC ANALYSIS 831

the chances that we might commit a Type I error. (For an exploration of this
problem, please see the following XKCD comic.)

Fortunately, there is a tool called post-hoc analysis that allows us to determine
which groups differ from the others in a way that doesn’t inflate the Type I
error rate.

There are several methods for conducting post-hoc analysis. You may have
heard of the Bonferroni correction, in which the usual significance level is divided
by the number of pairwise comparisons contemplated. Another method, and the
one we’ll explore here, is called the Tukey Honestly-Significant-Difference test.
The precise details of this test are a little outside the scope of this course, but
here’s how it’s done in R.

We’ll start by using a different function, called aov, to conduct the ANOVA
test. This function produces a slightly different format of outputs than we’re
used to, but it produces all the same values as our other tools:

BECK_IV_aov <- aov(BECK ~ IV_fct, uis2)
summary(BECK_IV_aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## IV_fct 2 1148 574.0 6.721 0.0013 **
## Residuals 572 48850 85.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice in particular that the F score and the P-value are the same as we obtained
using infer tools above.

Now that we have the result of the aov command stored in a new variable, we
can feed it into the new command TukeyHSD:

TukeyHSD(BECK_IV_aov)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BECK ~ IV_fct, data = uis2)
##
## $IV_fct
## diff lwr upr p adj
## Previous-Never 0.692054 -1.8458349 3.229943 0.7976511
## Recent-Never 3.043674 1.0299195 5.057429 0.0012039
## Recent-Previous 2.351620 -0.1517446 4.854986 0.0707718

https://xkcd.com/882/
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Here’s how to read these results: Start by looking at the p adj column, which
tells us adjusted p-values. Look for a p-value that is below the usual significance
level 𝛼 = 0.05. In our example, the second p-value is the only one that is small
enough to reach significance.

Once you’ve located the significant p-values, read the row to determine which
comparisons are significant. Here, the second row is the meaningful one: this is
the comparison between the “Recent” group and the “Never” group.

The column labeled diff reports the difference between the means of the two
groups; the order of subtraction is reported in the first column. Here, the dif-
ference in Beck depression scores is 3.043674, which is computed by subtracting
the mean of the “Never” group from the mean of the “Recent” group.

As usual, we report our results in a contextually-meaningful sentence. Here’s
our example:

Tukey’s HSD test reports that recent IV drug users have a Beck
inventory score that is 3.043674 points higher than those who have
never used IV drugs.

22.13.1 Your turn

Conduct a post-hoc analysis to determine which penguin species is heavier or
lighter than the others.

# Add code here to produce the aov model

# Add code here to run Tukey's HSD test on the aov model

Report your results in a contextually-meaningful sentence:

Please write your answer here.

22.14 Conclusion

When analyzing a numerical response variable across three or more levels of a
categorical predictor variable, ANOVA provides a way of comparing the vari-
ability of the response between the groups to the variability within the groups.
When there is more variability between the groups than within the groups, this
is evidence that the groups are truly different from one another (rather than
simply arising from random sampling variability). The result of comparing the
two sources of variability gives rise to the F distribution, which can be used
to determine when the difference is more than one would expect from chance
alone.
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22.14.1 Preparing and submitting your assignment

1. From the “Run” menu, select “Restart R and Run All Chunks”.
2. Deal with any code errors that crop up. Repeat steps 1—2 until there are

no more code errors.
3. Spell check your document by clicking the icon with “ABC” and a check

mark.
4. Hit the “Preview” button one last time to generate the final draft of the

.nb.html file.
5. Proofread the HTML file carefully. If there are errors, go back and fix

them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the
directions you receive from your professor to submit your assignment.
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Appendix A

Rubric for inference

2.0

This is the R Markdown outline for running inference, both a hypothesis test
and a confidence interval.

Exploratory data analysis

Use data documentation (help files, code books, Google,
etc.) to determine as much as possible about the data
provenance and structure.

Please write up your answer here

# Add code here to print the data

# Add code here to glimpse the variables

Prepare the data for analysis. [Not always necessary.]

# Add code here to prepare the data for analysis.

Make tables or plots to explore the data visually.

835
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# Add code here to make tables or plots.

Hypotheses

Identify the sample (or samples) and a reasonable popula-
tion (or populations) of interest.

Please write up your answer here.

Express the null and alternative hypotheses as contextually
meaningful full sentences.

𝐻0 ∶ Null hypothesis goes here.

𝐻𝐴 ∶ Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols
(when possible).

𝐻0 ∶ 𝑚𝑎𝑡ℎ
𝐻𝐴 ∶ 𝑚𝑎𝑡ℎ

Model

Identify the sampling distribution model.

Please write up your answer here.

