2.0

This is the R Markdown outline for running inference, both a hypothesis test and a confidence interval.

Exploratory data analysis
Use data documentation (help files, code books, Google, etc.) to determine as much as possible about the data provenance and structure.

Please write up your answer here

# Add code here to print the data
# Add code here to glimpse the variables
Prepare the data for analysis. [Not always necessary.]
# Add code here to prepare the data for analysis.
Make tables or plots to explore the data visually.
# Add code here to make tables or plots.
Hypotheses
Identify the sample (or samples) and a reasonable population (or populations) of interest.

Please write up your answer here.

Express the null and alternative hypotheses as contextually meaningful full sentences.

\(H_{0}:\) Null hypothesis goes here.

\(H_{A}:\) Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possible).

\(H_{0}: math\)

\(H_{A}: math\)

Model
Identify the sampling distribution model.

Please write up your answer here.

Check the relevant conditions to ensure that model assumptions are met.

Please write up your answer here. (Some conditions may require R code as well.)

Mechanics
Compute the test statistic.
# Add code here to compute the test statistic.
Report the test statistic in context (when possible).

Please write up your answer here.

Plot the null distribution.
set.seed(1)
# IF CONDUCTING A SIMULATION...
# Add code here to simulate the null distribution.
# Add code here to plot the null distribution.
Calculate the P-value.
# Add code here to calculate the P-value.
Interpret the P-value as a probability given the null.

Please write up your answer here.

Conclusion
State the statistical conclusion.

Please write up your answer here.

State (but do not overstate) a contextually meaningful conclusion.

Please write up your answer here.

Express reservations or uncertainty about the generalizability of the conclusion.

Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state what making such an error means in the context of the hypotheses.

Please write up your answer here.

Confidence interval
Check the relevant conditions to ensure that model assumptions are met.

Please write up your answer here. (Some conditions may require R code as well.)

Calculate and graph the confidence interval.
# Add code here to calculate the confidence interval.
# Add code here to graph the confidence interval.
State (but do not overstate) a contextually meaningful interpretation.

Please write up your answer here.

If running a two-sided test, explain how the confidence interval reinforces the conclusion of the hypothesis test. [Not always applicable.]

Please write up your answer here.

When comparing two groups, comment on the effect size and the practical significance of the result. [Not always applicable.]

Please write up your answer here.