Check the relevant conditions to ensure that model assump-
tions are met.

Please write up your answer here. (Some conditions may require R code as
well.)
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Mechanics

Compute the test statistic.

# Add code here to compute the test statistic.

Report the test statistic in context (when possible).

Please write up your answer here.

Plot the null distribution.

# IF CONDUCTING A SIMULATION...
set.seed(1)
# Add code here to simulate the null distribution.

# Add code here to plot the null distribution.

Calculate the P-value.

# Add code here to calculate the P-value.

Interpret the P-value as a probability given the null.

Please write up your answer here.

Conclusion

State the statistical conclusion.

Please write up your answer here.

State (but do not overstate) a contextually meaningful con-
clusion.

Please write up your answer here.
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Express reservations or uncertainty about the generaliz-
ability of the conclusion.

Please write up your answer here.

Identify the possibility of either a Type I or Type II error
and state what making such an error means in the context
of the hypotheses.

Please write up your answer here.

Confidence interval

Check the relevant conditions to ensure that model assump-
tions are met.

Please write up your answer here. (Some conditions may require R code as
well.)

Calculate and graph the confidence interval.

# Add code here to calculate the confidence interval.

# Add code here to graph the confidence interval.

State (but do not overstate) a contextually meaningful in-
terpretation.

Please write up your answer here.

If running a two-sided test, explain how the confidence in-
terval reinforces the conclusion of the hypothesis test. [Not
always applicable.]

Please write up your answer here.
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When comparing two groups, comment on the effect size
and the practical significance of the result. [Not always
applicable.]

Please write up your answer here.
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Appendix B

Concordance with
Introduction to Modern
Statistics (IMS)

This book is meant to be somewhat aligned pedagogically with part of the
book Introduction to Modern Statistics (IMS) by Mine Çetinkaya-Rundel and
Johanna Hardin. But it’s not a perfect, one-to-one match. The table below
shows the concordance between the two books with some notes that explain
when one book does something different from the other.

This book IMS Notes
Ch. 1 This book contains a specific introduction to R and

RStudio with some basic statistical vocabulary.
Ch. 1 IMS introduces a lot of vocabulary. This book

introduces most of that same vocabulary, but across
multiple chapters.

Ch. 2 This book contains a specific introduction to R
Markdown.

Ch. 2 IMS discusses study design and sampling. Some of
that information is scattered across multiple
chapters of this book, but not all of it. (For
example, this book doesn’t get into stratified or
cluster sampling.)

Ch. 3 IMS has “Applications” chapters at the end of each
section. In this book, the applications are woven
into each chapter.

Ch. 3 Ch. 4 Categorical data.
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This book IMS Notes
Ch. 4 Ch. 5 Numerical data.
Ch. 5 This book has a dedicated chapter on manipulating

data using dplyr.
Ch. 6 Applications.

Ch. 6 Ch. 7 Correlation.
Ch. 7 Ch. 7 Simple linear regression.

Ch. 8 Multiple regression—not covered in this book.
Ch. 9 Logistic regression—not covered in this book.
Ch. 10 Applications.

Ch. 8 Ch. 11 Introduction to randomization, Part 1—This book
takes four chapters to cover the material that IMS
covers in one chapter.

Ch. 9 Ch. 11 Introduction to randomization, Part 2.
Ch. 10 Ch. 11 Hypothesis testing with randomization, Part 1.
Ch. 11 Ch. 11 Hypothesis testing with randomization, Part 2.
Ch. 12 Ch. 12 Confidence intervals.
Ch. 13 Ch. 13 Normal models—This book takes two chapters to

cover the material that IMS covers in one chapter.
Ch. 14 Ch. 13 Sampling distribution models.

Ch. 14 IMS has a chapter on decision errors that was
covered in this book back in Ch. 10. It also covers
the concept of power, which is not covered in this
book.

Ch. 15 Applications.
Ch. 15 Ch. 16 Inference for one proportion.
Ch. 16 Ch. 17 Inference for two proportions.
Ch. 17 Chi-square goodness-of-fit test. (This is only

covered in IMS in a standalone R tutorial appearing
in Ch. 23.)

Ch. 18 Ch. 18 Chi-square test for independence.
Ch. 19 Ch. 19 Inference for one mean.
Ch. 20 Ch. 21 Inference for paired data.
Ch. 21 Ch. 20 Inference for two independent means.
Ch. 22 Ch. 22 ANOVA. This is the last chapter of this book.

Ch. 23 Applications.
Ch. 24 Inference for linear regression with a single

predictor.
Ch. 25 Inference for linear regression with multiple

predictors.
Ch. 26 Inference for logistic regression.
Ch. 27 Applications.
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