LS0tDQp0aXRsZTogIlJ1YnJpYyBmb3IgaW5mZXJlbmNlIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KPCEtLSBQbGVhc2UgZG9uJ3QgbWVzcyB3aXRoIHRoZSBuZXh0IGZldyBsaW5lcyEgLS0+DQo8c3R5bGU+aDV7Zm9udC1zaXplOjJlbTtjb2xvcjojMDAwMEZGfWg2e2ZvbnQtc2l6ZToxLjVlbTtjb2xvcjojMDAwMEZGfWRpdi5hbnN3ZXJ7bWFyZ2luLWxlZnQ6NSU7Ym9yZGVyOjFweCBzb2xpZCAjMDAwMEZGO2JvcmRlci1sZWZ0LXdpZHRoOjEwcHg7cGFkZGluZzoyNXB4fSBkaXYuc3VtbWFyeXtiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMzAsMTQ0LDI1NSwwLjEpO2JvcmRlcjozcHggZG91YmxlICMwMDAwRkY7cGFkZGluZzoyNXB4fTwvc3R5bGU+YHIgb3B0aW9ucyhzY2lwZW49OTk5KWA8cCBzdHlsZT0iY29sb3I6I2ZmZmZmZiI+YHIgaW50VG9VdGY4KGMoNTAsNDYsNDgpKWA8L3A+DQo8IS0tIFBsZWFzZSBkb24ndCBtZXNzIHdpdGggdGhlIHByZXZpb3VzIGZldyBsaW5lcyEgLS0+DQoNClRoaXMgaXMgdGhlIFIgTWFya2Rvd24gb3V0bGluZSBmb3IgcnVubmluZyBpbmZlcmVuY2UsIGJvdGggYSBoeXBvdGhlc2lzIHRlc3QgYW5kIGEgY29uZmlkZW5jZSBpbnRlcnZhbC4NCg0KDQojIyMjIyBFeHBsb3JhdG9yeSBkYXRhIGFuYWx5c2lzDQoNCiMjIyMjIyBVc2UgZGF0YSBkb2N1bWVudGF0aW9uIChoZWxwIGZpbGVzLCBjb2RlIGJvb2tzLCBHb29nbGUsIGV0Yy4pIHRvIGRldGVybWluZSBhcyBtdWNoIGFzIHBvc3NpYmxlIGFib3V0IHRoZSBkYXRhIHByb3ZlbmFuY2UgYW5kIHN0cnVjdHVyZS4NCg0KOjo6IHsuYW5zd2VyfQ0KDQpQbGVhc2Ugd3JpdGUgdXAgeW91ciBhbnN3ZXIgaGVyZQ0KDQpgYGB7cn0NCiMgQWRkIGNvZGUgaGVyZSB0byBwcmludCB0aGUgZGF0YQ0KYGBgDQoNCmBgYHtyfQ0KIyBBZGQgY29kZSBoZXJlIHRvIGdsaW1wc2UgdGhlIHZhcmlhYmxlcw0KYGBgDQoNCjo6Og0KDQojIyMjIyMgUHJlcGFyZSB0aGUgZGF0YSBmb3IgYW5hbHlzaXMuIFtOb3QgYWx3YXlzIG5lY2Vzc2FyeS5dDQoNCjo6OiB7LmFuc3dlcn0NCg0KYGBge3J9DQojIEFkZCBjb2RlIGhlcmUgdG8gcHJlcGFyZSB0aGUgZGF0YSBmb3IgYW5hbHlzaXMuDQpgYGANCg0KOjo6DQoNCiMjIyMjIyBNYWtlIHRhYmxlcyBvciBwbG90cyB0byBleHBsb3JlIHRoZSBkYXRhIHZpc3VhbGx5Lg0KDQo6Ojogey5hbnN3ZXJ9DQoNCmBgYHtyfQ0KIyBBZGQgY29kZSBoZXJlIHRvIG1ha2UgdGFibGVzIG9yIHBsb3RzLg0KYGBgDQoNCjo6Og0KDQoNCiMjIyMjIEh5cG90aGVzZXMNCg0KIyMjIyMjIElkZW50aWZ5IHRoZSBzYW1wbGUgKG9yIHNhbXBsZXMpIGFuZCBhIHJlYXNvbmFibGUgcG9wdWxhdGlvbiAob3IgcG9wdWxhdGlvbnMpIG9mIGludGVyZXN0Lg0KDQo6Ojogey5hbnN3ZXJ9DQoNClBsZWFzZSB3cml0ZSB1cCB5b3VyIGFuc3dlciBoZXJlLg0KDQo6OjoNCg0KIyMjIyMjIEV4cHJlc3MgdGhlIG51bGwgYW5kIGFsdGVybmF0aXZlIGh5cG90aGVzZXMgYXMgY29udGV4dHVhbGx5IG1lYW5pbmdmdWwgZnVsbCBzZW50ZW5jZXMuDQoNCjo6OiB7LmFuc3dlcn0NCg0KJEhfezB9OiQgTnVsbCBoeXBvdGhlc2lzIGdvZXMgaGVyZS4NCg0KJEhfe0F9OiQgQWx0ZXJuYXRpdmUgaHlwb3RoZXNpcyBnb2VzIGhlcmUuDQoNCjo6Og0KDQojIyMjIyMgRXhwcmVzcyB0aGUgbnVsbCBhbmQgYWx0ZXJuYXRpdmUgaHlwb3RoZXNlcyBpbiBzeW1ib2xzICh3aGVuIHBvc3NpYmxlKS4NCg0KOjo6IHsuYW5zd2VyfQ0KDQokSF97MH06IG1hdGgkDQoNCiRIX3tBfTogbWF0aCQNCg0KOjo6DQoNCg0KIyMjIyMgTW9kZWwNCg0KIyMjIyMjIElkZW50aWZ5IHRoZSBzYW1wbGluZyBkaXN0cmlidXRpb24gbW9kZWwuDQoNCjo6OiB7LmFuc3dlcn0NCg0KUGxlYXNlIHdyaXRlIHVwIHlvdXIgYW5zd2VyIGhlcmUuDQoNCjo6Og0KDQojIyMjIyMgQ2hlY2sgdGhlIHJlbGV2YW50IGNvbmRpdGlvbnMgdG8gZW5zdXJlIHRoYXQgbW9kZWwgYXNzdW1wdGlvbnMgYXJlIG1ldC4NCg0KOjo6IHsuYW5zd2VyfQ0KDQpQbGVhc2Ugd3JpdGUgdXAgeW91ciBhbnN3ZXIgaGVyZS4gKFNvbWUgY29uZGl0aW9ucyBtYXkgcmVxdWlyZSBSIGNvZGUgYXMgd2VsbC4pDQoNCjo6Og0KDQoNCiMjIyMjIE1lY2hhbmljcw0KDQojIyMjIyMgQ29tcHV0ZSB0aGUgdGVzdCBzdGF0aXN0aWMuDQoNCjo6OiB7LmFuc3dlcn0NCg0KYGBge3J9DQojIEFkZCBjb2RlIGhlcmUgdG8gY29tcHV0ZSB0aGUgdGVzdCBzdGF0aXN0aWMuDQpgYGANCg0KOjo6DQoNCiMjIyMjIyBSZXBvcnQgdGhlIHRlc3Qgc3RhdGlzdGljIGluIGNvbnRleHQgKHdoZW4gcG9zc2libGUpLg0KDQo6Ojogey5hbnN3ZXJ9DQoNClBsZWFzZSB3cml0ZSB1cCB5b3VyIGFuc3dlciBoZXJlLg0KDQo6OjoNCg0KIyMjIyMjIFBsb3QgdGhlIG51bGwgZGlzdHJpYnV0aW9uLg0KDQo6Ojogey5hbnN3ZXJ9DQoNCmBgYHtyfQ0KIyBJRiBDT05EVUNUSU5HIEEgU0lNVUxBVElPTi4uLg0Kc2V0LnNlZWQoMSkNCiMgQWRkIGNvZGUgaGVyZSB0byBzaW11bGF0ZSB0aGUgbnVsbCBkaXN0cmlidXRpb24uDQpgYGANCg0KYGBge3J9DQojIEFkZCBjb2RlIGhlcmUgdG8gcGxvdCB0aGUgbnVsbCBkaXN0cmlidXRpb24uDQpgYGANCg0KOjo6DQoNCiMjIyMjIyBDYWxjdWxhdGUgdGhlIFAtdmFsdWUuDQoNCjo6OiB7LmFuc3dlcn0NCg0KYGBge3J9DQojIEFkZCBjb2RlIGhlcmUgdG8gY2FsY3VsYXRlIHRoZSBQLXZhbHVlLg0KYGBgDQoNCjo6Og0KDQojIyMjIyMgSW50ZXJwcmV0IHRoZSBQLXZhbHVlIGFzIGEgcHJvYmFiaWxpdHkgZ2l2ZW4gdGhlIG51bGwuDQoNCjo6OiB7LmFuc3dlcn0NCg0KUGxlYXNlIHdyaXRlIHVwIHlvdXIgYW5zd2VyIGhlcmUuDQoNCjo6Og0KDQoNCiMjIyMjIENvbmNsdXNpb24NCg0KIyMjIyMjIFN0YXRlIHRoZSBzdGF0aXN0aWNhbCBjb25jbHVzaW9uLg0KDQo6Ojogey5hbnN3ZXJ9DQoNClBsZWFzZSB3cml0ZSB1cCB5b3VyIGFuc3dlciBoZXJlLg0KDQo6OjoNCg0KIyMjIyMjIFN0YXRlIChidXQgZG8gbm90IG92ZXJzdGF0ZSkgYSBjb250ZXh0dWFsbHkgbWVhbmluZ2Z1bCBjb25jbHVzaW9uLg0KDQo6Ojogey5hbnN3ZXJ9DQoNClBsZWFzZSB3cml0ZSB1cCB5b3VyIGFuc3dlciBoZXJlLg0KDQo6OjoNCg0KIyMjIyMjIEV4cHJlc3MgcmVzZXJ2YXRpb25zIG9yIHVuY2VydGFpbnR5IGFib3V0IHRoZSBnZW5lcmFsaXphYmlsaXR5IG9mIHRoZSBjb25jbHVzaW9uLg0KDQo6Ojogey5hbnN3ZXJ9DQoNClBsZWFzZSB3cml0ZSB1cCB5b3VyIGFuc3dlciBoZXJlLg0KDQo6OjoNCg0KIyMjIyMjIElkZW50aWZ5IHRoZSBwb3NzaWJpbGl0eSBvZiBlaXRoZXIgYSBUeXBlIEkgb3IgVHlwZSBJSSBlcnJvciBhbmQgc3RhdGUgd2hhdCBtYWtpbmcgc3VjaCBhbiBlcnJvciBtZWFucyBpbiB0aGUgY29udGV4dCBvZiB0aGUgaHlwb3RoZXNlcy4NCg0KOjo6IHsuYW5zd2VyfQ0KDQpQbGVhc2Ugd3JpdGUgdXAgeW91ciBhbnN3ZXIgaGVyZS4NCg0KOjo6DQoNCiMjIyMjIENvbmZpZGVuY2UgaW50ZXJ2YWwNCg0KIyMjIyMjIENoZWNrIHRoZSByZWxldmFudCBjb25kaXRpb25zIHRvIGVuc3VyZSB0aGF0IG1vZGVsIGFzc3VtcHRpb25zIGFyZSBtZXQuDQoNCjo6OiB7LmFuc3dlcn0NCg0KUGxlYXNlIHdyaXRlIHVwIHlvdXIgYW5zd2VyIGhlcmUuIChTb21lIGNvbmRpdGlvbnMgbWF5IHJlcXVpcmUgUiBjb2RlIGFzIHdlbGwuKQ0KDQo6OjoNCg0KIyMjIyMjIENhbGN1bGF0ZSBhbmQgZ3JhcGggdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwuDQoNCjo6OiB7LmFuc3dlcn0NCg0KYGBge3J9DQojIEFkZCBjb2RlIGhlcmUgdG8gY2FsY3VsYXRlIHRoZSBjb25maWRlbmNlIGludGVydmFsLg0KYGBgDQoNCmBgYHtyfQ0KIyBBZGQgY29kZSBoZXJlIHRvIGdyYXBoIHRoZSBjb25maWRlbmNlIGludGVydmFsLg0KYGBgDQoNCjo6Og0KDQojIyMjIyMgU3RhdGUgKGJ1dCBkbyBub3Qgb3ZlcnN0YXRlKSBhIGNvbnRleHR1YWxseSBtZWFuaW5nZnVsIGludGVycHJldGF0aW9uLg0KDQo6Ojogey5hbnN3ZXJ9DQoNClBsZWFzZSB3cml0ZSB1cCB5b3VyIGFuc3dlciBoZXJlLg0KDQo6OjoNCg0KIyMjIyMjIElmIHJ1bm5pbmcgYSB0d28tc2lkZWQgdGVzdCwgZXhwbGFpbiBob3cgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgcmVpbmZvcmNlcyB0aGUgY29uY2x1c2lvbiBvZiB0aGUgaHlwb3RoZXNpcyB0ZXN0LiBbTm90IGFsd2F5cyBhcHBsaWNhYmxlLl0NCg0KOjo6IHsuYW5zd2VyfQ0KDQpQbGVhc2Ugd3JpdGUgdXAgeW91ciBhbnN3ZXIgaGVyZS4NCg0KOjo6DQoNCiMjIyMjIyBXaGVuIGNvbXBhcmluZyB0d28gZ3JvdXBzLCBjb21tZW50IG9uIHRoZSBlZmZlY3Qgc2l6ZSBhbmQgdGhlIHByYWN0aWNhbCBzaWduaWZpY2FuY2Ugb2YgdGhlIHJlc3VsdC4gW05vdCBhbHdheXMgYXBwbGljYWJsZS5dDQoNCjo6OiB7LmFuc3dlcn0NCg0KUGxlYXNlIHdyaXRlIHVwIHlvdXIgYW5zd2VyIGhlcmUuDQoNCjo6Og0KDQo=